Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)"

Transcript

1 Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2 Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ποιοτικά Κριτήρια Σχεδίασης Ανατροφοδότηση Κατάστασης Εισαγωγή στον Βέλτιστο Έλεγχο Εισαγωγή στην Βελτιστοποίηση σε χώρουν πεπερασμένων και απείρων διαστάσεων. Εισαγωγή στο Λογισμό των Μεταβολών Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αναγκαίες Συνθήκες Βελτίστου Ελέγχου Προβληματα τύπου «Γραμμικού Ρυθμιστή» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

3 6. Ανατροφοδότηση Κατάστασης Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

4 Ανατροφοδότηση Κατάστασης Σχεδίαση νόµων ανάδρασης / ανατροφοδότησης κατάστασης µε σκοπό την κατάλληλη τοποθέτηση των πόλων του συστήµατος για την επίτευξη επιθυµητής απόκρισης κλειστού βρόχου αναφορικά µε τα χαρακτηριστικά απόκρισης µεταβατικής κατάστασης, και µόνιµης κατάστασης. Ζητούµενο: εύρεση «κερδών» ανάδρασης της κατάστασης στην είσοδο Αναγκαία & ικανή συνθήκη αυθαίρετης τοποθέτησης πόλων: ελεγξιµότητα Τι γίνεται όταν το σύστηµα δεν είναι πλήρως ελέγξιµο - Σταθεροποίηση Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4

5 Ο Νόμος Ανάδρασης Έστω το ΓΧΑΣ, δηλ.η προς έλεγχο εγκατάσταση (plant): Θεωρούµε νόµο ελέγχου της µορφής: Σκοπός είναι η εύρεση των «κερδών» ανάδρασης Κ της κατάστασης στην είσοδο για την κατάλληλη τοποθέτηση των πόλων του συστήµατος µε σκοπό την επίτευξη επιθυµητής απόκρισης κλειστού βρόχου Γενικά: Για µία είσοδο (m = 1): r=0 Ρυθμιστής (Regulator) : σύγκλιση Kostas J. Kyriakopoulos στο ΣΙ ( 0 ) - Σ.Α.Ε. ΙΙ 5

6 Καθορισμός της Δυναμικής Απόκρισης Επιδιώξεις για το σύστηµα κλειστού βρόχου: Ασυµπτωτική Ευστάθεια Συγκεκριµένα Χαρακτηριστικά Μεταβατικής Απόκρισης σε είσοδο βαθµίδας: Χρόνος ανύψωσης (rise time) Χρόνος κορυφής (peak time) Εκατοστιαία υπερακόντιση (percent overshoot) Χρόνος Αποκατάστασης (settling time) Πως η θέση των ιδιοτιµών επηρεάζει τα παραπάνω χαρακτηριστικά? Ασυµπτωτική Ευστάθεια : ο πίνακας Α-Β Κ να έχει το πραγµατικό τµήµα όλων των ιδιοτιµών του αυστηρά αρνητικό Χαρακτηριστικά Μεταβατικής Απόκρισης: η σχέση των ιδιοτιµών µε αυτά τα χαρακτηριστικά είναι σαφής µόνο για συστήµατα 1 ης και 2 ης τάξης. Για συστήµατα µεγαλύτερης τάξης βασιζόµαστε σε προσεγγίσεις «κυριαρχούντων υποσυστηµάτων» (domaining subsystem). Πως κάνουµε δηλαδή την επιλογή των ιδιοτιµών («πόλων»)? Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6

7 Επιλογή Ιδιοτιμών για ΓΧΑΣ 1 ης τάξης Σε σύστηµα 1 ης τάξης, ή µία και µοναδική ιδιοτιµή καθορίζει την απόκριση δεδοµένου ότι η χρονική σταθερά τ δείχνει τον χρόνο αποκατάστασης-95% Το παρακάτω σχήµα δίχνει την τυπική απόκριση συστήµατος 1 ης τάξης σε είσοδο συνάρτησης βαθµίδας. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 7

8 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης Εάν στο παράδειγµα (που έχουµε δει και στην εισαγωγή) θεωρήσουµε ως είσοδο της µορφής δηλαδή ανηγµένη δύναµη ως προς k, που αντιστοιχεί σε «εντολή µετακίνησης» τότε ( ) ( ) = Y s U s Απόσβεση Φυσική Συχνότητα Ιδιοτιμές Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 8

