Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)"

Transcript

1 Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2 Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ανατροφοδότηση Κατάστασης Εισαγωγή στον Βέλτιστο Έλεγχο Εισαγωγή στην Βελτιστοποίηση σε χώρουν πεπερασμένων και απείρων διαστάσεων. Εισαγωγή στο Λογισμό των Μεταβολών Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αναγκαίες Συνθήκες Βελτίστου Ελέγχου Προβληματα τύπου «Γραμμικού Ρυθμιστή» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

3 3. Ελεγξιμότητα Συστημάτων Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

4 Η Έννοια της Ελεγξιμότητας Βασικό Ερώτηµα: Μπορούµε, ένα συγκεκριµένο δυναµικό σύστηµα - ασκόντας κατάλληλα σήµατα εισόδου - να το οδηγήσουµε σε οιοδήποτε σηµείο του χώρου κατάστασης, ξεκινώντας από οιοδήποτε σηµείο του χώρου κατάστασης και εντός πεπερασµένου χρόνου? Το ερώτηµα ΔΕΝ ασχολείται ούτε µε τη µορφή της τροχιάς απο την αρχή στο τέλος, ούτε µε το χρόνο εκτέλεσης της τροχιάς! Αναφέρεται απλά στην ύπαρξη σηµάτων οδήγησης απο οιαδήποτε αρχή σε οιοδήποτε προορισµό εντός πεπερασµένου χρόνου! Αυτό το ερώτηµα αφορά ένα σηµαντικό προαπαιτούµενο για τη σχεδίαση συστηµάτων ελέγχου... Το ερώτηµα βεβαίως ορίζεται γενικά για κάθε δυναµικό σύστηµα αλλά εδώ θα αντιµετωπισθεί µόνο για τα ΓΧΑΣ. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4

5 Παράδειγμα: Η έννοια της Ελεγξιμότητας u s 0 1 s 0 2 Για μήκος ασυμπιεστου ελατηρίου L, ορίζουμε: k 0 s m 1 m 1! s 1 2 m 1!!s 1 = u + k( s 2 s 1 )!!s 1 = k m 1 m 2!!s 2 = k s 2 s 1 ( )!!s 2 = k m 2 Οπότε ( ) s ( 1 + k ) m s ( ) 1 m u ( ) 1 s + ( k ) 1 m s 2 2 Οπότε ορίζοντας x = x 1 x 2 x 3 x 4 παίρνουμε τις σχετικές εξισώσεις κατάστασης:!x = k m 1 0 k m k m2 0 k m 2 0 x m1 0 0 u! s1 "s 1 s 2 "s 2 T s 2! s 2 0 L Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5 T Tι επάγεται, από φυσικής απόψεως: το k<<???? το k>>????

6 Ορισμός & Συνθήκη Ελεγξιμότητας Για το ΓΧΑΣ : η κατάσταση x 0 R n είναι ελέγξιµη προς την αρχή των αξόνων (controllable to the origin) αν για δεδοµένη αρχική στιγµή t 0, υπάρχει ένα τελικός χρόνος t f > t 0 και µία κατά τµήµατα συνεχής συνάρτηση εισόδου u( ) ορισµένη επί του [t f, t 0 ], έτσι ώστε για την τελική κατάσταση x(t f ) να ισχύει To ΓΧΑΣ είναι ελέγξιµο (controllable) αν κάθε κατάσταση x 0 R n είναι «ελέγξιµη προς την αρχή των αξόνων». Πώς µπορούµε να πιστοποιήσουµε όπως ότι ένα ΓΧΑΣ είναι ελέγξιµο? Αν ορίσουµε πρώτα τον πίνακα ελεγξιµότητας (controllability matrix): P = 0 Τι διαστάσεις έχει? όπου b i i=1,, m είναι οι στήλες του πίνακα Β, τότε... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6

7 Ορισμός & Συνθήκη Ελεγξιμότητας To ΓΧΑΣ είναι ελέγξιµο αν και µόνο αν (, ) rank P = rank P A B = n Στη γενική περίπτωση: P R n (n m). Άρα αρκεί n από τις n m στήλες να είναι γραµµικά ανεξάρτητες. Αν έχουµε µόνο µία είσοδο στο σύστηµα, τότε ο Β έχει µόνο µία στήλη (m=1) οπότε P R n n (τετράγωνικος), και αρκεί να ελεγχθεί αν ο P είναι µη-ιδιόµορφος. (Πως το ελέγχουµε αυτό?) Σχετικός µε πολλά ζητήµατα που άπτονται της ελέγξιµότητας είναι ο πίνακας Controllability Grammian για τον οποίο ισχύουν: ( ) ( ) ( ) T n n W. t : τετραγωνικός - συµµετρικός 0, tf = W t0, tf! T x. W t, 0 : θετικά ηµι-ορισµένος 0 tf x Πότε ένας πίνακας ειναι θετικά Kostas J. (ημι- )- ορισμένος? Kyriakopoulos Σ.Α.Ε. ΙΙ 7

8 Ελεγξιμότητα : Παράδειγμα - 1 Εποµένως το σύστηµα δεν είναι πλήρως ελέγξιµο. Έστω σύστηµα που προκύπτει απο διαφορετική θεώριση της κατάστασης: Δηλαδή προκύπτει από το µετασχηµατισµό οµοιότητας: P = 0 Δηλαδή: T 1 A T T 1 B Που δείχνει ότι το z! 2 δεν εξαρτάται ούτε από την είσοδο ούτε από άλλη ελέγξιµη κατάσταση, οπότε η δεν είναι ελέγξιµη. z Kostas J. 2 Kyriakopoulos - Σ.Α.Ε. ΙΙ 8

9 Ελεγξιμότητα : Παράδειγμα - 2 Εποµένως:...και για την ελεγξιµότητα... µη ελέγξιµο! Όµως η ορίζουσα του υποπίνακα είναι µη µη-µηδενική και η τάξη του P είναι Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Σταθεροποίηση 9

10 Ελεγξιμότητα : Παράδειγμα - 3 Παρατηρούµε ότι: Ο πίνακας ελεγξιµότητας P είναι ανεξάρτητος των συντελεστών b i του πίνακα εξόδου. Η ορίζουσα του πίνακα ελεγξιµότητας είναι P = -1 άρα το σύστηµα είναι ελέγξιµο. Η ορίζουσα του πίνακα ελεγξιµότητας είναι ανεξάρτητη των συντελεστών a i του πίνακα δυναµικής Α. Εποµένως: Η δοµή του παραπάνω συστήµατος συνεπάγεται την ελεγξιµότητα ανεξαρτήτως των συντελεστών a i και b i. (Περαιτέρω συζήτηση θα ακολουθήσει...) Οι ιδιότητες του δυαδικού (θα εξηγηθεί ό όρος) σχετίζονται µε την παρατηρησιµότητα. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10

11 Ελεγξιμότητα : Παράδειγμα - 4 Επιλέγοντας τις παραπάνω στήλες (και µόνο) βρίσκουµε ότι το σύστηµα είναι ελέγξιµο Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 11

12 Ελεγξιμότητα : Παράδειγμα - 5 Επιλέγοντας τις παραπάνω στήλες, διαπιστώνεται η ελεγξιµότητα. Αυτή την φορά, υπάρχουν πολλοί συνδυασµοί επιλογών... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12

13 Επειδή AB = Παράδειγμα: Η έννοια της Ελεγξιμότητας 1 m A = k m 0 k 1 m1 0, B = k m2 0 k m k 2 m 1 0 k m1 m 2, A 2 B = A( AB) = Οπότε ο πίνακας ελεγξιμότητας είναι:! = και 0 1 m1 0 k m m1 0 k m k m1 m k m1 m m1 0 0, A 3 B = A( A 2 B) = υπολογίζουμε τα: k m 1 2 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13 0 k m1 m 2 0 det! ( ) = k 2 m 1 4 m 2 2

14 Παράδειγμα: Η έννοια της Ελεγξιμότητας u s 0 1 s 0 2 k m 1 m 2 det (!) = k 2 m m 2 Αν k=0 τότε το σύστημα είναι μη ελέγξιμο. Αν το k<< τι σημαίνει αυτό για το σύστημα? Μαθηματικά είναι «ελέγξιμο». Πρακτικά? Τι σημαίνει από απόψεως φυσικής για τη δράση του ελατηρίου? Χρειάζεται ΤΕΡΑΣΤΙΑ δύναμη u ώστε να υπάρξει επαρκής αλληλεπίδραση που να μπορέσει να «οδηγήσει» την m 2. Άρα το σύστημα είναι «οριακά ελέγξιμο» δηλ., πρακτικά, σχεδόν ισοδύναμο με το «μη ελέγξιμο»... Αν το k>> τι σημαίνει αυτό για το σύστημα? Από απόψεως Φυσικής, μιλάμε για αντικατάσταση του ελατηρίου με (σχεδόν) απολύτως στερεά «μπάρα». Μπορούμε τώρα να οδηγήσουμε το συστημα σε οιοδήποτε σημειο του χώρου κατάστασης? Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14

15 Παράδειγμα: Η έννοια της Ελεγξιμότητας Ας θεωρήσουμε τις ιδιοτιμές του πίνακα ελεγξιμότητας: λ I! = λ 1 m 1 0 k m1 2 1 m 1 λ k m λ k m 1 m k m 1 m 2 λ ρ (!) = = = eig (!) { = ± 1 m,± k } 1 m 1 m 2 Θεωρούμε τον λόγο της μέγιστης απόλυτης τιμής προς την ελάχιστη απόλυτη τιμή των παραπάνω ιδιοτιμών. Αυτό ονομάζεται «Condi on Number - ρ» του πίνακα C. Στην περίπτωσή μας είναι k m1 m 2 1 m1 = k m 2 για k m 2 1 δηλ. k m1 m 2 1 m 1 1 m1 k m1 m 2 = m 2 k για k m 2 1 δηλ. k m1 m 2 1 m 1 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15

16 Παράδειγμα: Η έννοια της Ελεγξιμότητας ( ) >> Δηλαδή, τόσο για k>> όσο και για k<<, παρατηρούμε ότι ρ! Αυτό, όπως θα δούμε όταν θα κληθούμε να σχεδιάσουμε το έλεγχο, οδηγεί σε μία κατάσταση «οριακής ελεγξιμότητας» γιατί ουσιαστικά οδηγεί σε τεράστα κέρδη ανατροφοδότησης. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 16

17 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων Το ΓΧΑΣ υπο το µετασχηµατισµό οµοιότητας µετατρέπεται (δηλ. εµφανίζεται «υπό άλλη οπτική γωνία») στο όπου. Υπενθυµίζουµε ότι εξ ορισµού: η κατάσταση x 0 R n είναι ελέγξιµη προς την αρχή των αξόνων (controllable to the origin) αν για δεδοµένη αρχική στιγµή t 0, υπάρχει ένα τελικός χρόνος t f > t 0 και µία κατά τµήµατα συνεχής συνάρτηση εισόδου u( ) ορισµένη επί του [t f, t 0 ], έτσι ώστε για την τελική κατάσταση x(t f ) να ισχύει Εφαρµόζοντας τον ορισµό για το µετασχηµατισµένο σύστηµα Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 17

18 Ελεγξιμότητα & Μετασχηματισμοί Αυτό το συµπέρασµα δείχνει ότι: αν η κατάσταση x 0 του αρχικού ΓΧΑΣ 1 είναι «ελέγξιµη προς την αρχή των αξόνων», τότε και η z0 = T x0 του µετασχηµατισµένου ΓΧΑΣ είναι: «ελέγξιµη προς την αρχή των αξόνων», υπό το ίδιο χρονικό διάστηµα [t f, t 0 ], και µε χρήση του ιδίου σήµατος εισόδου u( ). Συντεταγμένων Ισχύει και το αντίστροφο. Τα δύο προηγούµενα συµπεράσµατα οδηγουν στο ότι : Το µετασχηµατισµένο σύστηµα είναι ελέγξιµο αν και µονο αν το αρχικό σύστηµα είναι ελέγξιµο. Συµπέρασµα: Η ελεγξιµότητα είναι αµετάβλητη ως προς τους µετασχηµατισµούς οµοιότητας, Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 18

19 Αν Τότε Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων Θεωρήσουµε τον πίνακα ελεγξιµότητας του µετασχηµατισµένου συστήµατος, και Χρησιµοποιήσουµε την (εύκολα αποδεικνυόµενη) σχέση: Οπότε (δεδοµένου ότι ο Τ -1 είναι τετραγωνικός & µηιδιόµορφος) Για την Controllability Grammian ισχύει: T 1 όπου T T T = T = T ( ) ( ) 1 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 19

20 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : SISO - Διαγωνοποίηση Για τη Διαγώνια Κανονική Μορφή η εξέταση της ελεγξιµότητας µέσω του πίνακα ελεγξιµότητας προαπαιτεί τη εύρεση όρων του τύπου: Εποµένως: Ως γνωστόν ο Vandermonde πίνακας είναι µη-διόµορφος όταν και µόνο όταν οι ιδιοτιµές λ i (του πίνακα Α) είναι διακριτές. Κατά συνέπεια, η (µη) ελεγξιµότητα της Διαγώνιας Κανονικής Μορφής πιστοποιείται µε την θεώριση των b i : εφόσον κανένα b i δεν είναι (κάποιο, είναι) µηδενικό το σύστηµα (δεν) είναι ελέγξιµο. Άρα... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 20

21 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : SISO - Διαγωνοποίηση Αναγκαία και ικανή συνθήκη για την ελεγξιµότητα ενός διαγωνοποιήσιµου ΓΧΑΣ είναι: οι ιδιοτιµές του Α που εµφανίζονται επί της διαγωνίου του A DCF να είναι διακριτές και κανένα στοιχείου του B DCF να µην είναι µηδενικό. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 21

22 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : Ειδικές Περιπτώσεις Ελέγξιμες Υλοποιήσεις Συνάρτησης Μεταφοράς Έστω ότι τα 2 SISO ΓΧΑΣ είναι n-διάστατες ελέγξιµες υλοποιήσεις της ίδιας ΣΜ. = ( ) = ( )! x ( t) = T x ( t) n n Λήµµα: Αν P P A, B, P P A, B τότε όπου T = P P Κανονική Μορφή τύπου- Ελεγκτή ή Μεταβλητών Φάσης (Controller or Phase Variable Canonical Form - CCF) Αυτη η µορφή µας απασχόλησε και στο παρελθόν όπου προσέγγισθηκε άµεσα από θεώρηση της Σ.Μ Σε αυτή τη φάση θα κατανοήσουµε τίς ιδιότητες της δοµής της που οδηγούν και στην σχετική ονοµατολογία. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 22

23 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : Ειδικές Περιπτώσεις Θεωρούµε την δοµή της υλοποίησης CCF: όπου Αυτή η υλοποίηση, όπως φάνηκε και σε προηγούµενο παράδειγµα, είναι εκ κατασκευής ελέγξιµη. Λήµµα : ο Πίνακας Ελεγξιµότητας της CCF είναι συµµετρικός: Αυτό το αποτέλεσµα θα χρησιµοποιηθεί παρακάτω. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 23

24 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : Ειδικές Περιπτώσεις Με βάση το πρόσφατο Λήµµα, από µία ελέγξιµη υλοποίηση της ΣΜ µε κατάσταση xt ( ) και πίνακα ελεγξιµότητας P (προηγ. σελ.) µπορούµε να λάβουµε την CCF µορφή µε χρήση του µετασχηµατισµού 1 ( ) = ( ) = xt T x t T PP CCF CCF CCF CCF Από τα επαναληπτικά µαθήµατα Γραµ. Αλγ. υπενθυµίζουµε και εφαρµόζουµε για τον την ικανή συνθήκη διαγωνοποίησης: A CCF n n Ο πίνακας A CCF! είναι διαγωνοποιήσιµος µέσω µετασχηµατισµού οµοιότητας αν έχει n διακριτές ιδιοτιµές. Αντιστρόφως, αν η CCF (εγγενώς ελέγξιµη) µπορεί να µετατραπεί στην DCF τότε αυτή είναι ελέγξιµη και όπως αποδείχθηκε νωρίτερα (που?) η πρέπει να έχει διακριτές ιδιοτιµές. Προφανώς οι ιδιοτιµές δεν είναι ζήτηµα επιλογής αλλά απορέουν από τη ΣΜ (από την οποία ξεκινήσαµε). Εποµένως: Η CCF µπορεί να µετατραπεί στην DCF όταν και µόνο όταν η έχει διακριτές ιδιοτιµές. Ο σχετικός µετασχηµα- -τισµός είναι ο ανάστροφος Vandermode πίνακας (µη-ιδιόµορφος). A CCF A CCF Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 24

25 Ελεγξιμότητα & Μετασχηματισμοί Συντεταγμένων : Ειδικές Περιπτώσεις Παράδειγµα: 3 2 ΧΠ: si A = s + 2s + 4s + 8 Ιδιοτιµές: +2i, -2i, -2 Το σύστηµα είναι ελέγξιµο οπότε έχει νόηµα ο µετασχηµατισµός: Δεδοµένου ότι οι ιδιοτιµές των A και A ταυτίζονται CCF οπότε TDCF = λ1 λ2 λ 3 2i 2i 2 = λ1 λ2 λ Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 25

26 Μη- Ελέγξιμες Εξισώσεις Κατάστασης Αν για ένα ΓΧΑΣ ισχύει : τότε υπάρχει µετασχηµατισµός έτσι ώστε το µετασχηµατισµένο σύστηµα να είναι της µορφής µε το ζεύγος να ορίζει ένα q-διάστατο ελέγξιµο σύστηµα. Κατάλληλος µετασχηµατισµός είναι ο όπου οι στήλες είναι από τον πίνακα ελεγξιµότητας P και οι υπόλοιπες,, επιλέγονται ώστε όλες οι στήλες του Τ να συνιστούν βάση στον R n. Τα ανωτέρω θα χρησιµοποιηθούν και στη ανάλυση των «µηπαρατηρήσιµων εξισώσεων κατάστασης», παρακάτω. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 26

27 Μη- Ελέγξιμες Εξισώσεις Κατάστασης : Παράδειγμα Το ΓΧΑΣ ΔΕΝ είναι πλήρως ελέγξιµο, δηλ. ο πίνακας ελεγξιµότητάς του έχει τάξη 2. Επιλέγοντας τις 2 πρώτες στήλες του (γραµµικά ανεξάρτητες) και παραθέτοντας το «3 ο διάνυσµα της κανονικής βασης», λαµβάνουµε τον πίνακας µετασχηµατισµού... Αυτός οδηγεί στο µετασχηµατισµένο σύστηµα Προφανώς, το σύστηµα είναι ελέγξιµο. Αυτό το σύστηµα θα µας απασχολήσει και στο κεφ. της παρατηρησιµότητας Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Σταθεροποίηση 27

28 4. Παρατηρησιμότητα Συστημάτων Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 28

29 Η Έννοια της Παρατηρησιμότητας Έστω το ΓΧΑΣ Γενικά x!, y!, u! όπου n p m p n, m n «Εσωτερική Ποσότητα» του Δυναμικού Συστήματος, οδηγούμενο από το σήμα εισόδου & οδηγεί το σήμα εξόδου Αυτοί οι µαθηµατικοί περιορισµοί σχετίζονται µε την πρακτική δυσκολία του να µετρήσουµε (και επενεργήσουµε σε) κάθε µεταβλητή κατάστασης Μπορούµε εύκολα να µετρούµε µόνο την είσοδο & έξοδο. Θέλουµε όµως: µε βάση αυτές τις µετρήσεις, να µπορούµε να «εκτιµούµε» την κατάσταση, πράγµα που, όπως θα φανεί παρακάτω, είναι απαραίτητο στο έλεγχο. Εκτίµηση της κατάστασης είναι (µόνο µαθηµατικά) δυνατή αν γνωρίζουµε (αποκλειστικά) την είσοδο αλλά και την αρχική κατάσταση. Αυτό σχετίζεται µε την ιδιότητα της παρατηρησιµότητας (observability), δηλαδή: την δυνατότητα εκτίµησης της αρχικής κατάστασης µε βάση τις «ιστορικές» παρατηρήσεις των εισόδων & εξόδων. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 29

30 Εστω το n-διάστατο ΓΧΑΣ: Ορισμός & Συνθήκη Παρατηρησιμότητας ( ) ( ) Έστω ότι µπορούµε να µετρήσουµε και καταγράψουµε τα ut, yt για ένα πεπερασµένο χρονικό διάστηµα t t. 0, f Πρόθεσή µας, σύµφωνα µε τα προηγούµενα, είναι ή εύρεση του x 0 γιατί αυτό θα µας επιτρέψει να υπολογίσουµε όλη την εξέλιξη της κατάστασης, βάσει της Εύκολα βλέπουµε ότι y = Cx + Du Δηλαδή η γνώση των y(t), u(t) µπορείς να µας επιτρέψει την εύρεση της «απόκρισης αρχικής κατάστασης», δηλαδή την απόκριση µηδενικής εισόδου. Μπορούµε δηλαδή, χωρίς απώλεια της γενικότητας, να θεωρήσουµε ut ( ) 0 t t0 και ως σύστηµα το. Οπότε, σε αυτή τη περίπτωση, At ( t ) ( ) 0 yt = Ce x Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 30 0

31 Ορισμός & Συνθήκη Παρατηρησιμότητας Η κατάσταση x 0 R n είναι µη-παρατηρήσιµη (unobservable) αν η απόκριση µηδενικής εισόδου του συστήµατος µε αρχική κατάσταση x(t 0 )= x 0 είναι y(t) 0 At για όλα τα t t 0. ( t0 ) 0 = y( t) = Ce x t t 0 0 Σηµ-1: Το 0 R n είναι προφανώς µία µη-παρατηρήσιµη κατάσταση (x(t 0 )=0 y(t) 0) Σηµ-2: Μία µη-µηδενική, µη-παρατηρήσιµη κατάσταση είναι µη-διακριτή από το 0 R n C CA 2 Q= Q( A, C) = CA! rank Q( A, C) = n n 1 CA Στη γενική περίπτωση: Q R (n p) n. Άρα αρκεί n από τις n p γραµµές να είναι γραµµικά ανεξάρτητες. Αν έχουµε µόνο µία έξοδο από το σύστηµα, τότε ο C έχει µόνο µία στήλη και p =1 οπότε Q R n n (τετράγωνικος), και αρκεί να ελεγχθεί αν ο Q είναι µη-ιδιόµορφος (µη- µηδενική ορίζουσα). Το ΓΧΑΣ είναι παρατηρήσιµο (observable) αν το x 0 =0 R n είναι η µοναδική µη-παρατηρήσιµη κατάσταση. Ορίζουµε τον πίνακα παρατηρησιµότητας (observability matrix): Ένα ΓΧΑΣ είναι παρατηρήσιµο αν και µόνο άν Οι µη-παρατηρήσιµες καταστασεις x 0 του ΓΧΑΣ βρίσκονται στο null space του Q. Δηλαδή ισχύει: Q x 0 = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 31

32 Ορισμός & Συνθήκη Παρατηρησιμότητας Σχετικός µε πολλά ζητήµατα που άπτονται της παρατηρησιµότητας είναι ο πίνακας Observability Grammian για τον οποίο ισχύουν: ( ) ( ) T n n M. t : τετραγωνικός - συµµετρικός 0, tf = M t0, tf! T. x M( t, 0 t ) 0 f x : θετικά ηµι-ορισµένος. rank Q A, C = n M t, t 0 t > t ( ) ( f ) 0 f 0 Πως µπορούµε να βρούµε το x(t 0 )= x 0 αν ξέρουµε την ιστορία των σηµάτων y(t), u(t) t [t 0,t f ]? Ισχύει ότι: x = όπου: 0 Απόδειξη: Δεδοµένου ότι (από προηγουµένως) = = x 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 32

33 Παρατηρησιμότητα : Παράδειγμα οπότε......και... Τo σύστηµα ΔΕΝ είναι παρατηρήσιµο γιατί Q = 0, rankq= 1, nullityq= 1 Κάνοντας το µετασχηµατισµό οµοιότητας: Παίρνουµε το σύστηµα : Παρατηρούµε (από την εξίσωση εξόδου) ότι η έξοδος y(t) είναι ανεξάρτητη από την z 1 (t), εξαρτάται µόνο από την z 2 (t), η όποία είναι και αυτή ανεξάρτητη (όπως φαίνεται από τις εξισώσεις κατάστασης) από την z 1 (t) Η απόκριση µηδενικής εισόδου είναι που δείχνει ότι δεν µπορεί να ευρεθεί η z 1 (0). Από την Q x 0 = 0 παρατηρούµε ότι η είναι µία µη παρατηρήσιµη κατάσταση. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 33

34 Παρατηρησιμότητα : Παράδειγμα - 2 Εποµένως rank Q = 2, nullity Q = 1 Κάθε µη-µηδενική λύση της Q x 0 = 0 θα είναι µη-µηδενική, µηπαρατηρήσιµη κατάσταση. Μία τέτοια λύση που µπορεί να ληφθεί από την., µε. τον άνω τριγωνικό πίνακα, είναι x 0 = [ 2 3 1] T. Τα βαθµωτά πολλαπλάσια της, είναι µη-µηδενικές & µη-παρατηρήσιµες καταστάσεις. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Παρατηρητές 34

35 Παρατηρησιμότητα : Παράδειγμα - 3 Αυτό το ΓΧΑΣ είναι µία. υλοποίηση της ΣΜ Ο πίνακας παρατηρησιµότητας Παρατηρήσεις: Ο πίνακας Q είναι ανεξάρτητος από τον αριθµητή της ΣΜ Είναι Q = 1, εποµένως η υλοποίηση είναι πάντα παρατηρήσιµη ανεξάρτητα από τον παρονοµάστή. Αύτό, όπως θα αποδειχθεί, ισχύει για κάθε n. Ο πίνακας παρατηρησιµότητας Q της εν λόγω υλοποίησης είναι ίδιος µε τον πίνακα ελεγξιµότητας P της παρακάτω υλοποίησης (την έχουµε εξετάσει στο παρελθόν) της ΣΜ. Πως σχετίζονται αυτά τα δύο (2) συστήµατα? Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 35

36 Παρατηρησιμότητα : Παράδειγμα rank Q = 5 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 36

37 Παρατηρησιμότητα : Παράδειγμα - 5 rank Q = 5 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 37

38 Δυαδικότητα (Duality) : Ελεγξιμότητα & Παρατηρησιμότητα dual ΣΜ: ΣΜ- SISO: T = + H (????? s) = G( s) ( ) ( ) 1 ( ) ( ) 1 H s C si A B D ( ) = G( s) H????? s G s = B????? si A C + D T T T T Ελεγξιµότητα: Παρατηρησιµότητα: T T P( A, B ) P( A, C ) T T Q( A, C ) Q( A, B ) Κάθε ένα απο τα συστήµατα είναι: Ελέγξιµο, αν και µόνο αν το δυαδικό του είναι Παρατηρήσιµο: Παρατηρήσιµο, αν και µόνο αν το δυαδικό του είναι Ελέγξιµο: (, ) = T ( T, T ) P A B Q A B (, ) = T ( T, T ) Q A C P A C Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 38

39 Παρατηρησιμότητα & Μετασχηματισμοί Συντεταγμένων Το ΓΧΑΣ υπο το µετασχηµατισµό οµοιότητας µετατρέπεται (δηλ. εµφανίζεται «υπό άλλη οπτική γωνία») στο... όπου. Προφανώς Αν η x 0 είναι µη παρατηρήσιµη κατάσταση τότε t t 0 οπότε από την προηγούµενη σχέση προκύπτει ότι η z 0 είναι µη παρατηρήσιµη. Ισχύει και το αντίστροφο. Τα δύο προηγούµενα συµπεράσµατα οδηγουν στο : Το µετασχηµατισµένο σύστηµα είναι παρατηρήσιµο αν και µονο αν το αρχικό σύστηµα είναι παρατηρήσιµο. Συµπέρασµα: Η παρατηρησιµότητα είναι αµετάβλητη ως προς τους µετασχηµατισµούς οµοιότητας. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 39

40 Δεδοµένου ότι Τότε Παρατηρησιμότητα & Μετασχηματισμοί Συντεταγμένων, και (εύκολα αποδεικνυόµενη) CAˆ k = CA k T Οπότε (δεδοµένου ότι ο Τ είναι τετραγωνικός & µηιδιόµορφος) Για την Observability Grammian ισχύει: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 40

41 Παρατηρησιμότητα & Μετ/σμοί Συντεταγμένων: Ειδικές Περιπτώσεις Παρατηρήσιμες Υλοποιήσεις Συνάρτησης Μεταφοράς Έστω ότι τα 2 SISO ΓΧΑΣ είναι n-διάστατες παρατηρήσιµες υλοποιήσεις της ίδιας ΣΜ. ( ) ( ) ( ) ( ) n n Λήµµα: Αν Q τότε 1 = Q1 A1, C1, Q2 = Q2 A2, C2! x t = T x t όπου 1 2 T = Q Q Κανονική Μορφή τύπου- Παρατηρητή (Observer Canonical Form - OCF) Ξεκινάµε από τη θεώρηση της Σ.Μ που µας απασχόλησε για την µελέτη του CCF αλλά και πρόσφατα (σε παράδειγµα). Ας θεωρήσουµε τη δοµή OCF : θα κατανοήσουµε τίς ιδιότητες της που οδηγούν και στην σχετική ονοµατολογία... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 41

42 Παρατηρησιμότητα & Μετ/σμοί Συντεταγμένων: Ειδικές Περιπτώσεις Η OCF είναι το ΓΧΑΣ Εποµένως η OCF είναι δυαδική της CCF και, επειδή είναι SISO, θα έχουν τις ίδιες συναρτήσεις µεταφοράς (σύµφωνα µε τα περί δυαδικότητας...). Επειδή όµως η CCF είναι υλοποίηση της H(s), το ίδιο θα ισχύει και για την OCF. Παροµοίως, η εξ ορισµού ελεγξιµότητα της CCF εξασφαλίζει (σύµφωνα µε τα περί δυαδικότητας...) την παρατηρησιµότητα της OCF: T Δυαδικότητα QOCF = P CCF QOCF PCCF Συµµετρικότητα του P CCF T = PCCF = PCCF Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 42

43 Εποµένως Παρατηρησιμότητα & Μετ/σμοί Συντεταγμένων: Ειδικές Περιπτώσεις Με βάση το πρόσφατο Λήµµα, από µία ελέγξιµη υλοποίηση της ΣΜ µε κατάσταση x(t) και πίνακα παρατηρησιµότητας Q µπορούµε να λάβουµε την OCF µορφή µε χρήση του µετασχηµατισµού ( ) ( ) 1 1 = = = ( ) 1 xt T x t T Q Q Q Q OCF OCF OCF OCF OCF Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 43

44 Παρατηρησιμότητα & Μετ/σμοί Συντεταγμένων: Ειδικές Περιπτώσεις Παράδειγµα: ΧΠ: 3 2 Ιδιοτιµές: +2i, -2i, -2 si A = s + 2s + 4s + 8 ( ) 1 T = Q Q = Q Q 1 1 OCF OCF OCF Το σύστηµα είναι παρατηρήσιµο οπότε έχει νόηµα ο µετασχηµατισµός: Δεδοµένου ότι βρήκαµε σε παρελθόν παράδειγµα ότι Είναι φανερό ότι η OCF µορφή είναι δυαδική της CCF. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 44

45 Q DCF Παρατηρησιμότητα & Μετασχηματισμοί Συντεταγμένων : SISO - Διαγωνοποίηση k 1 k k 0 λ! 0 k k k DCF DCF 1 2! n 1λ1 2λ2! nλn Για τη DCF η 2 [ ] εξέταση της " " # " k παρατηρησιµότητας λn µέσω του σχετικού πίνακα προαπαιτεί τη εύρεση όρων του τύπου: Εποµένως: C A = c c c = c c c n T n c1 c2! cn c1 c1λ1! c1λ 1 c1 0! 0 1 λ1! λ1 n n 1λ1 2λ2! nλ n 2 2λ2! 2λ2 0 2! 0 1 λ2! λ2 Ως γνωστόν ο Vandermonde πίνακας είναι µη-διόµορφος εφόσον οι ιδιοτιµές λ i (του πίνακα Α) είναι διακριτές. Κατά συνέπεια, η (µη) παρατηρησιµότητα της Διαγώνιας Κανονικής Μορφής πιστοποιείται µε την θεώριση των c i : εφόσον κανένα c i δεν είναι (κάποιο, είναι) µηδενικό το σύστηµα (δεν) είναι παρατηρήσιµο. Άρα: Αναγκαία και ικανή συνθήκη για την παρατηρησιµότητα ενός διαγωνοποιήσιµου ΓΧΑΣ είναι: οι ιδιοτιµές του Α που εµφανίζονται επί της διαγωνίου του A DCF να είναι διακριτές και λ 0! 0 n 1 λ1! λ 1 c1 0! 0 n c c c c c c c = = = 1 λ2! λ2 0 c2! 0 = " " # " " " # " " " # " " " # " " " # " " " # " n n n n n c1λ1 c2λ2! cnλn cn cnλn cnλ n! n cn 1 λn! λn 1 λn! λn cn T T να µήν υπάρχει µηδενικό στοιχείο του C DCF Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 45

46 Μη- Παρατηρήσιμες Εξισώσεις Κατάστασης ( ) T Αν για ένα ΓΧΑΣ ισχύει : rank C T A T C T A n C T! = q < n τότε υπάρχει µετασχηµατισµός έτσι ώστε το µετασχηµατισµένο σύστηµα να είναι της µορφής T µε το ζεύγος να ορίζει ένα q-διάστατο παρατηρήσιµο σύστηµα. Απόδειξη: Από τη δυαδικότητα (, ) T ( T, T T T Q A C = P A C ) και (, ) Με χρήση προηγούµενων αποτελεσµάτων, διαγωνοποιούµε το δυαδικό rank P A C = q < n όπου ελέγξιµο ( q-διάστατο). Παίρνουµε τις ανάστροφες σχέσεις:. και κάνουµε τις αντιστοιχίσεις: Η δυαδικότητα µας οδηγεί στο ότι,από το οποίο καταλήγουµε στο ζητούµενο αποτέλεσµα. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 46

47 Εστω το ΓΧΑΣ Το δυαδικό του ευρέθη µη πλήρως ελέγξιµο, γιατί ο πίνακας ελεγξιµότητας του δυαδικού έχει τάξη 2. Επιλέξαµε τις 2 πρώτες στήλες (γραµµικά ανεξάρτητες) του πίνακα ελεγξιµότητας και προσθέτοντας το «3 ο διάνυσµα της κανονικής βασης», πήραµε τον πίνακα µετασχηµατισµού... Αυτός οδηγεί στο µετασχηµατισµό Που δίνει Μη- Παρατηρήσιμες Εξισώσεις Κατάστασης : Παράδειγμα Αυτό υποδεικνύει ότι το σύστηµα έχει µία µη-παρατηρήσιµη κατάσταση επειδή το ζεύγος είναι παρατηρήσιµο. -3 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Παρατηρητές 47

48 5. Ευστάθεια Συστημάτων Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 48

49 Εισαγωγή στην Ευστάθεια Η Ευστάθεια (Stability) θα προσεγγισθεί από 2 «κατευθύνσεις» : Εσωτερικα (Internal Stability): Αναλύεται η συµπεροφορά της «απόκρισης µηδενικής εισόδου» Εξωτερικά (External /input-output Stability): Εξετάζεται αν η «απόκριση µηδενικής αρχικής κατάστασης» είναι φραγµένη στη περίπτωση που το σύστηµα διεγείρεται από φραγµένο σήµα εισόδου (Bounded Input Bounded Output Stability - BIBO). Οι 2 παραπάνω προσεγγίσεις θα συσχετισθούν. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 49

50 Εσωτερική Ευστάθεια Είναι ενδιαφέρον να εξετάσουµε την εσωτερική ευστάθεια θεωρόντας µιά πιο γενική κατηγορία από τα ΓΧΑΣ, δηλαδή ένα n-διάστατο, µη-γραµµικό, χρονικά αµετάβλητο σύστηµα n Ένα σηµείο x! " είναι σηµείο ισορροπίας (equilibrium point) του συστήµατος αν ισχύει f x! = Παράδειγµα: θεώρούµε το εκκρεµές που διέπεται από Δ.Ε. της µορφής και το οποίο µετασχηµατίζεται σε x2 x! 2 = 0 ± κ π f ( x) = x= κ Αυτό σηµαίνει ότι τα Σηµεία Ισορροπίας (ΣΙ) : (µαθηµατικά) είναι άπειρα, τον αριθµό, έχουν όλα µηδενική γωνιακή ταχύτητα, και ( ) 0 ksin x! 1 sin x1 = 0 0 "! ευρίσκονται στο κατώτερο και ανώτερο σηµεία της τροχιάς. Από φυσικής απόψεως, υπάρχουν 2 ΣΙ: ένα στο κατώτερο και ένα στο ανώτερο σηµείο της τροχιάς. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 50

51 Εσωτερική Ευστάθεια Η ύπαρξη πολλών (για ένα µηγραµµικό σύστηµα), αποµονωµένων ή µη, ΣΙ µας οδηγεί στην θεώρηση της ευστάθειας γύρω από κάθε ΣΙ. Εποµένως, αναφερόµαστε στην ευστάθεια γύρω από συγκεκριµένο ΣΙ και όχι σε αυτή ενός συστήµατος Στο διπλανό σχήµα, αν θεωρήσουµε ως κατάσταση µόνο την θέση (και όχι και την ταχύτητα) και την ύπαρξη τριβών, τότε οι περιπτώσεις: a. Πρόκειται περί ασταθούς (unstable) ΣΙ. Η παραµικρή διαταραχή θα το οδηγήσει µακράν του ΣΙ. b. Πρόκειται περί ευσταθούς (stable) ΣΙ. Η όποια φραγµένη διαταραχή το οδηγεί σε θέση φραγµένη, σε σχέση µε το ΣΙ. c. Πρόκειται περί ασυµπτωτικά ευσταθούς (asymptotically stable) ΣΙ. Η όποια φραγµένη διαταραχή το οδηγεί εν τέλει στο ΣΙ. (αν δεν υπάρχει τριβή?) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 51

52 Τύποι Ευστάθειας Με κατάλληλη µεταφορά αξόνων, µπορούµε γενικά να θέσουµεοιοδήποτε ΣΙ στην αρχή των αξόνων και να αναφερόµαστε σε ΣΙ x! = 0. Το Σηµείο Ισορροπίας x! = 0 του συστήµατος xt! = f xt x0 = x είναι: Ευσταθές (Stable) αν ε > 0 δ = δ( ε) x < δ x( t) < ε t 0 Ασταθές (Unstable) αν δεν είναι ευσταθές. ( ) ( ) ( ) ( ) 0 Ασυµπτωτικά Ευσταθές (Asymptotically Stable) ε 0 δ δ ε, T T ε, δ x δ αν xt < ε t 0 xt < δ t T. δηλαδή αν είναι ευσταθές και lim xt = 0 ( ) ( ) 0 ( ) ( ) 0 ( ) > = = < Συνολικά Ασυµπτωτικά Ευσταθές (Globally Asymptotically Stable) αν ε, M > 0 T = T(. ε, M) x δηλαδη είναι ευσταθές και 0 < M x( t) < ε t T lim xt ( ) = 0 t γιά κάθε αρχική κατάσταση (όχι δηλ. µόνο για τις αρχικές καταστάσεις εντός της περιοχής δ). t Εκθετικά Ευσταθές (Exponentially Stable) αν δκλ,, > 0 x0 < δ x( t) < κ e λ x0 t 0 Συνολικά Εκθετικά Ευσταθές (Globally Exponentially Stable) t αν κλ, > 0 xt < κ e λ. x t 0 γιά κάθε αρχική τιµή x0. ( ) 0 t Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 52

53 Τύποι Ευστάθειας Ευσταθές (Stable) Ασταθές (Unstable) Ασυµπτωτικά Ευσταθές (Asymptotically Stable) Συνολικά Ασυµπτωτικά Ευσταθές (Globally Asymptotically Stable) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 53

54 Τύποι Ευστάθειας : ΓΧΑΣ Αν θελήσουµε να εξειδικεύσουµε τους προηγούµενους ορισµούς για το ΓΧΑΣ το προφανές ΣΙ είναι και οι αντίστοιχοι ορισµού γίνονται : Ευσταθές αν ( ) γ ( ) γ > 0 xt < x x0 = x, t Ασταθές αν δεν είναι ευσταθές. (Συνολικά) Ασυµπτωτικά Ευσταθές αν ( ) ( ) ( ) µ > 0 T = T µ > 0 x t < µ x x 0 = x, t T 0 0 (Συνολικά) Εκθετικά Ευσταθές αν t ( ) ( ) κλ, > 0 xt < κ e λ x x0 = x, t Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 54

55 Τύποι Ευστάθειας : ΓΧΑΣ Παρατηρούµε ότι ( ) ( ) ( ) ( ) xt! = Axt xt = x xt = e x At 0 0 ( ) At Προφανώς αν x0 = ei x t = e At (δηλ. η i-th στήλη τού πίνακα e ). i Γι αυτή, την i-th στήλη, από τούς ορισµούς : της ευστάθειας, συνάγεται το «φραγµένον» της της ασυµπτωτικής ευστάθειας, συναγεται ότι τείνει στο µηδενικό διάνυσµα. Εποµένως, για να είναι το ΣΙ : Ευσταθές: τότε κάθε στοιχείο της i-th στήλης θα πρέπει να είναι φραγµένο Ασυµπτωτικά Ευσταθές: τότε κάθε στοιχείο της i-th στήλης θα πρέπει να τείνει ασυµπτωτικά στο µηδεν. Τα ανωτέρω ισχύουν i και εποµένως για κάθε στοιχείο του. At e Εύκολα αποδεικνύεται ότι ισχύει και το αντίστροφο... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 55

56 Ανάλυση της Ευστάθειας ΓΧΑΣ Ως γνωστόν Α R n n Τ R n 1, Τ 0 J = T A T όπου ο J είναι block-διαγώνιος µε κάθε block να είναι της µορφής : Κάθε τέτοιο block σχετίζεται µε µία ιδιοτιµή λ. 1 At J t 1 A. = T J T e = T e T Αν ο J είναι block-διαγώνιος Jt O e είναι block-διαγώνιος µε blocks µορφής: Ενα Jordan block που σχετίζεται µε µία ιδιοτιµή λ είναι βαθµωτό (µονοδιάστατο) όταν και µόνο όταν οι σχετικές γεωµετρικές και αλγεβρικές πολλαπλότητες της ιδιοτιµές είναι ίσες. Σε αυτή τη περίπτωση: Jk ( λ) t λ t J λ = λ, e = e k ( ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 56

57 Ευστάθεια ΓΧΑΣ Το Σ.Ι. του είναι: Ευσταθές: αν και µόνο αν όλες οι ιδιοτιµές του Α έχουν µη θετικό πραγµατικό τµήµα και γιά κάθε φανταστική ιδιοτιµή η γεωµετρική και αλγεβρική πολλαπλότητα (όρα µαθηµατικό παράρτηµα) είναι ίσες. (Συνολικά) Ασυµπτωτικά Ευσταθές : αν και µόνο αν όλες οι ιδιοτιµές του Α έχουν αυστηρά αρνητικό πραγµατικό τµήµα. Στο διπλανό σχήµα, οι ιδιοτιµές : «1» : έχουν αυστηρά αρνητικό πραγµατικό τµήµα και αντιστοιχούν σε ασυµπτωτικά ευσταθές σύστηµα «2» : είναι µη επαναλαµβανόµενες, επόµένως η γεωµετρική και αλγεβρική πολλαπλότητα τους είναι ίσες (=1) και αντιστοιχούν σε ευσταθές σύστηµα «3» : έχουν θετικό πραγµατικό τµήµα και αντιστοιχούν σε ασταθές σύστηµα Στις περιπτώσεις που θέλουµε να αντιδιαστείλουµε την Ασυµπτωτική Ευστάθεια από την Ευστάθεια αναφερόµαστε στη δεύτερη ως «οριακή ευστάθεια» (marginal stability). Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 57

58 Ενεργειακή Προσέγγιση στην Ευστάθεια Βασική Ιδέα: σύνδεση των εννοιών ευστάθειας µε την ενέργεια... Έστω σύστηµα του οποίου η συνολική ενέργεια ορίζεται ως συνάρτηση της κατάστασής του Αν Τότε Αν Τότε Το ΣΙ αντιστοιχεί σε (τοπικό) ελάχιστο της συνάρτησης ενέργειας, και Η ενέργεια δεν αυξάνει κατά την εξέλιξη οιασδήποτε πορείας που αρχίζει στην γειτονιά του ΣΙ Η πορεία παραµένει κοντά στο ΣΙ, δηλ. έχουµε ευσταθές ΣΙ. Το σύστηµα απορροφά ενέργεια κατά την εξέλιξη οιασδήποτε πορείας που αρχίζει στην γειτονιά του ΣΙ, και εποµένως η ενέργεια συγκλίνει σε τοπικό ελάχιστο έχουµε ασυµπτωτικά ευσταθές ΣΙ. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 58

59 Ενεργειακή Προσέγγιση στην Ευστάθεια : Παράδειγμα Στο παρελθόν είδαµε τη ΔΕ που περιγράφει το φυσικο φαινόµενο Προφανώς η θεώρηση : f (t) = 0 οδηγεί την αρχική ΔΕ στην µορφή Συνολική Ενέργεια Δυναμική Ενέργεια - Ελατήριο Κινητική Ενέργεια - Μάζα (, ) > 0 [ ] [ 0 0 ], (, ) = 0 [ ] = [!! ] = [ 0 0] T T T T T E x x x x E x x x x x x Η εξέλιξη της ενέργειας κατά µία τροχιά του συστήµατος είναι Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 59

60 Ενεργειακή Προσέγγιση στην Ευστάθεια : Παράδειγμα de dt = c x 2 2 Αν c= 0 de dt = 0 E= const. που σηµαίνει ότι έχουµε συνεχή εναλλαγή µεταξύ κινητικής & δυναµικής ενέργειας. Εποµένως Υπενθυµίζουµε ότι για το ΓΧΑΣ το προφανές ΣΙ. είναι Ευσταθές αν γ > 0 xt < γ x x0 = x, t 0 ( ) ( ) 0 0 Παράµετροι: m = 1 kg, k = 10 N/m, c = 0 x 0 = [1 2] T λ 1,2 = ± j 3.16 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 60

61 Ενεργειακή Προσέγγιση στην Ευστάθεια : Παράδειγμα de dt = c x 2 2 ( ) 2 Αν c > 0 τότε, επειδή de dt = c x2 t, x2 ( t ) = 0 x! ( t) = x ( t) = 0 x ( t) = y = const. Αν καθόλη τη διάρκεια µίας τροχιάς, τότε (από την 1 η εξ. καταστ.). Επίσης (από την 2 η εξ. Καταστ.) k x1( t) = k y0 = 0 y0 = 0 Αυτό συνεπάγεται ότι η σχετική τροχιά αντιστοιχεί στο ΣΙ: xt ( ) x! = [ 0 0] T Αν το x ( ) δεν είναι µηδενικό καθόλη τη διάρκεια µίας τροχιάς, τότε 2 t de dt < 0 E 0 t Η σύγκλιση της Ενέργειας στο µηδέν συνεπάγεται 2 min { km, } 0 ( 1( ), 2( )) µ ( 1( 0 ), 2( 0) ) max { km, } Επίσης, ισχύει T > E x t x t E x x t T που αποδεικνύει ότι το ΣΙ ασυµπτωτικά ευσταθές ( ) x! = [ ] xt 0 0 T είναι c=1 N s/m λ 1,2 = ± j 3.12 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 61

62 Ενεργειακή Προσέγγιση στην Ευστάθεια : Παράδειγμα de dt = c x 2 2 ( ) 2 Αν c < 0 τότε, επειδή de dt = c x2 t, x2 ( t ) = 0 x! ( t) = x ( t) = 0 x ( t) = y = const. Αν καθόλη τη διάρκεια µίας τροχιάς, τότε (από την 1 η εξ. καταστ.). Επίσης (από την 2 η εξ. Καταστ.) k x1( t) = k y0 = 0 y0 = 0 Αυτό συνεπάγεται ότι η σχετική τροχιά αντιστοιχεί στο ΣΙ: xt ( ) x! = [ 0 0] T Αν το x t δεν είναι µηδενικό καθόλη τη διάρκεια µίας τροχιάς, τότε de dt > 0 2 ( ) Μπορεί να αποδειχθεί ότι οιαδήποτε αρχική συνθήκη πριν της µηδενικής οδηγεί σε αποκλίνουσα τροχιά. c= - 1 N s/m λ 1,2 = ± j 3.12 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 62

63 Ανάλυση Ευστάθειας κατά Lyapunov Βασική Ιδέα: Θεώρηση, όπως και προηγουµένως, της εξέλιξης µιας συνάρτησης - που µοιάζει µε ενέργεια του συστήµατος - επι της τροχιάς του συστήµατος. Για το (γενικό, µη γραµµικό) σύστηµα n θεωρούµε µία συνάρτηση + ( ) :!! 0 που είναι θετικά ορισµένη σε µία τουλάχιστον γειτονιά του ΣΙ, δηλ. και ( ) V C! 1 n V δηλ. παντού στο πεδίο ορισµού της είναι συνεχώς παραγωγίσιµη x! 1 x V V V V V V! V V,,, n n x x x x x xn # x x x! n 2 ( x) = V( x x " x ) V! ( x) = ( x) x! + ( x) x! + " + ( x) x! = ( x) ( x) " ( x) = ( x) x! = ( x) f ( x) n 1 2 ρ > 0 V x ( ) = 0 x = 0,V ( x) > 0 x 0, x < ρ Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 63

64 Ανάλυση Ευστάθειας κατά Lyapunov Ευθεία Μέθοδος Lyapunov: είναι µία (µόνο) ικανή συνθήκη. Το ΣΙ είναι: Ευσταθές, αν η V( x ) είναι Lyapunov, δηλ. η V! ( x) είναι αρνητικά ηµιορισµένη σε µία τουλάχιστον γειτονιά του ΣΙ, δηλ. ρ > 0 V! x! Ασυµπτωτικά Ευσταθής, αν η V x είναι αρνητικά ορισµένη σε µία τουλάχιστον γειτονιά του ΣΙ, δηλ. ρ > 0 V! x ( ) ( ) < 0 x < ρ ( ) 0 x < ρ Στη περίπτωση ενος ΓΧΑΣ αν υιοθετηθεί ως n T υποψήφια Lyapunov η τετραγωνική µορφή V( x) = x P x= pijxx i j, τότε η i, j= 1 γενική µορφή της χρονικής παραγώγου της γίνεται :! V x ( ) ( ) ( ) ( ) ( ) V x = x f x = 2 x T P A x = x T P A x+ x T P A x= x T A T P x+ x T P A x= x T A T P+ P A x T T T T T x A P x= x A P x = x P A x Παράρτημα ( ) T Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 64

65 Ανάλυση Ευστάθειας κατά Lyapunov : ΓΧΑΣ Βρέθηκε ότι V! ( x) = x T ( A T P + P A) x Σύµφωνα µε τα προηγούµενα, για να είναι αυτή η τετραγωνική µορφή T αρνητικά ορισµένη θα πρέπει A P+ P A : αρνητικά ορισµένος. n n T Θεώρηµα: Q! : Q= Q > 0η Μητρωική Εξίσωση Lyapunov T (Lyapunov Matrix Equation -LΜΕ) A P+ P A= Q T λύση P= P. > 0, αν και µόνο αν Re λ < 0 λ σ n n Ο πίνακας P! είναι συµµετρικός. ( ) ( ) i i A έχει µία µοναδική Εποµένως θα εµπεριέχει n = = n(n+1)/2 άγνωστους παράγοντες. n n Αυτοί, επειδή ο πίνακας Q! είναι συµµετρικός, θα ευρεθούν από τις n = n(n+1)/2 ανεξάρτητες εξισώσεις που υπάρχουν στην LME. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 65

66 Ανάλυση Ευστάθειας ΓΧΑΣ κατά Αν τότε, έχουµε δηλαδή 2 (2+1) / 2 = = 3 αγνώστους. Αν Q = Ι, η LME είναι : T A P+ P A= Q Έχουµε δηλαδή 2 (2+1) / 2 = 3 αγνώστους, τους p 11, p 12, p 22 που ευρίσκονται από την «αναδόµιση» της LME ως: Καταλήγουµε έτσι στον Lyapunov : Παράδειγμα Το κριτήριο Sylvester δίνει ότι P > 0 γιατί Εποµένως ο Α είναι ασυµπτωτικά ευσταθής, πράγµα που πιστοποιείται από τό ότι το έχει Χ.Ε.: και ιδιοτιµές Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 66

67 Εκθετική Ευστάθεια ΓΧΑΣ Παρόλο που στη γενική (µη-γραµµική) περίπτωση η εκθετική και η ασυµπτωτική ευστάθεια ΔΕΝ είναι ισοδύναµες, στη περίπτωση των ΓΧΑΣ είναι. Αυτό είναι αναµενόµενο γιατί αν ο πίνακας Α έχει ιδιοτιµές µε αρνητικό πραγµατικό µέρος, αυτό αντιστοιχεί σε εκθετική σύγκλιση στο 0. T T T Αν V( x) = x P x τότε V! ( x) = x A P+ P A x και αν στην T ALME P+ P A. = Q επιλέξουµε Q = I τότε µε χρήση της ανισότητας Rayliegh-Ritz! T 1 T 1 ( ) ( ) ( )! 1 ( ( )) ( ( )) λmax ( P) λmax ( P) λmax ( P) Η ΔΕ V x = x x x P x = V x w t = V x t + V x t 0 t 0 έχει τη µοναδική λύση Μη- θετικός όρος Και κατά συνέπεια Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 67

