HMY 333 -Φωτονική Διάλεξη 09 Πόλωση
|
|
- Ἰοκάστη Κουβέλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HMY 333 -Φτονική Διάλεξη 9 Πόλση Έχουμε δει ότι όταν το ς διαδίδεται στο κενό εξετάζουμε για ευκολία μόνο το ηλεκτρικό εδίο το οοίο ταλαντώνεται κάθετα στον άξονα διάδοσης. k b Michal W. Davidso Morimr bramowi Olmpus mrica Ic. ad Th Florida Sa Uivrsi. To mak lif asir w ol cosidr h lcric fild. Th magic fild will alwas b hr if w d i! k Μορούμε να ροβάλουμε την ταλάντση του ηλεκτρικού εδίου άν σε ένα είεδο κάθετο στην κατεύθυνση διάδοσης. Σε μια ερίοδο η ροβολή του διανύσματος του ηλεκτρικού εδίου θα διαγράψει μια γραμμή στο είεδο αυτό. Λέμε ότι αυτή η λύση της κυματικής εξίσσης είναι γραμμικά ολμένη. Η όλση είναι μια ιδιότητα τν εγκάρσιν κυμάτν ου εριγράει τον ροσανατολισμό τν ταλαντώσεν σε ένα είεδο κάθετο με την κατεύθυνση της διάδοσης k 3 k Γραμμική όλση Αυθαίρετη κατεύθυνση της διάδοσης Γενικά ένα είεδο κύμα μορεί να έχει κυματοδιάνυσμα τυχαίου ροσανατολισμού. Τότε το διάνυσμα του ηλεκτρικού εδίου έχει τρεις συνιστώσες: Ειλέγοντας τον άξονα- ς άξονα διάδοσης μορούμε να εξετάσουμε μόνο τις συνιστώσες και ός αίνεται στην εόμενη διαάνεια. wav vcor k plaar wavfro k r cosa 4 lcric fild vcor
2 5 6 Έστ ένα εγκάρσιο κύμα τη χρονική στιγμή στο σημείο : Ορολογία Κατεύθυνση διάδοσης r r Γενικότερα το οδεύον κύμα είναι της μορής cos k r Οι μιγαδικές συνιστώσες γράονται: k k Το μιγαδικό οδεύον κύμα είναι: k k k o o o o r R Μιγαδικό διάνυσμα με συνιστώσες και 7 8 Έστένα είεδο κύμα: k Pla paralll o wavfros drás Silági 3D-viw Procio oo - pla Σε αυτό το αράδειγμα το ηλεκτρικό εδίο ταλαντεύεται στον άξονα μόνο και μορούμε να το εριγράψουμε ς: R k Η όλση είναι χαρακτηριστικό ου εριγράει ώς η θέση της άκρης του διανύσματος μεταβάλλεται με το χρόνο. -συνιστώσα του ηλεκτρικού εδίου
3 9 Είναι είσης δυνατό το ηλεκτρικό εδίο να ταλαντεύεται στον άξονα. Τότε: Γραμμική όλση Ίσες συνιστώσες και -συνιστώσα του ηλεκτρικού εδίου R k 3 drás Silági Hch Σε αυτό το αράδειγμα το είεδο ταλάντσης είναι διαγώνιο στους άξονες και. Η συνιστώσες και έχουν το ίδιο λάτος και την ίδια άση: R R k k 4a 4b Μορούμε να δούμε την ερίτση αυτή ς την εαλληλία δύο γραμμικάολμένν είεδν κυμάτν ου έχουν ίδιο λάτος ίδια άση και είναι κάθετα μεταξύ τους: Γραμμική όλση: Αυθαίρετη γνία R cos R si k α k α 5a 5b drás Silági Η συνιστώσα είναι ακόμα σε άση με την συνιστώσα αλλά έχει διαορετικό μέτρο. -fild variaio ovr im ad spac α
4 3 Μαθηματικά μοντέλα όλσης: Διανύσματα os και ίνακες os { } { } R R k k Γενικά οι συνιστώσες και του ηλεκτρικού εδίου γράονται ς: { } { } R R k k 6a 6b compl ral Το λήρες μιγαδικό εδίο είναι: k 4 Καθορίζουμε την κατάσταση όλσης ενός ηλεκτρικού εδίου ς ένα διδιάστατο διάνυσμα ου εριλαμβάνει τα δύο μιγαδικά λάτη και ορίζεται ς διάνυσμα os. 7 δ 8 δ k k R r k o o os vcor 5 9 Εάν υάρχει διαορά άσης μεταξύ τν συνιστσών και το διάνυσμα θα είναι μιγαδικό. Είσης για γραμμική όλση δ το διάνυσμα είναι άντα ραγματικό. Το κανονικοοιημένοormalisd διάνυσμα os δ Συνήθς εξετάζουμε μόνο τις σχετικές τιμές τν συνιστσών και έτσι θέτουμε τη άση της συνιστώσας ίση με μηδέν. Χρησιμοοιώντας είσης τον αράγοντα κανονικοοίησης το διάνυσμα os αλοοιείται ς εξής: 6 Οριζόντια όλση Κάθετη όλση Διανύσματα os για εριτώσεις γραμμικής όλσης δ δ
5 7 8 Διανύσματα os για εριτώσεις γραμμικής όλσης δ Διανύσματα os για γραμμική όλση: Γενική ερίτση Είεδοόλσης45 δ α cosα siα Είεδοόλσης-45 δ cosα siα 9 Μέχρι τώρα οι συνιστώσες και ήταν σε άση. Είναι δυνατό να υάρξει μια διαορά άσης μεταξύ τους. Ή γενικότερα: R R R Δεξιά κυκλική όλσηrigh Circular Polariaio k { } { k } R k { } { k } και δ δ Molcular prssios Το διάνυσμα του ηλεκτρικού εδίου εριστρέεται δεξιόστροα κοιτάζοντας ρος την ηγή.
6 Δεξιά κυκλική όλση Ή γενικότερα: R R R R Αριστερή κυκλική όλση Lf Circular Polariaio δ k { } { k } R k { } k δ { } { k } δ δ Το διάνυσμα του ηλεκτρικού εδίου εριστρέεται αριστερόστροα κοιτάζοντας ρος την ηγή. 3 4 Αριστερή κυκλική όλση Όταν υάρχει τόσο διαορά άσης μεταξύ τν συνιστσών και όσο και διαορά στο λάτος τότε έχουμε ελλειτική όλση: δ δ HprPhsics
7 5 6 Ελλειτική όλσηεllipical Polariaio Διανύσματα os για την ελλειτική όλση cos k cos kδ -fild variaio ovr im Αριστερή όλση όου Ή γενικότερα:. δ R R { } k { } k Το ηλεκτρικό εδίο μορεί να εριστρέεται είτε δεξιόστροα είτε αριστερόστροα < B B B > B 7 8 Διανύσματα os για την ελλειτική όλση Διανύσματα os για την ελλειτική όλση Δεξιά όλση Αριστερή όλση B C B C < B B B > B Δεξιά όλση B C B C
8 Κοιτάζοντας ρος την ηγή: ε a b Πόλση- γενική ερίτση α B C a α cosδ o o o o B C ε a C B ε είναι η ελλειτικότητα 9 B C Πόλση - ίνακες os για οτικά στοιχεία Όταν ένα είεδο κύμα ερνά μέσ ενός οτικού στοιχείου η κατάσταση της όλσης του μορεί να τροοοιηθεί. Opical lm Sa Sa INPUT OUTPUT Εάν υοθέσουμε ότι το οτικό στοιχείο είναι γραμμικό τότε η αλλαγή στην κατάστασης της όλσης μορεί να ανααρασταθεί αό έναν ίνακα M : m m M m m m m m m m m m m Πίνακες os: Γραμμικός ολτής Πίνακες os: Κατακόρυος γραμμικός ολτής Ααιρεί όλες ή τις ερισσότερες αό τις ταλαντώσεις του ηλεκτρικού εδίου σε κάοιες διευθύνσεις ειτρέοντας την διάδοση μόνο σε κάοια συγκεκριμένη κατεύθυνση. Παράδειγμα: γραμμικός ολτής Αξονας μετάδοσης Trasmissio ais M Γραμμικός ολτής με κάθετα ολμένη έξοδο Wikipdia
9 33 34 Πίνακες os: Οριζόντιος γραμμικός ολτής Πίνακες os: Γραμμικός ολτής:45 και -45 M Γραμμικός ολτής με οριζόντια ολμένη έξοδο Είσοδος Έξοδος 45 M Αξονας μετάδοσης Trasmissio ais Είσοδος Έξοδος -45 M M Περιστροή τν ινάκν os Opical lm Sa Sa Η εριστροή ενός διανύσματος κατά θσημαίνει ολλαλασιασμό με ένα ίνακα εριστροής: cosθ R θ siθ siθ cosθ INPUT OUTPUT Εάν το οτικό στοιχείο εριστραεί κατά γνία θ σε σχέση με τον άξονα τι θα συμβεί; Opical lm Sa Sa INPUT OUTPUT '? ' Έτσι τα διανύσματα os εισόδου και εξόδου είναι: ' R RM RMR M'' RMR M' R R RMR ' R R R R & ' I
10 37 38 Είσοδος Πίνακες os: Γραμμικός ολτής - αυθαίρετη γνία θ Έξοδος θ Στοιχεία με δείκτη διάθλασης ου εξαρτάται αό την όλση lms wih polariaio-dpd rfraciv id N N κ κ Ισοδυναμεί με την εριστροή οριζόντιου ολτή κατά θ : cosθ M siθ siθ cosθ cosθ siθ siθ cosθ d N N Rardaio pla: Polarir pla: & κ κ & κ κ M cos θ si θ cosθ si θ cosθ si θ p[ kd]p[ kκ d] M p[ k d]p[ k d] κ 39 4 Η καθυστέρηση άσης εμανίζεται στα διλοθλαστικά υλικά Phas rardaio occurs i birfrig marials N N N N S Slow ais > F Fas ais compo coms ou firs Ειβραδυντής άσης Phas rardr Wav pla M Δημιουργεί μια διαορά άσης μεταξύ τν συνιστσών και p ρ ρ k d p d ρ k ρ d o o Ordiar rfraciv id raordiar rfraciv id Dfis opical ais of birfrig marial M ρ ρ p ρ p ρ
11 4 4 Εξετάστε την ειδική ερίτση στην οοία το διάνυσμα εισόδου είναι: 45 Polariaio Wav pla Opic ais Μορούμε να εξετάσουμε το κανονικοοιημένο διάνυσμα os στην έξοδο. Θυμηθείτε ενδιαερόμαστε μόνο για τις σχετικές άσεις και τα σχετικά λάτη. p ρ ρ ρ ρ ρ ρ ρ p kd p kd o Για είσοδο γραμμικά ολμένη 45 η έξοδος της λάκας κύματος θα είναι: Quarr wav pla p d λ 3 kd o Half wav pla o p d λ p o d λ o Polariaio sa 45 liar Lf circular -45 liar Righ circular 43 Έτσι εάν η είσοδος είναι γραμμικά ολμένη κατά 45 η τοοθέτηση μίας quarr-wav λάκας δημιουργεί κυκλική όλση: Είσοδος: Μηολμένο ς 45 Polarir QWP 45 polarid ligh Κυκλικά ολμένο ς Μια λάκα ημικυμάτος θα εριστρέψει τη γραμμική όλση κατα 9.
ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ. ii) Στις τρεις διαστάσεις, η ισχύς κατανέµεται σε σφαιρικές επιφάνειες, οπότε θα ισχύει: απ όπου προκύπτει για την ένταση Ι: 1
η Ερώτηση ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ Όταν ρίξουµε µια έτρα στην ειφάνεια µιας ήρεµης λίµνης, τότε στο σηµείο της ειφάνειας ου έεσε η έτρα ροκαλείται µια διατάραξη της ειφανειακής µάζας του νερού στην ειφάνεια
Η ΜΕΘΟΔΟΣ ΤΗΣ ΦΩΤΟΕΛΑΣΤΙΚΟΤΗΤΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ: 01 013 Η ΜΕΘΟΔΟΣ ΤΗΣ ΦΩΤΟΕΛΑΣΤΙΚΟΤΗΤΑΣ 1. Εισαγγή Η φτοελαστικότητα ς ειραματική μέοδος μέτρησης του
Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον.
Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Σε δύο σημεία Ο 1 και Ο, τα οοία αέχουν αόσταση (Ο 1 Ο )=d=4m, ενός άειρου γραμμικού ελαστικού μέσου, υάρχουν δυο ηγές κύματος, οι οοίες αρχίζουν να ταλαντώνονται
Physics by Chris Simopoulos
ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της
Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.
Τα IIR φίλτρα είναι εαναλητικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοοιούνται αό το σύστηµα για τον υολογισµό τν νέν τιµών της εξόδου σε εόµενες χρονικές στιγµές. Για να ειτύχουµε
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ 010-11 ΘΕΜΑ 1 ο : 1) Κατά τη διάδοση ενός κύματος σ ένα ελαστικό μέσον i) μεταφέρεται ύλη. ii) μεταφέρεται ενέργεια και ύλη. iii) όλα τα σημεία του ελαστικού μέσου έχουν την ίδια
ΚΕΦΑΛΑΙΟ 8 Μιγαδικοί αριθµοί
09 ΚΕΦΑΛΑΙΟ 8 Μιγαδικοί αριθµοί 8. Εισαγγικά Αναφέρουµε αρχικά ότι οι µιγαδικοί αριθµοί χρησιµοοιούνται ευρύτατα στην ειστήµη της Ηλεκτρολογίας. Παρακάτ δίδονται οι βασικές γνώσεις της µιγαδικης άλγεβρας
HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση;
HMY 333 Φτονική Διάλεξη 6 Εισαγγή στις ταλαντώσεις και κύματα Απλοί αρμονικοί ταλανττές Μάζα-ελατήριο Mss-spring H. Chrisin, K.U.Ln(Wikipdi Εκκρεμές Pndlm U. o Monn LC κύκλμα hp://www.grnndwhi.n/~chb/lc_oscillor.hm
Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ
ΔΙΑΩΝΙΣΜΑ: Μ Α Θ Η Μ Α : ΤΑΞΗΣ ΛΥΚΕΙΟΥ Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :...... Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 0 2 / 0 2 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Α Θ ΕΜ Α Σ Ω Ν : ΥΑΡΜΑΚΗ
Οι πολωτές είναι οπτικά στοιχεία τα οποία διαμορφώνουν την κατάσταση πόλωσης του διερχόμενου φωτός.
Μαθηματική Περιγραφή Πολωτών: Πίνακες Jones Οι πολωτές είναι οπτικά στοιχεία τα οποία διαμορφώνουν την κατάσταση πόλωσης του διερχόμενου φωτός. Σύμφωνα με το αποτέλεσμα που επιτυγχάνουν, οι πολωτές κατατάσσονται
ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση
8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με
είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2
ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε
ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2
ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...
( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε
6 th Intenationa Physics Oypiad. Saaanca (España) 5 ΘΕΜΑ : «ΜΟΙΡΑΙΟΣ» ΔΟΡΥΦΟΡΟΣ. και. GM g R M G g R 4 R g / 4.. /s. g R g R E M g R G E. Η τιμή της κάθετης αόστασης αό το δορυφόρο στο μεγάλο άξονα της
Μια εναλλακτική θεμελίωση των κυμάτων
Μια εναλλακτική θεμελίωση των κυμάτων Τα κύµατα δεν είναι η συνέχεια των ταλαντώσεων, όως για διδακτικούς λόγους κάνουµε 1. Η διάδοση ενός αλµού. Έστω ότι έχουµε ένα ελαστικό µέσο,.χ. µια τεντωµένη οριζόντια
1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.
ΚΕΦΑΛΑΙΟ 9 «Ταλαντώσεις»
ΚΕΦΑΛΑΙΟ 9 «Ταλαντώσεις» Μαρία Κατσικίνη aii@auh.gr uer.auh.gr/~aii Οι έντε αισθήσεις Αντίληψη του εριβάλλοντος Όραση Ακοή Γεύση Αφή Όσφρηση φς ήχος κύματα ηλεκτρομαγνητικά μηχανικά Ταλαντώσεις - κυμάνσεις
Ασκήσεις σε τρέχοντα µηχανικά κύµατα
Ασκήσεις σε τρέχοντα µηχανικά κύµατα 1. Η ηγή διαταραχής Π αρχίζει τη χρονική στιγµή µηδέν να εκτελεί α.α.τ. λάτους Α=1 cm και συχνότητας f=, Hz. Το κύµα ου δηµιουργεί διαδίδεται κατά µήκος γραµµικού οµογενούς
F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &
Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό
ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ)
ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ Θέµα. Ένας αρµονικός ταλανττής µε ασθενή απόσβεση, (µάζα=, σταθερά ελατηρίου= s, συντελεστής τριβής= r διεγείρεται
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης
ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ 5-6 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, ΦΕΒΡΟΥΑΡΙΟΥ 6 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013. Ηµεροµηνία: Κυριακή 21 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 1 Αριλίου 013 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις αό Α1-Α4 να γράψετε στο τετράδιο
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)
Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20
Περιεχόμενα Πρόλογος... 7 Κεφάλαιο Βασικές έννοιες... Διαφορικές εξισώσεις... Συμβολισμοί... Λύσεις... Προβλήματα αρχικών και συνοριακών τιμών... Κεφάλαιο Ταξινόμηση τν διαφορικών εξισώσεν ρώτης τάξης...
γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ύλη: Ονοματεώνυμο: Καθηγητές: Εαναλητικό σε όλη την ύλη. Ατρείδης Γιώργος - Κόζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις να γράψετε
Φίλε μαθητή, Το βιβλίο αυτό, ου κρατάς στα χέρια σου ροέκυψε τελικά μέσα αό την εμειρία και διδακτική διαδικασία ολλών χρόνων στον Εκαιδευτικό Όμιλο Άλφα. Είναι το αοτέλεσμα συγγραφής ολλών καθηγητών μας
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ Το σηµείο Ο γραµµικού ελαστικού µέσου το οοίο ταυτίζεται µε τον άξονα χ Οχ, εκτελεί ταυτόχρονα δύο Α.Α.Τ ου γίνονται στην ίδια διεύθυνση, κάθετα στον άξονα χ
HMY 333 -Φωτονική Διάλεξη 11 Οπτικοί συντονιστές
Μια σημαντική εφαρμογή των οτικών κοιλοτήτων είναι τα λέιζερ. HMY 333 -Φωτονική Διάλεξη Οτικοί συντονιστές Αλό μοντέλο ενός λέιζερ: Θεωρούμε ένα μέσο (.χ. με τρία ενεργειακά είεδα στο οοίο έχει δημιουργηεί
π 5 = 6 δηλ. μας δίνει την αρχή του κύματος (το σημείο Ο), το μέσο που διαδίδεται ( η έκφραση οµογενές
Στην άσκηση για µηχανικό κύµα ο ακοοθεί, γίνεται ανατική εεξεργασία 7 ερωτηµάτων ΑΣΚΗΣΗ Αρµονικό κύµα διαδίδεται κατά µήκος γραµµικού οµογενούς εαστικού µέσο κατά τη διεύθνση το θετικού ηµιάξονα Ox. Η
Μερικές Διαφορικές Εξισώσεις
Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας
Πανελλήνιες Εξετάσεις 2012 Φυσικής Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου. Μελέτη Σχόλια για το Θέμα Γ.4
Πανελλήνιες Εξετάσεις 01 Φυσικής Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου. Μελέτη Σχόλια για το Θέμα Γ.4 ΤΟ ΘΕΜΑ: Ομογενής και ισοαχής δοκός ΟΑ μάζας Μ = 6Kg και μήκους l=0,m μορεί να στρέφεται χωρίς
Εφαρμογή πρώτη: Στάσιμο κύμα
Εφαρμογή ρώτη: Στάσιμο κύμα Κατά μήκος μιας εαστικής χορδής x x διαδίδονται δύο όμοια κύματα με αντίθετες κατευθύνσεις. Αν η εξίσωση του ενός κύματος είναι y =0.2 ημ(0t 0x) (S.I.), τότε: Α. Να γραφεί η
ΜΔΕ Άσκηση 6 Α. Τόγκας
Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x
Θεωρία De Broglie [1923]
Θερία De Brogle [93] Αξίμα De Brogle : Αφού τα φτόνια είναι και κύματα και σματίδια γιατί να μην συμεριφέρονται και τα σματίδια ς κύματα?? ΤΑ ΦΩΤΟΝΙΑενέργιας Ε.ν ενέχουν ορμή : v c c c cλ λ Ομοίς και σματίδια
ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο
ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ
1 Δίνεται το ευθύγραμμο τμήμα ΑΒ Αν ισχύει η ισότητα AB + BK- ΒΛ = AM- AK, να αοδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ Αν είναι ΒΔ = κ ΑΒ+ ΑΓ και ΓΕ ( 1+ κ ) = AB+ ΑΓ, να
Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων
8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε
ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ
ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.
Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα.
Ταλάντωση μετά αό κόψιμο του νήματος. Σώματα δεμένα με νήμα σε κατακόρυο ελατήριο. Τα σώματα του σχήματος έχουν μάζες = g και Μ = g και συνδέονται με νήμα. Το σώμα μάζας αέχει αό το δάεδο αόσταση H = 7
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας αό τις αρακάτω ερωτήσεις 1-4 και δίλα το γράμμα ου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 4 Φεβρουαρίου 005 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1 ο (.5) Αναλύστε
ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ. Μάθημα: ΦΥΣΙΚΗ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6
σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.
ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο
Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "
Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α
Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ. Σώμα μάζας m = kg, είναι δεμένο στο άκρο οριζόντιου ελατηρίου με το άλλο άκρο του σε ακλόνητο τοίχο) και αό την άλλη άκρη είναι δεμένο με νήμα τεταμένο με
ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ
ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό
26. Στη διάταξη του σχήµατος της άσκησης 23, ας δεχτούµε ότι το σώµα (Μ) εκτε-
Ασκήσεις Γ.Α.Τ. (). Στη διάταξη του σχήµατος, σώµα µάζας M= Kg, είναι στερεωµένο στο εάνω άκρο ελατηρίου, σταθερής K=0 /m σε κεκλιµένο είεδο γωνίας κλίσης φ=0 ο. Ένα δεύτερο σώµα, µάζας m=1 Kg, ξεκινάει
ΦΥΛΟ ΕΡΓΑΣΙΑΣ -ΤΡΕΧΟΝ ΚΥΜΑ
ΦΥΛΟ ΕΡΓΑΣΙΑΣ -ΤΡΕΧΟΝ ΚΥΜΑ 1. Κατά μήκος ενός ελαστικού μέσου διαδίδεται ένα κύμα. Σε όποιο σημείο φτάνει η διαταραχή, αυτό ταλαντώνεται γύρω από τη θέση.. χωρίς να.. στη διεύθυνση διάδοσης του κύματος.
Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
1 Ονοματεώνυμο.. Υεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τετάρτη -1-011 ΘΕΜΑ 1ο Να γράψετε στο
1. Η εξίσωση της αποµάκρυνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτους x0 και κυκλικής συχνότητας ω δίνεται από τη σχέση x = x0ηµωt
ΑΠΟΛΥΤΗΡΙΣ ΞΤΑΣΙΣ Γ ΤΑΞΗΣ ΝΙΑΙΟΥ ΛΥΚΙΟΥ ΣΑΒΒΑΤΟ 9 ΜΑΙΟΥ ΞΤΑΟΜΝΟ ΜΑΘΗΜΑ ΘΤΙΚΗΣ ΚΑΙ ΤΧΝΟΛΟΓΙΚΗΣ ΚΑΤΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ Θέµα ο. Η εξίσωση της αοµάκρυνσης σε έναν αλό αρµονικό ταλαντωτή, λάτους
ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ
Ταλάντωση με την βοήθεια σταθερής ς.. Σε σώμα μάζας = kg ηρεμεί σε λείο οριζόντιο είεδο δεμένο στο ένα άκρο οριζοντίου ελατηρίου σταθερά k = N/, όως στο σχήμα. Ασκούμε σταθερή μέτρου = N έτσι ώστε το ελατήριο
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε
Α=5 m ω=314 rad/sec=100π rad/sec
ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.
ΚΕΦΑΛΑΙΟ 2 Ο : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 2: ΕΠΑΛΛΗΛΙΑ ΚΥΜΑΤΩΝ ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ Ο : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ : ΕΠΑΛΛΗΛΙΑ ΚΥΜΑΤΩΝ ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ Μελέτη της συμβολής κυμάτων στην επιφάνεια υγρού Τι ονομάζουμε συμβολή κυμάτων; Συμβολή ονομάζουμε την
ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ:
ΙΟΥΛΙΟΣ 07 ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ταλαντώσεις) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.00sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ: ΘΕΜΑ Α Α. Η ερίοδος μιας αλής αρμονικής ταλάντωσης είναι Τ. Στο αρακάτω διάγραμμα
z έχει µετασχ-z : X(z)= 2z 2
ΨΕΣ-Μετασχ- Λύσεις Ασκήσεων Σ.Φωτόουλος ΑΣΚΗΣΗ 4. Βρείτε τον µετασχηµατισµό- των σηµάτων ου φαίνονται στο αρακάτω σχήµα Α4. εκφράζοντάς τους σε όσο το δυνατόν αλούστερη-συµαγέστερη µορφή. a a a -->...
Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ
Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ
Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις
Κεφάλαιο 7 ο Ερωτήεις κρίσεως, για καλύτερη κατανόηση της θεωρίας 1 Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις Αό τις ακόλουθες ερωτήσεις να σηµειώσετε το γράµµα ου αντιστοιχεί στη σωστή αάντηση. 1.
ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ. 2λ 3 Μονάδες 5
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 11 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ)
Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
m e j ω t } ja m sinωt A m cosωt
ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 2009
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 29 ΘΕΜΑ 1 ο Α. Για να ααντήσετε στις αρακάτω τέσσερις ερωτήσεις ολλαλής ειλογής, αρκεί να γράψετε στο φύλλο ααντήσεων τον αριθμό της ερώτησης και δεξιά αό
3.4 Οι τριγωνομετρικές συναρτήσεις
3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και
Physics by Chris Simopoulos
ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Δρ. Χαράλαμος Π. Στρουθόουλος Καθηγητής ΣΕΡΡΕΣ, ΝΟΕΜΒΡΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ.
Περιεχόμενα διάλεξης
7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια
(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
ΑΝΑΠΤΥΓΜA ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ
ΑΝΑΠΤΥΓΜA ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΑΝΑΠΤΥΓΜΑ - ΣΕΙRA FOURIER Τα εριοδικά σήματα διακριτού χρόνου αριστάνονται με εερασμένα αθροίσματα. ( j a εξίσωση σύνθεσης a j ( εξίσωση ανάλυσης ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ
Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικές Ταλαμηώζεις Οι ααμηήζεις Καλοκαίρι - Διδάζκωμ: Καραδημηηρίοσ Μιτάλης http://perifysikhs.wordpress.com Πηγή: Study4exams.gr Οι Ααμτήσεις στις
Διαγώνισμα Φυσικής Γ Λυκείου. Αρμονικό κύμα Συμβολή Στάσιμα
Διαγώνισμα Φυσικής Γ Λυκείου Αρμονικό κύμα Συμβολή Στάσιμα ~~ Διάρκεια 3 ώρες ~~ Θέμα Α 1) Δύο σημεία ενός γραμμικού ομογενούς ελαστικού μέσου, στο οποίο έχει δημιουργηθεί στάσιμο εγκάρσιο κύμα, βρίσκονται
Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα
Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης
Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019
Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι
Συμβολή κυμάτων και σύνθεση ταλαντώσεων.
Συμβολή κυμάτων και σύνθεση ταλαντώσεων. Δύο σύγχρονες πηγές κυμάτων Π και Π αρχίζουν τη χρονική στιγμή t = 0 να εκτελούν στην αρχικά ήρεμη επιφάνεια υγρού αρμονική ταλάντωση της μορφής 0,4 4 t, (SI).
ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ: ΚΥΜΑΤΑ ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Αν γνωρίζουμε την εξίσωση της αομάκρυνσης ενός αρμονικού κύματος μορούμε να βρούμε την εξίσωσης της ταχύτητας
Γιαννακόπουλος Θανάσης <ΟΡΟΣΗΜΟ ΘΑΛΗΣ> ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ( εξετάζοντας έννοιες στα τρέχοντα κύματα)
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( εξετάζοντας έννοιες στα τρέχοντα κύματα) t = 50min 1. Η εξίσωση αρμονικού κύματος που παράγεται από πηγή που βρίσκεται στη θέση Ο(Χ=0) και διαδίδεται σε ελαστική χορδή Οχ κατά τη θετική
Ασκήσεις Ταλαντώσεων. Ταλαντώσεων. Ασκήσεις. πν ω. τροφικ. r r. r r. d I dt. d dt. T dt. r r. D dt CM M. ext
Ασκήσεις Ασκήσεις Ταλαντώσεων Ταλαντώσεων τ τροφικ ν ω ω τ ω ας αδρανε να ακτ r r r r r r r r r r r D D ό ί ί k a Steiner r et C Σ, :,,, :, .4 (AF( AF) Υλικό σηµείο ολισαίνει µρος και ίσω µεταξύ δύο λείων
( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη
HMY - Φωτονική Διάλεξη 8 Οι εξισώσεις του Mawell Βαθμωτά και διανυσματικά μεγέθη Πολλαπλασιασμός Πρόσθεση διανυσμάτων Βαθμωτό: το μέγεθος που για τον προσδιορισμό του χρειάζεται μόνο το μέτρο του και η
( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive)
Παράδειγμα ( ϑσ ) amplg dsrbuo: y ϑ~ N, ϑ ~ όου = ( ϑ = ) με σ γνωστό και διακριτό pror. Να βρεθεί το margal probably desy του y (he pror predcve). Να εριγραφεί το samplg scheme αό την pror predcve. 3.
2.1 Τρέχοντα Κύματα. Ομάδα Ε.
2.1 Τρέχοντα Κύματα. Ομάδα Ε. 2.1.61. Δύο κύματα χωρίς εξισώσεις. Κατά μήκος ενός ελαστικού μέσου διαδίδονται αντίθετα δύο κύματα, του ίδιου πλάτους και τη στιγμή t 0 έχουμε την εικόνα του σχήματος. (
Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)
ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΕΩΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ Α1 Θεωρία ( Σχολικό Βιβλίο, Σελίδα
2.1 Τρέχοντα Κύματα. Ομάδα Δ.
2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά
Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.
Μια φθίνουσα ταλάντωση, στην οοία η μείωση του λάτους δεν είναι εκθετική. Το ένα άκρο οριζόντιου ελατηρίου σταθεράς =100N/, το οοίο έχει το φυσικό του μήκος, είναι ακλόνητα στερεωμένο σε ακλόνητο σημείο.
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x
ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΠΑΙΔΕΥΣΗ ΦΥΣΙΗ ΘΕΤΙΗΣ & ΤΕΧΝ/ΗΣ ΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη ράση η
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται
Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων
1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017
Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ (κωδικός μαθήματος: 37) Ημερομηνία και ώρα εξέτασης: Πέμτη, 3
ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1
ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα
1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται
Με αρχική φάση. 1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται με τον άξονα x Ox προς τη θετική κατεύθυνση του άξονα, εξαναγκάζοντας το υλικό σημείο
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίλα σε κάθε αριθµό το γράµµα ου αντιστοιχεί στη σωστή
Έντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυο Yοβολής Αξιολόγησης ΓΕ O φοιτητής συμληρώνει την ενότητα «Υοβολή Εργασίας» και αοστέλλει το έντυο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος συμληρώνει
4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
Ι ΤΡΙΓΩΝΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού το Α ονομάζεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος ώστε: για κάθε A να ισχύει T A και T A, ισχύει f
HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί
4 Hsiu. Ha Ανάκλαση και μετάδοση του φωτός σε μια διηλεκτρική επαφή HMY 333 Φωτονική Διάλεξη Οπτικοί κυματοδηγοί i i i r i si c si v c hp://www.e.readig.ac.u/clouds/awell/ c 3 Γωνία πρόσπτωσης < κρίσιμη