9 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης: Υπο-απόσβεση 0 < ξ < 1 : Υποαπόσβεση Απόκριση σε είσοδο µοναδιαίας βαθµίδας Χαρακτηριστικά Απόδωσης: Χρόνος Ανύψωσης: 10% 90% Χρόνος Μέγιστης Υπερακόντισης: Μέγιστη Υπερακόντιση: Χρόνος Αποκατάστασης: χρόνος µετά από τον οποίο το σύστηµα παραµένει σε µία ζώνη 2% γύρω από την µόνιµη τιµή Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 9

10 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης: Υποαπόσβεση Παράδειγμα (Ανοικτός Βρόχος) Στο πρoηγούµενο σύστηµα για m = 1 kg, c = 1 N s/m, k = 10 N/m Χρόνος Ανύψωσης: = 0.30 s Χρόνος Μέγιστης Υπερακόντισης: Μέγιστη Υπερακόντιση: =1.01 s = 60.5% Χρόνος Αποκατάστασης: = 8 s Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10

11 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης: Υποαπόσβεση Παράδειγμα (Κλειστός Βρόχος) Η απόκριση ανοικτού βρόχου που µόλις είδαµε, είναι χαρακτηριστική των συστηµάτων µε µικρή απόσβεση και όπως φάνηκε από το σχήµα, δεν είναι ικανοποιητική. Αντίθετα, θα επιθυµούσαµε µεγίστη υπερακόντιση ~4% και χρόνο αποκατάστασης ~2 s (σε σύγκριση µε τις τωρινές τιµές ~60% και ~7.3 s, αντίστοιχα). Προς τούτο, υιοθετούµε έλεγχο ανάδρασης µεταβλητών κατάστασης (ουσιαστικά, σε αυτή τη περίπτωση, PD) : Αν αυτός είσαχθεί στο σύστηµα (ανοικτού βρόχου): Λαµβάνουµε το σύστηµα κλειστού βρόχου: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 11

12 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης: Υποαπόσβεση Παράδειγμα (Κλειστός Βρόχος) Από την υπερακόντιση υπολογίζουµε τον επιθυµητό λόγο απόσβεσης : ( PO 100) ln ( PO ) ln PO = = = π ξʹ π 2 PO= 4 1 ξ ʹ 100 e ξʹ Και από τον χρόνο αποκατάστασης υπολογίζουµε την επιθυµητή φυσική t S = συχνότητα : t! ω! = 2.79 rad / sec S ξʹ ω n S Η επιθυµητή φυσική συχνότητα απόσβεσης είναι : Υπενθυµίζουµε ότι στο σύστηµα ανοικτού βρόχου είχαµε: Ενώ τώρα, στο σύστηµα κλειστού βρόχου έχουµε: n ξʹ t = ( s) Hʹ = Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12

13 Επιλογή Ιδιοτιμών για ΓΧΑΣ 2 ης τάξης: Υποαπόσβεση Παράδειγμα (Κλειστός Βρόχος) ( s) Hʹ = Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13

14 Επιλογή Ιδιοτιμών για ΓΧΑΣ : Ανισοτικοί Περιορισμοί Η µεταβατική απόκριση καθορίζεται συνήθως µε τη µορφή ανισοτήτων και όχι ισοτήτων. Για συστήµατα : 1 ης τάξης: καθορίζεται ένα άνω φράγµα του χρόνου που χρειάζεται για προσέγγιση κατά ένα ποσοστό (π.χ. 95%) της µόνιµης κατάστασης. 2 ης τάξης: καθορίζονται φράγµατα σε κάποια (ή όλα) από τις προδιαγραφές: χρόνο ανύψωσης, χρόνο µεγίστης υπερακόντισης, µεγίστη υπερακόντιση, και χρόνο αποκατάστασης. Αυτά οδηγούν σε αποδεκτές περιοχές του λόγου απόσβεσης και της φυσικής συχνότητας. Αυτές αντιστοιχίζονται σε αποδεκτές περιοχές των ιδιοτιµών του συστήµατος κλειστού βρόχου. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14

15 Επιλογή Ιδιοτιμών για ΓΧΑΣ : Ανισοτικοί Περιορισμοί - Παράδειγμα Για το παράδειγµα που έχουµε ήδη αναλύσει,αναζητούµε τις ιδιοτιµέςπου ικανοποιούν τις προδιαγραφές : ( PO 100) ln ( PO ) ln PO = = = = π ts! 2 ξ ωn 2 ξ ωn 2 ξ ω ξʹ π 2 PO= 4 1 ξ ʹ 1 1 O O O 100 e 4 ξ θ cos ( ξ) cos ( 0.716) θ n Υπενθυµίζουµε ότι Αναζητούµε ιδιοτιµές µε πραγµατικό µέρος, αριστερότερα του -2. t P π π = 0.5 ωd = 6.28 rad / sec ω 0.5 d Υπενθυµίζουµε ότι Αναζητούµε ιδιοτιµές µε φανταστικό µέρος, εκτός του διαστήµατος (-6.28, +6.28). Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15

16 Επιλογή Ιδιοτιμών για ΓΧΑΣ : Ανισοτικοί Περιορισμοί - Παράδειγμα ωd 6.28 rad Παρατηρούµε ότι η δοµή των συνθηκών 1 & 3 είναι τέτοια όπου η 2 ικανοποιείται πάντα. Συνήθως τίθενται και άλλες συνθήκες που περιορίζουν: προς το θετικότερο το πραγµατικό µέρος των ιδιοτιµών για να περιορισθεί το εύρος ζώνης συστήµατος. Τη φυσική συχνότητα των ιδιοτιµών για να µην οδηγείται (συχνά) η είσοδος του συστήµατος σε κορεσµό. κλπ. O θ ξ ω 2 n O Εποµένως οι επιθυµητές περιοχές των ιδιοτιµών αντιστοιχούν συνήθως σε 2 συµµετρικές ως προς τον φανταστικό άξονα «ευσταθείς νησίδες». του Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 16

17 Επιλογή Ιδιοτιμών για ΓΧΑΣ Υψηλής Τάξεως Οταν είναι δυνατόν, τα συστήµατα υψηλής τάξεως προσεγγίζονται από κυριαρχούντα συστήµατα 1 ης ή 2 ης τάξης. Στα κυριαρχούντα υποσυστήµατα οι ιδιοτιµές καθορίζονται όπως προηγουµένως. Οι υπόλοιπες ιδιοτιµές µπορεί να είναι και 10 φορές πιο αριστερά απο τις κυριαρχούσες (αρκεί να µην διεγείρουν πιθανούς θορύβους) Μία (1) κυριαρχούσα ιδιοτιµή : Ο πίνακας δείχνει τις θέσεις των υπολοίπων ιδιοτιµών για µία κυριαρχούσα ιδιοτιµή, ανάλογα µε τη τάξη του συστήµατος. Το σχήµα δείχνει τις αντίστοιχες αποκρίσεις σε είσοδο µοναδιαίας βαθµίδας Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 17

18 Επιλογή Ιδιοτιμών για ΓΧΑΣ Υψηλής Τάξεως Δύο (2) κυριαρχούσες ιδιοτιµές : Ο πίνακας δείχνει τις θέσεις των υπολοίπων ιδιοτιµών για 2 κυριαρχούσες ιδιοτιµές, ανάλογα µε τη τάξη του συστήµατος. Το σχήµα δείχνει τις αντίστοιχες αποκρίσεις σε είσοδο µοναδιαίας βαθµίδας Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 18

19 Επιλογή Δυναμικής Απόκρισης / ΧΠ / Ιδιοτιμών με τη Μεθοδολογία ΙΤΑΕ Το κριτήριο ITAE (Integral of Time multiplying the Absolute value of Error) οδηγεί σε διαµόρφωση της δυναµικής απόκρισης µε κριτήριο την ελαχιστοποίηση της αντικειµενικής συνάρτησης Στην περίπτωση που επιλεγούν Σ.Μ της µορφής τότε τα ΧΠ που προκύπτουν από το ΙΤΑΕ δίδονται στον παρακάτω πίνακα (ανάλογα µε τη τάξη του συστήµατος) και οι αντίστοιχες αποκρίσεις (για µοναδία βαθµίδα) φαίνονται διπλα Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 19

20 Τοποθέτηση Πόλων Κλειστού Βρόχου με Ανάδραση Μεταβλητών Κατάστασης Θεώρηµα: Αν Α R n n, B R n m τότε για κάθε σύνολο n µιγαδικών αριθµών {µ 1, µ 2,, µ n }, στο οποίο οι µη αµιγώς πραγµατικοί εµφανιζονται ως συζυγή ζεύγη, υπάρχει ένας πίνακας Κ R m n έτσι ώστε σ(α-β Κ) = {µ 1, µ 2,, µ n } αν και µόνο αν το ζεύγος (Α,Β) είναι ελέγξιµο. Ουσιαστικά το παραπάνω θεώρηµα θέτει την ελεγξιµότητα ως αναγκαία και ικανή συνθήκη για την τοποθέτηση όλων των ιδιοτιµών ενός συστήµατος αυθαίρετη (εφόσον οι µη αµιγώς πραγµατικές εµφανιζονται ως συζυγή ζεύγη), µέσω κατάλληλου πίνακα κερδών ανατροφοδότησης. Πως ευρίσκεται αυτό το Κ? Τύπος Ackermann : Για συστήµατα µίας εισόδου, δηλ. Α R n n, B R n 1, τότε όπου R n n ο πίνακας ελεγξιµότητας που επειδή εµφανίζεται σε µορφή αντιστρόφου είναι εµφανής η ανάγκη για ελεγξιµότητα : οι συντελεστές του δίνονται από το επιθυµητό χαρακτηριστικό πολυώνυµο δηλ. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 20

21 Τύπος του Ackermann: Παράδειγμα Έστω το SISO ΓΧΑΣ A= B 0 = C = Για προδιαγραφές PO = 6 % t s = 3 sec Λαµβάνουµε ( PO 100) ln ( PO ) [ ] ln PO = = = = π ts! 3 ωn 2rad/sec ξ ω = = ξʹ π 2 PO= 6 1 ξ ʹ 100 e 6 ξ n Απόκριση για είσοδο βαθμιδας: u(t)=u s (t) Ιδιοτιµές Αν και ευσταθείς, µόνο µε ελαφρά απόσβεση λ1,2 = 1.33± j1.49 : κυριαρχούσες ιδιοτιµές Η τελευταία ιδιοτιµή επιλέγεται 10 φορές πιο γρήγορη, δηλ. 3 2 Επιθυµητό ΧΠ: α ( ) ( )( )( ) λ 3 = s = s j1.49 s j1.49 s = s + 16s s = 3 2 = s + s + s+ α α α Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ

22 Τύπος του Ackermann: Παράδειγμα Ο πίνακας ελεγξιµότητας είναι Επίσης, από το ΧΠ έχουµε: Και από τον τύπο του Ackermann: 1 K = [ 0 0 1] P α ( A) = [ ] Ο έλεγχος u= K x+ r δίνει την απόκριση του διπλανού σχήµατος στην οποία ικανοποιούνται οι συνθήκες δυναµικής απόκρισης. 1/18 ΟΜΩΣ: Πως επιτυγχάνεται η επιθυµητή µόνιµη κατάσταση? Θα δούµε παρακάτω... Αν δεν είναι άµεσα διαθέσιµη η κατάσταση? Τι γίνεται σε MIMO συστήµατα? P= P = α ( A) = A + 16A A I = Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 22

23 Δυνατότητα Σταθεροποίησης Σε οιοδήποτε ελέγξιµο σύστηµα είναι δυνατή η κατά τις προδιαγραφές τοποθέτηση των πόλων και κατα συνέπεια η σταθεροποίησή (stabilization) του. Είναι δυνατή όµως η σταθεροποίηση ενός µη πλήρως ελέγξιµου συστήµατος? Απάντηση: Ναι υπό τη προυπόθεση ότι το σύστηµα είναι σταθεροποιήσιµο (stabilizable) Παράδειγµα: Το SISO ΓΧΑΣ Όπως φαίνεται παρακάτω είναι µη πλήρως ελέγξιµο. Γιατί? Όµως το υποσύστηµα (Α 11, Β 1 ) είναι ένα πλήρως ελέγξιµο σύστηµα. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 23

24 Δυνατότητα Σταθεροποίησης Αν επιλέξουµε τότε Από την block άνω τριγωνική µορφή (block upper triangular) του πίνακα κλειστού βρόχου είναι φανερό ότι µε τα κέρδη µπορούν να τοποθετήσουµε κατά βούλιση τους 2 (ελέγξιµους) πόλους ενώ ο 3 ος, δηλ. το -2, είναι ευσταθής. ( ) ( ) ( ) Ορισµός: Το ΓΧΑΣ xt! = Axt + But, ή αλλοιώς το «ζεύγος» (Α,Β), είναι σταθεροποιήσιµο (stabilizable) αν υπαρχει πίνακας κερδών ανάδρασης κατάστασης Κ για τον οποίο όλες οι ιδιοτιµές του πίνακα Α-Β Κ έχουν αυστηρά αρνητικό πραγµατικό τµήµα. Ελεγξιµότητα Δυνατότητα Σταθεροποίησης (Stabilizability) Δυνατότητα Σταθεροποίησης Ελεγξιµότητα Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 24

25 Δυνατότητα Σταθεροποίησης ( ) ( ) ( ) Έστω το ΓΧΑΣ xt! = Axt + But που δεν είναι πλήρως ελέγξιµο. Ως γνωστόν, υπάρχει µετασχηµατισµός που δίδει τους πίνακες του µετασχηµατισµένου συστήµατος όπου το (Α 11, Β 1 ) είναι πλήρως ελέγξιµο. Γι αυτό το σύστηµα, θεωρούµε τον κατάλληλα «κατατµηµένο» πίνακα κερδών οπότε ο πίνακας κλειστού βρόχου του µετασχηµατισµένου συστήµατος είναι Αυτός ο πίνακας έχει ιδιοτιµές: Αυτές του όπου, επειδή το (Α 11, Β 1 ) είναι πλήρως ελέγξιµο, µπορούν να τοποθετηθούν (π.χ. Με τον τύπο του Ackermann) κατά βούληση, και Αυτές του (που δεν µπορούνα να µετακινηθούν). Εποµένως η δυνατότητα σταθεροποίησης του ΓΧΑΣ προϋποθέτει ότι το έχει ασυµπτωτικά ευσταθείς πόλους. Παρατηρούµε δε ότι το δεν παίζει κανένα ρόλο στη σταθεροποίηση του συστήµατος. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 25

26 Δυνατότητα Σταθεροποίησης : Παράδειγμα Για το ΓΧΑΣ στο παρελθόν Εξετάσαµε την ελεγξιµότητά του, P =0: Είδαµε το τρόπο µετασχηµατισµού του σε µορφή που «ξεχωρίζουν» τα ελέγξιµα και µη ελέγξιµα τµήµατα Επειδή Α 22 = -3, προφανώς το σύστηµα είναι σταθεροποιήσιµο. Για το (Α 11, Β 1 ) επιλέγουµε ιδιοτιµές - 2 ± j 2 και µέσω του τύπου του Ackermann υπολογίζεται ο σχετικός πίνακας κερδών και µπορεί να πιστοποιηθεί ότι ο πινακας έχει τις επιθυµητές ιδιοτιµές. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 26

27 Δυνατότητα Σταθεροποίησης : Παράδειγμα Επιλέγουµε λοιπόν και µπορεί να πιστοποιηθεί ότι ο έχει ιδιοτιµές - 2 ± j 2, -3. Επειδή θέλουµε οι διοτιµές των A B K, A ˆ B ˆ K ˆ να ταυτίζονται, βάσει των ˆ ˆ ˆ ˆ ˆ Kˆ = K T 1 A= T A T ( ) 1 1 B= T B A B K = T A B K T ( ) ( ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 27

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήµατα Ελέγχου µε Μικροϋπολογιστές

Συστήµατα Ελέγχου µε Μικροϋπολογιστές ΕΝΕΡΓΕΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Συστήµατα Ελέγχου µε Μικροϋπολογιστές Κων/νος Κυριακόπουλος Καθηγητής ΕΜΠ @ kkyria@central.ntua.gr! http://users.ntua.gr/kkyria ΑΕΡΟΔΙΑΣΤΗΜΙΚΗ ΡΟΜΠΟΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ Δομή

Διαβάστε περισσότερα

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας» Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη

Διαβάστε περισσότερα

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t

Διαβάστε περισσότερα

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη

Διαβάστε περισσότερα

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης

Διαβάστε περισσότερα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u u u u Ευστάθεια Ευστάθεια κατά Lyapunov Ασυµπτωτική Ευστάθεια Κριτήρια Ευστάθειας Ελεγξιµότητα Παρατηρησιµότητα Επίδραση της Δειγµατοληψίας στην Ελεγξιµότητα

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u Συστήµατα από Δειγµατοληπτικά Δεδοµένα (Επανάληψη Ασκήσεις) u Στο πεδίο Συχνότητας (Συναρτήσεις Μεταφορά) u Στο πεδίο Χρόνου (Εξισώσεις Κατάστασης)

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών 6 Nicolas Tsapatsoulis ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 5 η : ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση

Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση Κεφάλαιο 4 Σχεδίαση Συστηµάτων Ελέγχου µε Μικροϋπολογιστές - Συνεχής Σχεδίαση Επανάληψη στα Συστήµατα από Δειγµατοληπτικά Δεδοµένα στα Πεδία Συχνότητας και Χρόνου Ψηφιακός Έλεγχος µε Συνεχή Σχεδιασµό Χαρακτηριστικά

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ανατροφοδότησης Στοιχεία ιεργασίας και Όργανα Μέτρησης ιατάξεις ιαγραµµάτων Βαθµίδας Μέτρα Απόδοσης Ρύθµισης Επιλογή Μεταβλητών Ρύθµισης 1 Ο βρόχος ανατροφοδότησης!

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

(είσοδος) (έξοδος) καθώς το τείνει στο.

(είσοδος) (έξοδος) καθώς το τείνει στο. Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ 0: ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΥΠΟΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Δρ Γιώργος

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 4 Αναλυτική σύνθεση συστηµάτων αυτοµάτου ελέγχου Με συνθήκη µόνιµου σφάλµατος Με συνθήκη επιθυµητών πόλων Με επιθυµητό πρότυπο Καλλιγερόπουλος 4 1 Αναλυτική Σύνθεση συστηµάτων

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο

Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Χρονική απόκριση συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab

Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ : ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών

Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 9: Ενότητες 9.-9.4

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: 1 2. ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως

Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως Έστω σύστηµα µε συνάρτηση µεταφοράς = (1) όπου ω 0 >0. (Το ω 0 συχνά λέγεται κυκλική (φυσική) ιδιοσυχνότητα του συστήµατος) Ισχύει = = + +. 1)

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΚΕΦΑΛΑΙΟ 5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Εισαγωγή Η παρουσία εξωτερικών διεγέρσεων σε ένα σύστηµα πολλών Β.Ε. δηµιουργεί σ'

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

Εφαρµογή στην αξιολόγηση επενδύσεων

Εφαρµογή στην αξιολόγηση επενδύσεων Εφαρµογή στην αξιολόγηση επενδύσεων Τα απλούστερα κριτήρια PV IRR Επένδυση: είναι µια χρηµατοροή σε περιοδικά σηµεία του χρόνου t,,,,ν, που εµφανίζονται ποσά Χ,Χ,,Χ Ν, που είναι µη αρνητικά Χ,,, Ν, κατά

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18. Ασυμπτωτική ευστάθεια και σταθεροποιησιμότητα γραμμικών συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON

ΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON ΚΕΦΑΛΑΙΟ 4 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSELTHOMSON 4. ΚΑΘΥΣΤΕΡΗΣΗ ΦΑΣΗΣ ΚΑΙ ΚΑΘΥΣΤΕΡΗΣΗ ΣΗΜΑΤΟΣ Η χρονική καθυστέρηση συµβαίνει κατά την µετάδοση σε διάφορα φυσικά µέσα και αποτελεί ένα βασικό στοιχείο στην επεξεργασία

Διαβάστε περισσότερα

Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα

Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά

Διαβάστε περισσότερα

Μάθημα: Ρομποτικός Έλεγχος

Μάθημα: Ρομποτικός Έλεγχος Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας

Διαβάστε περισσότερα

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ.

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. Όλγα Ζωίδη, Ζωή Δουλγέρη Εργαστήριο Αυτοματοποίησης και Ρομποτικής Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop

Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο ΕΞΑΜΗΝΟ: 5 ο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος Αριθμός Μητρώου Ονοματεπώνυμο

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - opyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός δικαιώµατος.

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ Συµπλήρωµα στα παραδείγµατα που υπάρχουν στο Εγχειρίδιο του Μαθήµατος ρ. Α. Μαγουλάς

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 10 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 10 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα