Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
|
|
- Οὐρβανός Ζάρκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml2347/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ
2 Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ποιοτικά Κριτήρια Σχεδίασης Ανατροφοδότηση Κατάστασης Εισαγωγή στον Βέλτιστο Έλεγχο Εισαγωγή στην Βελτιστοποίηση σε χώρουν πεπερασμένων και απείρων διαστάσεων. Εισαγωγή στο Λογισμό των Μεταβολών Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αναγκαίες Συνθήκες Βελτίστου Ελέγχου Προβληματα τύπου «Γραμμικού Ρυθμιστή» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2
3 Βέλτιστος Έλεγχος Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3
4 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το z R 2 την f ( z) = 2 zt Qz + S T z Q = Q T = 2 S = T ( ) = c z b = c = με ταυτόχρονη ικανοποίηση της g z b = 3 Δηλαδή, αν στο γενικό πρόβλημα της min f ( z) βελτιστοποίησης μιάς συνάρτησης f (z), z R d z συμπεριληφθούν και n ισοτικοί περιορισμοί της g ( z) μορφής g i (z)= i =,, n τότε το μαθηματικό g2 ( z) st. G( z) = = πρόβλημα βελτιστοποίησης γίνεται:! gn ( z) Προφανως ο αριθμός των περιορισμών πρέπει να είναι μικρότερος από αυτόν της διάστασης του προβηματος ( n < d ) γιατί αλλοιώς το πρόβλημα υπερπεριορίζεται, επειδή ο δυνατός χώρος (feasible space), δηλ. o χώρος που ικανοποιεί την G(z)=, εκφυλίζεται σε ένα ή και κανένα σημείο. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 27
5 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί min ΕΥΡΕΣΗ ΚΡΙΣΙΜΩΝ ΣΗΜΕΙΩΝ... z st ( ) ( z) ( z) ( z) 2. G z = = f g g! gn ( z) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 28
6 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Αντιµετωπίζουµε το πρόβληµα : ως εξής: gn ( z) T Εισάγουµε διάνυσµα πολλαπλασιαστών Lagrange λ = [ λ διαστάσεως λ2! λ n ] n, ίδιας δηλαδή µε του G(z), του διανύσµατος ισοτικών περιορισµών. Σχηµατίζουµε τη Lagrangian:! T f ( z) = f ( z) + λ G( z) = f ( z) + λg( z) + " λngn( z) Έστω ότι ελαχιστοποιούµε την Λαγκρανζιανή!f z δηλαδή βρούµε Έστω z z* που ικανοποιεί τους ισοτικούς περιορισµούς, δηλαδή G(z) = = G(z*) τότε λ R n T λ ισχύει: min Αν το z* ελαχιστοποιεί την Λαγκρανζιανή f z, τότε ελαχιστοποιεί και την f z για αυτά και μόνο τα z που ανήκουν στο σύνολο των σημείων z όπου ισχύει G(z) =. z st ( ) ( z) ( z) ( z) 2. G z = = f g g! ( ) ( ) ( ) ( ) z = arg min " d f z " f z > " f z z z z! ( ) ( ) = ( ) ( ) + ( ) ( ) = T T f ( z) λ G( z) f ( z ) λ G( z ) f z f z f z f z G z G z = + + = =! f z! f z > ( ) ( )! ( ) ( ) 29
7 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί ( )! " Αν το z* ελαχιστοποιεί την! d f ( z) τότε f z =.. Το αντίστροφο ισχύει µόνο αν η! f ( z) είναι κυρτή, κάτι που εξαρτάται και από το λ! n. Επίσης, για να ισχύει η εξίσωση ισοτικών περιορισµών, πρέπει G z =!. Αυτές οι d+n εξισώσεις οδηγούν στην λύση z, λ των d+n αγνώστων. ( ) ( ) = πr 2 h Παράδειγµα: µεγιστοποίηση του όγκου f r,h ενός κυλίνδρου, όπου r : η ακτίνα του και h : το ύψος του, υπό το περιορισµό g z που δείχνει ότι η συνολική του επιφάνεια είναι σταθερή, ίση µε Α. T Αν z = r h σχηµατίζουµε την Lagrangian!f z και µε µερική παραγώγιση λαµβάνουµε τις: d=2 εξισώσεις:! z f z ( ) πr 2 + λ2πr ( ) ( ) = 2πr 2 + 2πrh A = ( ) ( ) = f ( z) + λ Τ g( z) = f ( r,h) = πr 2 h + λ 2πr 2 + 2πrh A ( ) = 2πrh + λ 4πr + 2πh T z = h = 2r = 4λ n ( ) = 2πr 2 + 2πrh A = n= εξισώσεις: λ f! z λ = ± A ( 6π ) 2 Το θεωρούµενο ακρότατο είναι: z = r h T = A 6π για την θετική τιµή του λ * (η αρνητική δίνει αρνητικές τιµές για τα r *, h * ). ( ) 2 A ( 6π ) T 3