68 Εκθετική Ευστάθεια ΓΧΑΣ Εφαρµόζοντας και πάλι την ανισότητα Rayliegh-Ritz Επειδή P> 0 λmin ( P) > 0 T και x = x = x x 2 Διαιρώντας την ανίσωση κατά µέλη µε λ P > παίρνουµε ( ) min 0 Η Εκθετική Ευστάθεία απαιτεί t κλ ( ) κ λ ( ) Δηλαδή τι αποδείξαµε για τα ΓΧΑΣ?, > 0 xt < e x x0 = x, t Ξεκινήσαµε µε την υπόθεση ότι αν ένα ΓΧΑΣ είναι Ασυµπτωτικά Ευσταθές, Κάναµε χρήση του θεωρήµατος Lyapunov και της ανισότητας Rayliegh-Ritz, και Καταλήξαµε στο ότι το σύστηµα θα είναι Εκθετικά Ευσταθές. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 68

69 Ευστάθεια τύπου: «Φραγμένης Εισόδου Φραγμένης Εξόδου» Μέχρι στιγµής έχουµε προσεγγίσει την «εσωτερική ευστάθεια»: Αναλύθηκε η συµπεριφορά της «απόκρισης µηδενικής εισόδου» Τώρα θα προσεγγίσουµε την «εξωτερική ευστάθεια» : Εξετάζεται αν η «απόκριση µηδενικής αρχικής κατάστασης» είναι φραγµένη όταν το σύστηµα διεγείρεται από φραγµένο σήµα εισόδου. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 69

70 Ευστάθεια τύπου: «Φραγμένης Εισόδου Φραγμένης Εξόδου» Ευστάθεια Φραγµένη Εισόδου Φραγµένης Εξόδου (Bounded Input Bounded Output BIBO Stability): είδος εξωτερικής ευστάθειας Εξετάζεται αν η «απόκριση µηδενικής αρχικής κατάστασης» είναι φραγµένη όταν το σύστηµα διεγείρεται από φραγµένο σήµα εισόδου. Ορισµός: Το ΓΧΑΣ είναι ΒΙΒΟ ευσταθές αν υπάρχει πεπερασµένη σταθερά η, τέτοια ώστε για κάθε είσοδο u(t) η έξοδος ικανοποιεί την Max/sup Θεώρηµα: Το ΓΧΑΣ είναι ΒΙΒΟ ευσταθές αν και µόνο αν ο πίνακας κρουστικής απόκρισης H( t) = C e At B+ D δ ( t). ικανοποιεί την ανίσωση Νόρμες Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 70

71 Παράδειγμα: Ευστάθεια Ασυμπτωτική και ΒΙΒΟ Εστω το ΓΧΑΣ : που έχει ΧΠ: Το ΓΧΑΣ δεν είναι ασυµπτωτικά ευσταθές Αυτό µπορεί να φανεί και από τον πίνακα µεταβατικής απόκρισης: Θεωρόντας την ΣΜ : Η απαλοιφή των πόλων οφείλεται στο ότι το σύστημα είναι... ΒΙΒΟ Ευσταθές Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 71

72 [ ] Παράδειγμα: Ευστάθεια Ασυμπτωτική rank Q 2 Q( A, C = Παρατηρήσιμο ) = C = [ 0 1] 1 0 Επειδή έγινε απαλοιφή του ασταθούς πόλου, ενώ το σύστηµα είναι εσωτερικά ασταθές εµφανίζεται να είναι BIBO-ευσταθές... Υπενθυµίζουµε ότι... και ΒΙΒΟ T B = P( A, B) = rank P = 1 A = ( ) ( ) Μη (πλήρως) Ελέγξιμο At x = [ ] zi ( ) zi ( ) 0 Αν τότε T y t = C x t = C e x = e t Y s = H s = y t = 1 e ( ) ( ) ( ) Επίσης αν u(t)=1 τότε zs zs s s s+ 1 Το οποίο είναι φανερό ότι αποκλείνει, επειδή το σύστηµα είναι εσωτερικά ασταθές.. Προσοχή λοιπόν στην απαλοιφή πόλων... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 72 t

73 Σχέση Ασυμπτωτικής και ΒΙΒΟ Ευστάθειας Θεώρηµα: Για το ΓΧΑΣ : 1. Ασυµπτωτική ευστάθεια πάντοτε συνεπάγεται ΒΙΒΟ-ευστάθεια. 2. Εάν το σύστηµα είναι «ελάχιστης παράστασης» (minimal) τότε η ΒΙΒΟευστάθεια συνεπάγεται ασυµπτωτική ευστάθεια. Η έννοια του minimality σχετίζεται µε την απαλοιφή πόλων-µηδενιστών, κάτι που προκαλεί πρόβληµα ιδιαίτέρως όταν είναι ασταθείς... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 73

74 Παράρτημα: Θετικά Ορισμένοι Πίνακες V( x) = x P x= p xx T Η τετραγωνική µορφή ij i j είναι θετικά ορισµένη n i, j= 1 (positive definite) για κάθε x! αν και µόνο αν ο πίνακας P είναι ένας θετικά ορισµένος συµµετρικός πίνακας (συµβολίζεται P > 0). O n n T P!, P= P (συµµετρικός) είναι θετικά ορισµένος αν και µόνο αν + έχει ιδιοτιµές πραγµατικές και θετικές, δηλ. λ σ( A) λ!, ή (Κριτήριο Sylvester) ισχύει για τις υποορίζουσες > 0 > 0 > 0 > 0 n i i Παρατηρούµε ότι αν τότε Ένας πίνακας Q είναι αρνητικά ορισµένος αν και µόνο αν ο πίνακας Q είναι θετικά ορισµένος Από τη δοµή (τον ορισµό) της V( x συνάγεται ότι: V ) = 2 x T P x T Αν P= P τότε δεδοµένου ότι η τετραγωνική µορφή είναι βαθµωτή, ισχύει: ( ) T Ανισότητα Rayliegh- Ritz x A P x= x A P x = x P A x T T T T T Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 74

75 Παράρτημα: Maximum vs Supremum Ένα διανυσµατικό «σήµα» (δηλ. συνάρτηση στο χρόνο) u(t) είναι φραγµένο άν υπάρχει πεπερασµένη, θετική σταθερά ν τέτοια ώστε ut ν t Αν υπάρχει ένα τέτοιο ανω φράγµα, το ελάχιστο άνω φράγµα (supremum) αναπαρίσταται ως Προφανώς, αν δεν υπάρχει ένα τέτοιο φράγµα, τότε Πρέπει να επισηµανθεί η σαφής διάκριση µεταξύ supremum και maximum της u(t) : Στο πεδίο ορισµού της 0, κάποια στιγµή πρέπει να πάρει ως τιµή το maximum αν υπάρχει, ενώ το supremum είναι απλά ένα όριο... ( ) 0 [ ) Παράδειγµα: Η συνάρτηση είµαι γνήσίως αύξουσα σε όλο το πεδίο ορισµού της 0, και δεν έχει maximum. Όµως: [ ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ ΒΙΒΟ 75

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήµατα πολλών εισόδων πολλών εξόδων

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήµατα πολλών εισόδων πολλών εξόδων ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήµατα πολλών εισόδων πολλών εξόδων ΣΗΜΕΙΩΣΕΙΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΚ ΟΧΗ.5, Νοέµβριος Περιεχόµενα ΠΕΡΙΕΧΟΜΕΝΑ... 3 ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων; ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 7 Έργο και Ενέργεια Περιεχόµενα Κεφαλαίου 7 Το έργο σταθερής δύναµης Εσωτερικό Γινόµενο δύο διανυσµάτων Έργο µεταβλητής δύναµης Σχέση Ενέργειας και έργου 7-1 Το έργο σταθερής δύναµης Το έργο που

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs.

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs. Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός hp://www.perifysikhs.com Αναζητώντας την αιτία των κινήσεων Η µελέτη των κινήσεων,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα