Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)"

Transcript

1 Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2 Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ανατροφοδότηση Κατάστασης Παρατηρητές και Ανατροφοδότηση Εξόδου Υλοποίηση Συστημάτων Ελέγχου μέσω Μικροϋπολογιστών Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

3 1. Παράσταση Συστημάτων Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

4 Παράσταση Συστημάτων Τρόποι παράστασης δυναµικών συστηµάτων κατάλληλοι για ανάλυση και σχεδιασµό συστηµάτων ελέγχου: Εξισώσεις Κατάστασης (State-Space Equations): Συνίστανται από: µία Διανυσµατική Διαφορική Εξίσωση1 ης τάξης που συσχετίζει ανεξάρτητες µεταβλητές (είσοδοι) µε µεταβλητές κατάστασης, και Μία Διανυσµατική Αλγεβρική Εξίσωση που συσχετίζει µεταβλητές εξόδου που εκφράζονται συναρτήσει των εισοδων και των µεταβλητών κατάστασης. Δοµικό Διάγραµµα (Block Diagram): Γραφική παράσταση των εξισώσεων κατάστασης. Μήτρες Μεταφοράς (Transfer Matrices): είναι Πίνακες Συναρτήσεων Μεταφοράς (Matrix Transfer Functions) που συσχετίζουν τους µετασχηµατισµούς Laplace των εισόδων και των εξόδων. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4

5 Γ.Χ.Α.Σ. - Παράδειγμα 1 Η διαφορική εξίσωση που περιγράφει το φυσικο φαινόµενο είναι: Εφόσον είναι 2 ης τάξης, αντιστοιχούν 2 µεταβλητές κατάστασης Προφανώς που οδηγεί την αρχική ΔΕ στην µορφή Εποµένως η αρχική ΔΕ 2 ης τάξης αντιστοιχεί σε 2 ΔΕ 1 ης τάξης Οι µεταβλητές κατάστασης συνδέονται µε τα στοιχεία συσσώρευσης ενέργειας. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5

6 Γ.Χ.Α.Σ. - Παράδειγμα 1 Η έξοδος είναι ενώ η είσοδος είναι Εποµένως λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Έχουµε δηλαδή ένα 2-διάστατο (n=2) σύστηµα µίας εισόδου µίας εξόδου (Single Input Single Output SISO) (m=p=1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6

7 Εξισώσεις Κατάστασης (State- Space EquaGons) Γενική µορφή παράστασης Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων ΓΧΑ (Linear Time Invariant - LTI) σε µορφή εξισώσεων κατάστασης: Το n-διάστατο διάνυσµα κατάστασης (state vector) αποτελείται από n µεταβλητές κατάστασης (state variables) Τα διανύσµατα εισόδου και εξόδου είναι αντίστοιχα: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 7

8 Το διάνυσµα κατάστασης x εµπεριέχει εκείνες τις (εσωτερικές) µεταβλητές που αποτελούν το ελάχιστο σύνολο µεταβλητων που απαιτείται να παραστήσουν πλήρως την εξέλιξη του συστήµατος µε βάση την επενέργηση της εισόδου και την αρχική κατάσταση Το διάνυσµα εισόδου u εµπεριέχει τις µεταβλητές που επενεργούν στο (δηλ. «οδηγούν» το) σύστηµα. Το διάνυσµα εξόδου y (θα θεωρήσουµε προς το παρόν ότι απλά) περιέχει εκείνες τις µεταβλητές που µπορούν να µετρηθούν. Δεδοµένης της δοµής Εξισώσεις Κατάστασης (State- Space EquaGons) και των διαστάσεων των σχετικών διανυσµάτων, είναι προφανές ότι για τούς παραπάνω πίνακες ισχύει: nn nm pn pm A= a ij R B= b ij R C= c ij R D= d ij R Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 8

9 Προφανώς οι (µητρωικές) εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Εξισώσεις Κατάστασης (State- Space EquaGons) είναι «συµπτυγµένες» µορφές των n διαφορικών εξισώσεων (i = 1,2,,n) κατάστασης p αλγεβρικών εξισώσεων ( j = 1,2,,p) εξόδου Οι εξισώσεις κατάστασης προκύπτουν από τις βασικές διαφορικές εξισώσεις που περιγράφουν τη «δυναµική» του συστήµατος. Με αυτό το τρόπο αν η δυναµική περιγράφεται από ll ΔΕ, όπου κάθε µία είναι n k = 1, 2, l, τάξεως, τότε η µητρωική µορφή αντιπροσωπεύει έναν αριθµό n= l n εξισώσεων πρώτης τάξεως k = 1 k Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 9

10 Δομικά Διαγράμματα Αποτελούν ουσιαστικά γραφική παράσταση των Δ.Ε. κατάστασης και των αλγεβρικών εξισώσεων εξόδου. Συνίστανται στη διασύνδεση 3 βασικών συναρτησιακών στοιχείων: Ενισχυτή: στοιχείο πολλαπλασιασµού σηµάτων µε πίνακα σταθερών. q e R Κ r z R Αθροιστή: στοιχείο άθροισης (ή και αφαίρεσης) µεταξύ οµοδιάστατων q διανυσµατικών µεταβλητών e R 1 q Ολοκληρωτή: στοιχείο που ολοκληρώνει τις ΔΕ κατάστασης (1 ης τάξης) αποδίδοντας της µεταβλητές κατάστασης δεδοµένων των αρχικών συνθηκών. e = e ( ) 0 0 Σ e R 2 e= e + e R 1 2 q et!( ) ( ) ( τ) et = e+ e dτ 0 t 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10

11 Δομικά Διαγράμματα Η γενική παράσταση Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων (ΓΧΑΣ) σε µορφή εξισώσεων κατάστασης: παρίσταται σε µορφή Δοµικού Διάγραµµατος. D u(t) B u(t) C x(t) Α x(t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 11

12 Γ.Χ.Α.Σ. - Παράδειγμα 2 Οι µεταβλητές κατάστασης συνδέονται µε τα στοιχεία συσσώρευσης ενέργειας: Οι είσοδοι συσχετίζονται µε τις ανεξάρτητες πηγές Έστω ότι επιλέγουµε ως έξοδο την τάση του πηνίου Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12

13 Γ.Χ.Α.Σ. - Παράδειγμα 2 Δεδοµένου ότι Λαµβάνουµε Από τον νόµο ρευµάτων του Kirchoff: ( ) = G x( t) + F u( t) M!x t Γράφοντας αυτές τις εξισώσεις σε µητρωική µορφή µε όρους που ξεχωρίζουν τις χρονικές παραγώγους, το διάνυσµα κατάστασης και το διάνυσµα εισόδου παίρνουµε... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13

14 Γ.Χ.Α.Σ. - Παράδειγμα 2 ( ) = M 1 { G x( t) + F u( t) }!x t... Οπότε κάνοντας τις πράξεις... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14

15 Γ.Χ.Α.Σ. - Παράδειγμα 2 Δεδοµένου ότι Λαµβάνουµε Έχουµε δηλαδή ένα 3-διάστατο (n=3) σύστηµα, δύο εισόδων (m=2) και µίας εξόδου (p=1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15

16 Γ.Χ.Α.Σ. - Παράδειγμα 3 Αν η ΔΕ που περιγράφει ένα σύστηµα είναι (n=3): η αντίστοιχη Συνάρτηση Μεταφοράς είναι... Αν ορίσουµε τις 3 µεταβλητές κατάστασης τότε η ΔΕ γίνεται Οπότε λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 16

17 Γ.Χ.Α.Σ. - Παράδειγμα 3 Η γενίκευση του προηγούµενου παραδείγµατος για Δίνει προφανώς µε Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 17

18 Μήτρες Μεταφοράς Σε ΓΧΑ συστήµατα µίας εισόδου µίας εξόδου (Single Input Single Output SISO), Συνάρτηση Μεταφοράς (Transfer Function TF) είναι ο λόγος των µετασχηµατισµών Laplace της εξόδου προς την είσοδο, θεωρώντας ότι όλες οι αρχικές συνθήκες είναι µηδενικές. Y ( ) ( s) F s = U U s ( s ) F(s) Y( s) ( ) Παροµοίως σε ΓΧΑ συστήµατα πολλών εισόδων πολλών εξόδων (Multiple Input Multiple Output MIMO) η συσχέτιση των µετασχηµατισµών Laplace των διανυσµάτων εξόδου (p-διάστατο) εισόδου (m-διάστατο), θεωρώντας ότι όλες οι αρχικές συνθήκες είναι µηδενικές, γίνεται από την Μήτρα Μεταφοράς (p m-διάστατη). Y( s) = G( s) U( s) U( s ) Y( s) G(s) Προφανώς το στοιχείο G ij (s) δείχνει την επίδραση του U j (s) στο Y i (s). Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 18

19 Μήτρες Μεταφοράς Αν στη γενική παράσταση Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων (ΓΧΑΣ) σε µορφή εξισώσεων κατάστασης: εφαρµόσουµε το µετασχηµατισµό Laplace (µηδενικές αρχικές συνθήκες) ( ) 0 ( ) ( ) ( ) ( ) ( ) s X s x/ = A X s + B U s Y s = C s I A B+ D U s Y s = C X s + D U s 1 ( s I A) X ( s) = B U( s) X ( s) = ( s I A) B U( s) η Μήτρα Μεταφοράς είναι 0 1 ( ) ( ) ( ) ( ) ( ) 1 Y( s) = G( s) U( s) G s = C s I A B+ D Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 19

20 Γ.Χ.Α.Σ. - Παράδειγμα 4 Θεωρούµε το SISO σύστηµα Αν, όπως και προηγουµένως, ορίσουµε = ( ) ( ) Y s U s επειδη ( s 3 + a 2 s 2 + a 1 s+ a 0 )Y s s 3 Y s ( ) = b 2 s 2 + b 1 s+ b 0 ( ) = a 2 s 2 Y ( s) a 1 sy ( s) a 0 Y s ( )U ( s) ( )+ b 2 s 2 U ( s)+ b 1 su ( s)+ b 0 U s ( ) Τότε Εποµένως οι µεταβλητές κατάστασης πρέπει να ορισθούν αλλοιώς. Θεωρώντας Y( s) = Y ( s) = H U s 2 s ( ) ( ) H ( 1 s) U ( s)!#" # $ ( ) W s όπου οπότε... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 20

21 Γ.Χ.Α.Σ. - Παράδειγμα 4 Και στο πεδίο του χρόνου παίρνουµε Από τη πρώτη ΣΜ... Και από τη δεύτερη... ( s 3 + a 2 s 2 + a 1 s+ a 0 )W ( s) =U ( s)!!! w( t)+ a 2!!w ( t)+ a 1!w ( t)+ a 0 w t y t ( ) = b 2!! u( t)+ b 1!u ( t)+ b 0 u t Οπότε επιλέγοντας αυτή τη φορά µεταβλητές κατάστασης... ( ) ( ) = u( t) Βέβαια αυτές οι μεταβλητές κατάστασης ΔΕΝ έχουν προφανή φυσική σημασία... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 21

22 Γ.Χ.Α.Σ. - Παράδειγμα 4... λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Προφανώς αυτή η µεθολογία είναι φανερό ότι επεκτείνεται άµεσα γιά Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 22

23 Γ.Χ.Α.Σ. - Παράδειγμα 4 Η περαιτέρω επέκταση στην αµέσως γενικότερη περίπτωση γίνεται µέσω πολυωνυµικής διαίρεσης που οδηγεί σε όπου bˆ = b b a i= 1, 2,, n 1 i i n i Σε αυτή τη περίπτωση προχωρούµε όπως και προηγουµένως στην ανάπτυξη του µοντέλλου εξισώσεων κατάστασης που οδηγεί στην ανεύρεση των πινάκων Α, Β, C. Σε αυτή την περίπτωση βεβαίως D= b n Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 23

24 Συμπέρασμα για τα Παραδ. 3 & 4 Οι εξισώσεις κατάστασης είναι «υλοποίηση στο χώρο κατάστασης» (statespace realization) της συµπεριφοράς εισόδου-εξόδου ενός συστήµατος αν «αντιστοιχεί» είτε στη σχέση Y(s)=H(s)!U(s) είτε στη σχετική ΔΕ που σχετίζει τα y(t) και u(t) στο πεδίο του χρόνου (µηδενικές αρχικές συνθήκες). Στα µέχρι τώρα παραδείγµατα (3, 4) που αφορούσαν συστήµατα SISO η συγκρότηση της «υλοποίησης στο χώρο κατάστασης» : έγινε µε µη συστηµατικό (γενικευµένο) τρόπο (κάτι που θα γίνει πιο µετά), και ονοµάζεται «κανονική µορφή µεταβλητών φάσης» (phase-variable canonical form) ή «κανονική µορφή τύπου ελεγκτή» (controller canonical form) Η έννοια της «υλοποίησης στο χώρο κατάστασης» θα αντιµετωπισθεί και σε επόµενη φάση. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 24

25 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Γενική µορφή παράστασης (Μη-Γραµµικών, Χρονικά Μεταβλητών) Συστηµάτων σε µορφή εξισώσεων κατάστασης: όπου οι συναρτήσεις f (!,!,!) και h (!,!,!) είναι συνεχώς παραγωγίσιµες (continuously differentiable) ώς προς τα ορίσµατά τους. Ορισµός: Για ένα ονοµαστικό σήµα εισόδου u! ( t) η αντίστοιχη ονοµαστική τροχιά της κατάστασης xt! ικανοποιεί την ΔΕ και η αντίστοιχη ονοµαστική τροχιά εξόδου είναι Αν υπάρχει (δηλ. σταθερά διανύσµατα) για τα οποία ισχύει (!! ) ( ) ( ), ( ) ut! = uxt!! = x! 0 = f x, u, t t τότε έχουµε την ειδική περίπτωση όπου η ισορροπίας» (equilibrium state). x! είναι «κατάσταση Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 25

26 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Θεωρούµε τις αποκλίσεις απο τις «ονοµαστικές τροχιές»: και τις σχετικές µερικές παραγώγους: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 26

27 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Αναπτύσσοντας κατά Taylor: και ορίζοντας παίρνουµε:... όπου πήραµε: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 27

28 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Θεωρώντας ότι η κατάσταση, η είσοδος και η έξοδος είναι «κοντά» στις ονοµαστικές τους τιµές, οι «οροι υψηλότερης τάξεως» (higher order terms h.o.t.) αγνοούνται οπότε λαµβάνεται η «γραµµικοποίηση» (linearization) του αρχικού συστήµατος Από τις εξισώσεις της προηγούµενης σελίδας γίνεται φανερό ότι αν: το αρχικό (µη-γραµµικό) σύστηµα δεν εξαρτάται από το χρόνο, και η γραµµικοποίηση γίνει γύρω από τροχιές (κατάσταση, είσοδο, έξοδο) ισορροπίας, τότε το γραµµικοποιηµένο σύστηµα είναι ΓΧΑ. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 28

29 Παράδειγμα 5: Γραμμικοποίηση Οι εξισώσεις της διάταξης «µπάλλας Δοκού» είναι p(t) είναι η θέση της µπάλλας, θ(t) είναι η γωνίας της δοκού, τ(t) είναι η ροπή του άξονα της δοκού (είσοδος) g είναι η επιτάχυνση της βαρύτητας, J είναι η ροπή αδράνειας της δοκού, και m, r, J b είναι οι µάζα, ακτίνα & ροπή αδράνειας της σφαίρας. Ορίζουµε... και... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 29

30 Παράδειγμα 5: Γραμμικοποίηση Οι εξισώσεις Κατάστασης και Εξόδου όπου. Οπότε : (, ) = x ( t) h x u 1 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 30

31 Παράδειγμα 5: Γραμμικοποίηση Θεωρούµε την ονοµαστική τρόχιά όπου η ράβδος είναι οριζόντια & σταθερή x ( t) x ( t) η µπάλλα κινείται µε σταθερή ταχύτητα υ 0 όντας, την χρονική στιγµή t 0, στη θέση p 0 οπότε προκύπτει ότι ( ) ( ) ( ) ( 3 = 4 = 0) Προφανώς δε,! yt = x! 1 t =! pt Για να προχωρήσουµε στη γραµµικοποίηση, θεωρούµε τις µεταβλητές απόκλισης από τις ονοµαστικές και προχωρούµε στον υπολογισµό των Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 31

32 Παράδειγμα 5: Γραμμικοποίηση όπου Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 32

33 Παράδειγμα 5: Γραμμικοποίηση Οι παράµετροι του γραµµικοποιηµένου συστήµατος λαµβάνονται από τις µερικές παραγώγους για τιµές επι των ονοµαστικών τροχιών Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 33

34 Παράδειγμα 5: Γραμμικοποίηση Για µηδενική αρχική ταχύτητα (υ 0 =0), οπότε η θέση της µπάλλας είναι p 0, η γραµµικοποίηση γίνεται γύρω από τη τροχιά... Οπότε οι πίνακες του ΓΧΑΣ είναι: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 34

35 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 35

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Μάθημα: Ρομποτικός Έλεγχος

Μάθημα: Ρομποτικός Έλεγχος Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Καταστατικές Εξισώσεις Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015) Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u Συστήµατα από Δειγµατοληπτικά Δεδοµένα (Επανάληψη Ασκήσεις) u Στο πεδίο Συχνότητας (Συναρτήσεις Μεταφορά) u Στο πεδίο Χρόνου (Εξισώσεις Κατάστασης)

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u u u u Ευστάθεια Ευστάθεια κατά Lyapunov Ασυµπτωτική Ευστάθεια Κριτήρια Ευστάθειας Ελεγξιµότητα Παρατηρησιµότητα Επίδραση της Δειγµατοληψίας στην Ελεγξιµότητα

Διαβάστε περισσότερα

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Καλώς ήλθατε. Καλό ξεκίνημα.

Καλώς ήλθατε. Καλό ξεκίνημα. Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,

Διαβάστε περισσότερα

y 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου

y 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου Τ.Ε.Ι. ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜHΜΑ ΗΛΕΚΤΡΟΛΟΓIΑΣ Σηµειώσεις για το εργαστήριο του µαθήµατος ΣΥΣΤΗΜΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ I ΓΑΥΡΟΣ ΚΩΝ/ΝΟΣ ΚΟΖΑΝΗ 2008 Κεφάλαιο 1 ο Ορισµός Συστηµάτων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συναρτήσεις Μεταφοράς, Δομικά Διαγράμματα, Διαγράμματα Ροής Σημάτων Aναστασία Βελώνη Τμήμα

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hip://users.tua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Βασικές Έννοιες Πινάκων

Διαβάστε περισσότερα

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Επιμέλεια Θεμάτων Σ.Π.Μαμαλάκης Ζήτημα 1 ον 1.. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η διαθλώμενη ακτίνα κινείται παράλληλα

Διαβάστε περισσότερα

ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB

ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων H απλοποιημένες εκφράσεις για τους αδρανειακούς

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Περιγραφή συστημάτων στο πεδίο της συχνότητας Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής ver. 0.2 10/2012 Εισαγωγή στο Simulink Το SIMULINK είναι ένα λογισµικό πακέτο που επιτρέπει τη µοντελοποίηση, προσοµοίωση οίωση

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι

1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι 1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι επιπτώσεις της 4) Μαθηματικό υπόβαθρο για την μελέτη των

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Σεισμική Απόκριση Μονοβάθμιου Συστήματος

Σεισμική Απόκριση Μονοβάθμιου Συστήματος Σεισμική Απόκριση Μονοβάθμιου Συστήματος Εισαγωγή Σεισμική Απόκριση Μονοβάθμιου Συστήματος: Δ16-2 Η κίνηση των στηρίξεων προκαλεί δυναμική καταπόνηση στην κατασκευή, έστω και αν δεν επενεργούν εξωτερικά

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t) Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 3o Εργαστήριο Σ.Α.Ε

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 3o Εργαστήριο Σ.Α.Ε ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3o Εργαστήριο Σ.Α.Ε Ενότητα : Μελέτη και Σχεδίαση Σ.Α.Ε Με χρήση του LabVIEW Control Design Toolkit Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Γεράσιµος Ποταµιάνος. Αναπλ. Καθηγητής, Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Πανεπιστήµιο Θεσσαλίας

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Γεράσιµος Ποταµιάνος. Αναπλ. Καθηγητής, Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Πανεπιστήµιο Θεσσαλίας ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ Γεράσιµος Ποταµιάνος Αναπλ. Καθηγητής, Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας http://www.inf.uth.gr/~gpotamianos ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΝΟΕΜΒΡΙΟΥ- ΕΚΕΜΒΡΙΟΥ 2013 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΜΗΜΑΤΑ: ΘΕΡΙΝΗΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ

ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΝΟΕΜΒΡΙΟΥ- ΕΚΕΜΒΡΙΟΥ 2013 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΜΗΜΑΤΑ: ΘΕΡΙΝΗΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ σύγχρονο Φάσµα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. µαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.5.557 50.56.96 5ης Μαρτίου ΠΕΤΡΟΥΠΟΛΗ 50.7.990 50.0.990 5ης Μαρτίου 74 Πλ.ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658 50.60.845

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ Ενότητα: Όρια και συνέχεια συναρτήσεων Διδάσκων: Ιωάννης Γιαννούλης Τμήμα: Μαθηματικών Κεφάλαιο 2 Ορια και συνέχεια συναρτήσεων 2.1 Πραγµατικές συναρτήσεις

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2 Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου 2000 Ερώτηµα 1 Βα), και, Οι εξισώσεις κίνησης είναι, Έχουµε δύο ασύζευκτους αρµονικούς ταλαντωτές συχνότητας Η Χαµιλτονιανή αυτή θα µπορούσε να περιγράφει µικρές

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 5 Εξισώσεις εσωτερικής κατάστασης Ελεγξιµότητα και Παρατηρησιµότητα Καλλιγερόπουλος 5 Εξισώσεις εσωτερικής κατάστασης Η εξωτερική συµπεριφορά ενός συστήµατος ορίζεται

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε στα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου

Διαβάστε περισσότερα

Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση

Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση Επανάληψη στα Συστήµατα από Δειγµατοληπτικά Δεδοµένα στα Πεδία Συχνότητας και Χρόνου Ψηφιακός Έλεγχος µε Συνεχή Σχεδιασµό Χαρακτηριστικά

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Τοαπλόεκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 2: Μοντελοποίηση φυσικών συστημάτων στο πεδίο του χρόνου Διαφορικές Εξισώσεις Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC.

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC. εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC. 1. Πρώτη µέθοδος περιγραφής του συστήµατος, µέσω ολοκληρωτικοδιαφορικών εξισώσεων. Έστω ένα κύκλωµα L,C,R εν σειρά µε πηγή τάσης. Το κύκλωµα αυτό το θεωρούµε

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 1. Γενικά.. 15 Επιφάνεια 15 Ευθειογενεί επιφάνειε. 15 Επιφάνειε δευτέρου βαθμού.. 16 2. Μερικέ επιφάνειε δευτέρου

Διαβάστε περισσότερα

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory Σ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήματα αυτομάτου ελέγχου (ΙΙ Modern Conrol Theory (η Ενότητα: Συστήματα Συνεχούς Χρόνου Διδάσκων : Αναπληρωτής Καθηγητής Δ.Π.Θ. Δομή και βασικές κατηγορίες

Διαβάστε περισσότερα