8 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Επιστροφή στο παράδειγµα-2: ελαχιστοποίηση της f ( z) = ( 2)z T Qz + S T z όπου και g( z) = c z b = c = b = 3 Q = Q T = 2 S = T Σχηµατίζουµε την!f ( z) = f ( z) + λ g( z) = και µε 2 zt Qz + S T z + λ ( c z b) µερική παραγώγιση λαµβάνουµε τις: d εξισώσεις: z! f z ( ) = Qz + S + c T λ = z = Q S + c T λ ( ) ( ) ( c Q S + b) z = Q S c T c Q c T n εξισώσεις: Οπότε z = 3 2! λ f z ( ) = c z b = T c Q ( S + c T λ ) b = λ = c Q c T ( ) ( c Q S + b) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3
9 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Οι ισοϋψείς είναι μορφής ελλειπτικής. Ο ισοτικός περιορισμός είναι η κατακόρυφη γραμμή... Το κρίσιμο σημείο z* είναι το σημειο επαφής μιάς ισοϋψούς στη κατακόρυφη Γενικά, για να εξασφαλιστεί η ελαχιστοποίση η! f ( z) πρέπει να είναι κυρτή για λ = Πως ελέγχεται όμως αυτό? λ Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 32
10 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Γενικά, το βασικό εργαλείο χαρακτηρισμού των κρισιμών σημείων ( z, λ ) είναι η χρήση παραγώγων 2 ης τάξης (Hessian). Εναλλακτικά, γίνεται μέσω ΑΝΑΛΥΣΗΣ ΚΥΡΤΟΤΗΤΑΣ Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 33
11 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Ανάλυση Κυρτότητας ( Convexity Analysis) σε ειδικές περιπτώσεις π.χ... Όταν ο ισοτικός περιορισμός είναι γραμμικός, δηλαδή : G z = C z e= με G R n, C R d n, z R d Tότε η παραγώγιση της!f ( z) = f ( z) + λ T G( z) = f ( z) + λ T ( C T z e) ως προς z οδηγεί στην z f! ( z) = z f ( z) + GT Αν λοιπόν η f (z) είναι «αυστηρά κυρτή» δηλαδή: z λ = f z z ( ) f ( z) T f z f z +υ με ισότητα μόνο όταν τότε :!f ( z +υ) f! ( z) = f ( z +υ) + λ T C T ( z +υ) e T ( ) ( ) υ υ = { } f z ( ) f ( z) = f z +υ = T f ( z) + λ T C T ( ) + λ T C T z e ( ) + C λ ( ) + λ T C T υ T f ( z) υ + λ T C T υ = υ = f z ( ) + C λ T υ = T f! ( z) υ =!f ( z +υ) f! ( z) T f! z ( ) υ Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Ισότητα µόνο όταν υ = 34
12 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Ανάλυση Κυρτότητας ( Convexity Analysis) σε ειδικές περιπτώσεις: T Αν ο ισοτικός περιορισμός είναι γραμμικός, δηλαδή : G z = C z e= ( )!f ( z +υ) f! ( z) f! ( z) υ Ισότητα µόνο όταν υ = Επειδή η f (z) είναι «αυστηρά κυρτή», η ανισότητα ισχύει σαν ισότητα μόνο όταν υ = και κατά συνέπεια το ίδιο θα ισχύει για την επόμενη ανισότητα : αυστηρά κυρτή Η γενικώτερη ανάλυση με χρήση Hessian είναι πέραν αυτού του μαθήματος.. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 35
13 Έστω το πρόβληµα ελαχιστοποίησης: Είναι η Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Τετραγωνικός Προγραμματισμός ( ) = 2 zt Qz + S T z f z f ( z +υ) f ( z) = 2 z +υ αυστηρά κυρτή? ( )T Q z +υ ( ) + S T ( z +υ) min z 2 zt Qz + S T z s.t. G z ( ) = C z b = Q = Q T > R d d C R n d, n < d, rank C 2 zt Qz + S T z = z T Qυ + S T υ + 2 υ T Qυ = z f ( z) υ + 2 υ T Qυ z f ( z) υ ( ) = n f ( z) = 2 zt Qz + S T υ ( ) = f ( z) + λ Τ G( z) f (z) : Αυστηρά Κυρτή Άρα, συµφωνα µε προηγ. σελ., και η!f z αυστηρά κυρτή. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 36
14 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Τετραγωνικός Προγραμματισμός Εποµένως, τα ακρότατα της f (z) θα ελαχιστοποιούν την f (z). Δεδοµένου οτι!f ( z) = f ( z) + λ T G z σύµφωνα µε τα προηγούµενα, αναζητούµε τη λύση z, λ µέσω των! z f ( z) = R d Qz + S + C T λ = z = Q S + C T λ λ! f z ( ) = G( z) R n C z b = C Q S + C T λ Η η εξίσωση έχει νόηµα γιατί Q >, άρα µη-ιδιόµορφος. Η 2 η εξίσωση έχει νόηµα γιατί Q > Q - > και C: full rank, rank(c) = n C Q - C T >, άρα η λύση λ * έχει νόηµα. Εποµένως η λύση ( ) ( ) z = Q S C T ( CQ T C T ) ( CQ S + b) ( ) b = λ = ( CQ C T ) ( CQ S + b) z = Q S C T CQ C T ( ) = 2 zt Qz + S T z + λ T ( C z b) ( ) ( C Q S + b) ελαχιστοποιεί την f ( z) = 2 zt Qz + S T z Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 37
15 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Άπειρες Διαστάσεις Μέχρι τώρα εξετάσαµε το πρόβληµα της βελτιστοποίησης για z R d. Επεκτείνουµε τώρα τη βελτιστοποίηση για z C [t,t f ], δηλαδή το χώρο των συναρτήσεων που ορίζονται στο [t, t f ] και έχουν συνεχή παράγωγο («λείες») και εποµένως έχουν 2 η παράγωγο. Οµιλώντας µαθηµατικά «πολύ χαλαρά» : η βελτιστοποίηση σε χώρο πεπερασµένων διαστάσεων (δηλ. z R d ) αφορά το καθορισµό του διανύσµατος z * (δηλ. των d συντεταγµένων του), που βελτιστοποιεί µία συνάρτηση. η βελτιστοποίηση σε χώρο «απείρων» διαστάσεων αφορά το καθορισµό της (πιθανώς διανυσµατικής» δηλ. µε d συντεταγµένες) συνάρτησης z * (t) σε όλα τα («άπειρα» δηλαδή) σηµεία του [t, t f ] που συνιστούν το πεδίο ορισµού της, ετσι ωστε να βελτιστοποιεί ένα συναρτησιακό. z * z * z * 2 z * (t) F( ) F(z * ) z z(t) F( ) F(z) z 2 38
16 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Άπειρες Διαστάσεις Ένα συναρτησιακό F(z) είναι µία απεικόνιση που αντιστοιχεί ένα πραγµατικό αριθµό σε κάθε συνάρτηση z (που ανήκει σε κάποιο συγκεκριµένη κατηγορία συναρτήσεων). «Xαλαρά» οµιλώντας, το συναρτησιακό είναι µία «συνάρτηση συναρτήσεων»... Στα πλαίσια αυτού του µαθήµατος τα προς εξέταση συναρτησιακά θα είναι της t µορφής f F( z) = f t,z( t),!z ( t) dt Νόρµα Συνάρτησης: αντιστοιχίζει σε κάθε συνάρτηση x(t) που ορίζεται στο [t, t f ], έναν πραγµατικό αριθµό x και ικανοποιεί τις εξής ιδιότητες. x, x = x( t) = t t,t f. α x = α x α!. x + y x + y Κατα συνέπεια η νόρµα x της συνάρτησης διαφοράς δύο συναρτήσεων (x(t)=y(t)-z(t)) εκφράζει την «εγγύτητα» των συναρτήσεων y(t), z(t). Ασκηση: Να απόδειχθεί ότι η είναι νόρµα. t x! max { x t } t t t f ( ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 39
17 Το πρώτο πρόβλημα που επιλύθηκε στο πλαίσιο του Λογισμού των Μεταβολών Ελαχιστοποίηση της αεροδυναμικής αντίστασης ενός σώματος εκ περιστροφης με μηδενική γωνία πρόσπτωσης σε υπερηχητική ροή. Αεροδυναμική Αντίσταση q : πίεση r=r(x): ακτίνα του σώματος σε κάθε σημείο x r()=α : μέγιστη ακτίνα του σώματος x : αξονική απόσταση από σημείο μέγιστης ακτίνας dr/dx=-tanθ C p = C p (θ): συντελεστής πίεσης l: μηκός σώματος ( ) D = 2πq C p θ Να ευρεθεί η συνάρτηση ( που dx x) x [,l ] ελαχιστοποιεί την αεροδυναμική αντίσταση D. dr x=l x= r dr Ετέθη ως πρόβλημα και λύθηκε το 686 από τον Isaac Newton του οποίου το αεροδυναμικό μοντέλο είναι καλό στις υπερηχητικές ταχύτητες και οχι στις υποηχητικές. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4
18 Ολική Μεταβολή Συναρτησιακού 2 Έστω συναρτησιακό F ( z ) = z ( t ) + 2z ( t ) dt Σε κάθε συνάρτηση z(t) αντιστοιχεί μία πραγματική τιμή του συναρτησιακού F(z) Θεωρούμε την συνάρτηση z(t)+δz(t) όπου δz(t) είναι μία «μικρή συνάρτηση», δηλαδή δ z << H νορμα συναρτησεων έχει σκοπό την αποτίμηση του μεγέθους των π.χ. θα μπορούσαμε στην παραπάνω περίπτωση να υιοθετήσουμε νόρμες τη μορφής δ z = max δ z ( t ) 2 t [,] δ z = δ z t dt ( ) 2 όπου δ z ( t ) είναι μιά (συνήθης) νόρμα του διανύσματος δ z ( t ) την χρονική στιγμή t. z(t)+δz(t) z(t) δz(t) ti= { tf= } Προφανώς F ( z + δ z ) = z ( t ) + δ z ( t ) + 2 z ( t ) + δ z ( t ).dt 2 ( ) Οπότε η ολική μεταβολή (increment) ΔF z, δ z του συναρτησιακού F γράφεται 2 ΔF ( z, δ z )! F ( z + δ z ) F ( z ) = z ( t ) + δ z ( t ) + 2 z ( t ) + δ z ( t ) dt z 2 ( t ) + 2z ( t ) dt και μετά από πράξεις 2 { { } } ΔF ( z, δ z ) = 2 z ( t ) + 2 δ z ( t ) dt + δ z ( t ) dt Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 42
19 Πρώτη Μεταβολή Συναρτησιακού Η ολική μεταβολή του παραδείγματος ΔF( z,δ z) = 2 z( t) + 2 είναι ειδική περίπτωση της γενικής μορφής ΔF( z,δ z) = δ F( z,δ z) + g( z,δ z) δ z Όπου η δf(z,δz) είναι γραμμική ως προς το δz, δηλ. Αν lim g( z,δ z) = τότε δ z το F είναι διαφορίσιμο επί της συναρτησεως z, και ο όρος δf(z,δz), αποκαλείται πρώτη μεταβολή (variajon) του F επί της συναρτησεως z 2 Από την ολική μεταβολή ΔF( z,δ z) = { 2 z( t) + 2 δ z( t) } dt + δ z( t) dt του παραδείγματος διαπιστώνουμε ότι ( ) = 2 z( t) + 2 η πρώτη μεταβολή είναι δ F z,δ z δ z t και ότι lim g z,δ z, δηλ. το συναρτησιακό F είναι διαφορίσιμο. 2 g( z,δ z) δ z = δ z( t) dt δ z lim g( z,δ z) lim δ z δ z ( ) = = δ z δ z δ z dt = 2 δ z( t) dt = δ z ( ) 2 δ z t dt δ z δ z = δ z = max δ z t 2 { δ z( t) } dt + δ z( t) dt δ F( z,α δ z) = α δ F( z,δ z) ( ) g( z,δ z) = 2 δ z t dt = δ z δ z dt δ z δ z dt δ z Kostas J. Kyriakopoulos t [,] - Σ.Α.Ε. ΙΙ 43 ( ) ( ) δ z( t) t [,] δ z( t) δ z
20 Ακρότατα Συναρτησιακών Ένα συναρτησιακό J με πεδίο ορισμού το Ω έχει τοπικό ακρότατο στο x* αν υπάρχει ε > τέτοιο ώστε όλες οι συναρτήσεις x Ω που ικανοποιούν την x-x* < ε η ολική μεταβολή του J έχει το ίδιο πρόσημο. Το J(x*) είναι Τοπικό Ελάχιστο αν ΔJ = J ( x ) J ( x ) Τοπικό Μέγιστο αν ΔJ = J ( x ) J ( x ) Aν κάποια από τις παραπάνω ισχύει ε > τότε το J(x*) είναι η ακρότατη τιμή (ολικά ελάχιστη / μέγιστη) και x* ειναι ακρότατο (ολικό ελάχιστο / μέγιστο). Θεωρούμε Το x να ειναι συναρτηση (διανυσματική στην γενικότητά της, δηλ. διάνυσμα που κάθε στοιχείο του είναι μία συνάρτηση) που ανήκει στο πεδίο ορισμού Ω της J(x), Το J(x) να είναι ενα διαφορίσιμο συναρτησιακό (βλ. προηγ. σελ.) του x, και Οι συναρτήσεις στο Ω ΔΕΝ φράσσονται από κάποια όρια. Ακρογωνιαίο Θεώρημα Λογισμού των Μεταβολών Αν x* ειναι ακρότατο, τότε για τη πρώτη μεταβολή ισχύει δ J x, δ x = για όλες τις αποδεκτές δ x ( Η συναρτηση δx είναι αποδεκτή J. Kyriakopoulos αν x Ω Kostas x+δx Ω - Σ.Α.Ε. ΙΙ ) 44
21 Ακρότατα Συναρτησιακών μίας Συνάρτησης Θέλουμε να βρούμε την αναγκαία συνθήκη που πρέπει να ικανοποιείται από ένα ακρότατο του συναρτησιακού όπου ο αρχικός χρόνος t και αρχική τιμή x(t )=x είναι καθορισμένα (στο τέλος αυτής της παραγράφου θα φανεί πόσο εύκολα μπορεί να αντιμετωπισθεί η αντίθετη περίπτωση...) ενώ ο τελικός χρόνος t f και η τελική τιμή x(t f )=x f είναι «ελεύθερα» (ακαθόριστα). Ξεκινούμε με την ολικη μεταβολή ( ) = J ( x + δ x) J ( x ) ΔJ x,δ x Αναπτύσσοντας τον όρο κατα Taylor γύρω από τις x,!x Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 45
22 Ακρότατα Συναρτησιακών μίας Συνάρτησης Το 2 ο ολοκλήρωμα γράφεται Επίσης υπενθυμίζουμε ότι d dt g!x δ x = d dt g!x g δ x + δ!x!x t f g δ!x!x dt = t t f t d dt t f g!x δ x dt d g dt!x δ x dt g δ!x!x dt = g!x δ x t t f t t f t f t d dt g!x δ x dt Οι 2 τελευταίες σχέσεις μαζί με την τελευταία σχέση της ολικής μεταβολής δίδουν: δ x( t f ) = x( t f ) x ( t f ) δ x f = x( t f + δt f ) x ( t f ) Αντικαθιστόντας στην ολική μεταβολή και παίρνοντας τους όρους της πρώτης μεταβολής... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 46
23 Ακρότατα Συναρτησιακών μίας Συνάρτησης... και εφαρμόζοντας το Ακρογωνιαίο Θεώρημα Λογισμού των Μεταβολών... Αποδεικνύεται ότι η παραπάνω συνθήκη είναι ισοδύναμη με τις: Εξίσωση Euler Οριακές Συνθήκες Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 47
24 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα - Ο τελικός χρόνος t f και τελική τιμή x(t f )=x f είναι καθορισμένα Οριακές Συνθήκες Η εύρεση του ακροτάτου γίνεται με την επίλυση της Διαφορικής Εξισώσεως... Εξίσωση Euler και οι σταθερές ολοκληρώσεως θα προκύψουν από την ικανοποίηση των καθορισμένων t f, x(t f )=x f Παράδειγμα: Να ευρεθεί το ακρότατο της με x( ) =, x( π 2) = Euler x( ) =, x( π 2) = 48
25 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα - 2 Τελικός χρόνος t f καθορισμένος - τελική τιμή x(t f ) «ελεύθερη» Η εύρεση του ακροτάτου γίνεται με την επίλυση της Διαφορικής Εξισώσεως... Εξίσωση Euler... και οι σταθερές ολοκληρώσεως θα προκύψουν από την ικανοποίηση των... Οριακές Συνθήκες... λαμβανομένου υπόψη και και του καθορισμένου τελικού χρόνου t f Παράδειγμα: Να ευρεθεί η λεία καμπύλη ελαχίστου μήκους που συνδέει το σημείο x(t = ) = µε τη γραµµη t = 5. Το ισοδύναµο πρόβληµα αφορά το χρονικό διάστηµα t = έως t f = 5 µε x(t ) = και ελαχιστοποίηση της Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 49
26 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα - 2 Euler ( ) = +!x 2 t g x( t),!x ( t),t ( ) 2 Αρχική Συνθήκη Οριακή Συνθήκη Οριακές Συνθήκες Ασκηση: Για x() = και x(2) ελεύθερο να ευρεθεί το ακρότατο της Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5
27 Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών Αλήθεια ΓΙΑΤΙ μας ενδιαφέρει κάτι τέτοιο? Ντετερμινιστικά Καθορισμένη Τροχιά Σελήνης tf,x(tf) ti,x(ti) ΓΗ Μετάβαση από Γή στη Σελήνη με Ελάχιστη Ενέργεια tf min P ( x ( t ), x! ( t ),t ) dt ti Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Ισχύς 5
28 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα - 3 Τελικός χρόνος t f «ελεύθερος» - τελική τιμή x(t f )=x f καθορισμένη Η εύρεση του ακροτάτου γίνεται με την επίλυση της Διαφορικής Εξισώσεως... Εξίσωση Euler... και οι σταθερές ολοκληρώσεως θα προκύψουν από την ικανοποίηση των... Οριακές Συνθήκες... λαμβανομένης υπόψη και και της καθορισμένης τελική τιμή x(t f ) = x f Παράδειγμα: Για x()=4, x(t f )=4 και t f > «ελεύθερο» να ευρεθεί το ακρότατο της Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 52
29 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα - 3 Euler ( ) = 2x t g x( t),!x ( t),t ( ) + ( 2!x2 t) Αρχική / Τελική Συνθήκη Οριακή Συνθήκη Οριακές Συνθήκες Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 53
30 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα 4α Τελικός χρόνος t f «ελεύθερος» - τελική τιμή x(t f ) «ελεύθερη» : ΑΣΥΣΧΕΤΙΣΤΑ Η εύρεση του ακροτάτου (συνάρτηση) γίνεται με την επίλυση της Διαφ. Εξισ.... Εξίσωση Euler... και οι σταθερές ολοκληρώσεως θα προκύψουν από την ικανοποίηση των... Οριακές Συνθήκες Δηλαδη Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 54
31 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα 4b Τελικός χρόνος t f «ελεύθερος» - τελική τιμή x(t f ) «ελεύθερη» : ΣΥΣΧΕΤΙZOMENA π.χ. Το πρόβλημα με τη «κινούμενη σελήνη» Η εύρεση του ακροτάτου γίνεται με την επίλυση της Διαφορικής Εξισώσεως... Εξίσωση Euler... και οι σταθερές ολοκληρώσεως θα προκύψουν από την ικανοποίηση των... Οριακές Συνθήκες Ο συσχετισμός τελικής τιμής και τελικού χρόνου είναι της μορφής Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 55
32 Ακρότατα Συναρτησιακών μίας Συνάρτησης: Πρόβλημα 4b Παράδειγμα: Να ευρεθεί η συνάρτηση x(t) που είναι ακρότατο του συναρτησιακού. και ξεκινά από την αρχή των αξόνων και καταλήγει στην καμπύλη Λύση: Euler Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 56
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε στα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί
Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών
ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Θεωρούμε το πρόβλημα της εύρεσης ακροτάτων του t συναρτησιακού f F = F(z) = f ( z( t), z ( t),t) dt Θεωρούμε την «γενική» περίπτωση όπου
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )
Βέλτιστος Έλεγχος μέσω Λογισμού των ( ) Μεταβολών Εστω σύστημα!x ( t) = a x( t),u( t),t με t 0, x(t 0 ) καθορισμένα. Ζητείται η εύρεση κατάλληλης συνάρτησης ελέγχου u*(t) που, παράγοντας τη τροχιά x*(t)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Έλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επαναληπτικές ασκήσεις - Μέθοδος Lagrange - Γενικές συνθήκες (EC) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Θα
Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0
Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο
1.1. Διαφορική Εξίσωση και λύση αυτής
Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα
Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
Έλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)
8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος
Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ - Εφικτός χώρος λύσεων - Συνάρτηση Lagrange - Γενικές συνθήκες ECM ΣΥΝΘΗΚΕΣ CONSTRAINED Ιδιαιτερότητες των προβλημάτων
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
min f(x) x R n (1) x g (2)
KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ισότητες. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση κάτω από
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 4. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/2017
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ διαλ. 4 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/7 Χαρακτηριστικά του προβλήματος Μελέτη αντικειμενικών συναρτήσεων και συναρτήσεων περιορισμών: Απλούστευση προβλήματος
Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ
6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος
Α Μέρος ΔΙΑΓΩΝΙΣΜΑ 1 1. (3.6 μονάδες) (α). Δίνεται η εξίσωση: = 8. Αν το ελαττωθεί από την τιμή = κατά 1%, να εκτιμηθεί η αντίστοιχη ποσοστιαία μεταβολή στην τιμή του. (β). Να διαπιστωθεί ότι η συνάρτηση
ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
Μέγιστα & Ελάχιστα. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Μέγιστα & Ελάχιστα 1 μεταβλητή: Τύπος Taylor Aν y=f(x) είναι καλή συνάρτηση f '( a) f ''( a) f ( a) f x f a x a x a x a R x 1!! n! n + 1 f ( c) n + 1 Rn ( x) = ( x a), a
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :
ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ
III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.
η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,
Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x
Κεφάλαιο 2. Τα μαθηματικά της αριστοποίησης ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ. Τιμή μιας παραγώγου σ ένα σημείο. Παράγωγοι
Κεφάλαιο ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΡΙΣΤΟΠΟΙΗΣΗΣ Τα μαθηματικά της αριστοποίησης Πολλές οικονομικές θεωρίες ξεκινούν με την υπόθεση ότι ένα άτομο ή επιχείρηση επιδιώκουν να βρουν την άριστη τιμή μιας συνάρτησης
2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα
Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται
ẋ = f(x), x = x 0 όταν t = t 0,
Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.
1 ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.1. Εισαγωγή. Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα πραγματικών αριθμών. Σε
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,
Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον
Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000
Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )
και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
2. Η μέθοδος του Euler
2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια
[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)
[] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν
Af(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι
Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεωρία Κελυφών Βασικές αρχές (διαφορική γεωµετρία) Καµπύλη στο χώρο Μοναδιαίο Εφαπτοµενικό ιάνυσµα
f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange
Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος
Περιεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ
II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 1. Γενικά.. 15 Επιφάνεια 15 Ευθειογενεί επιφάνειε. 15 Επιφάνειε δευτέρου βαθμού.. 16 2. Μερικέ επιφάνειε δευτέρου
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης