Α=5 m ω=314 rad/sec=100π rad/sec
|
|
- Ευστοργιος Αλεξάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης. Πρέει να γνωρίζουμε τους ορισμούς αυτών των χαρακτηριστικών. Περίοδος είναι ο χρόνος για μια λήρη ταλάντωση. Συχνότητα είναι ο αριθμός των ταλαντώσεων στη μονάδα του χρόνου δηλ. σε 1 sec. Πλάτος είναι η μεγαλύτερη αομάκρυνση αό τη θέση ισορροίας. Ενέργεια της ταλάντωσης είναι η ααιτούμενη ενέργεια για να τεθεί σε ταλάντωση ένα σώμα. Παράδειγμα: Ένα σημειακό αντικείμενο εκτελεί αλή αρμονική ταλάντωση με ερίοδο Τ=4sec και λάτος Α=.1m. Ποια ή οιες αό τις αρακάτω ροτάσεις είναι σωστές; α. Η αόσταση ανάμεσα στις ακραίες θέσεις της ταλάντωσης είναι.m. (Διλάσια του λάτους) β. Ο χρόνος ανάμεσα σε δύο διαδοχικούς μηδενισμούς της ταχύτητας είναι 4sec. ( Το μισό της εριόδου) γ. Το σημειακό αντικείμενο εκτελεί δύο ταλαντώσεις κάθε 8sec. (Συχνότητα) δ. Στη διάρκεια μιας εριόδου το αντικείμενο έχει διανύσει διάστημα.4m. (Τετραλάσιο του λάτους). Πληροφορίες αό τις εξισώσεις κίνησης. Θα μας δίνεται μία αό τις εξισώσεις κίνησης και εμείς θα βρίσκουμε διάφορα χαρακτηριστικά της κίνησης και θα κατασκευάζουμε γραφικές αραστάσεις.δίνεται η εξίσωση της μεταβολής με το χρόνο ενός μεγέθους της ταλάντωσης (χ. της αομάκρυνσης).συγκρίνουμε την εξίσωση ου μας δίνουν με τη γενική μορφή της αντίστοιχης εξίσωσης ου ξέρουμε αό τη θεωρία. Έστω ότι γνωρίζουμε την εξίσωση της αομάκρυνσης με το χρόνο: x= 5 ημ 314 t+ Θα την συγκρίνουμε με την γενική μορφή: Αοτέλεσμα της σύγκρισης είναι: ( φ) (SI) x= A ημ ω t+ (SI) Α=5 m ω=314 rad/sec=1 rad/sec
2 φ =/ rad Τώρα μορούμε άνετα να ροσδιορίσουμε και άλλα χαρακτηριστικά της κίνησης όως: m umax = ω A= 5 sec 4 m αmax = ω A = 51 sec και να γράψουμε τις αντίστοιχες εξισώσεις τους: u = 5 συν 314 t+ 4 α = 51 ημ 314 t + (SI) Προσοχή: Μορεί να μας δίνουν με έμμεσο τρόο κάοια χαρακτηριστικά της κίνησης. Η αόσταση ανάμεσα στις ακραίες θέσεις : Είναι διλάσια του λάτους. Η ταχύτητα όταν διέρχεται αό τη θέση ισορροίας: Είναι η μέγιστη κατά μέτρο. Η ειτάχυνση στο άκρο της κίνησης: Είναι η μέγιστη. Η δύναμη για να φέρουμε το σώμα στην ακραία θέση και μετά να το αφήσουμε ελεύθερο: Είναι η μέγιστη. Όταν η ταχύτητα είναι μηδέν το σώμα είναι στην ακραία θέση. Όταν μας δίνουν τις σχέσεις : F = D x, α = ω x ρέει να αντιστοιχούμε τα διάφορα μεγέθη με το ρόσημό τους(χ εάν χ=-.m και D=1N/m τότε F=+ N). 3. Πληροφορίες αό τις γραφικές αραστάσεις. Θα μας δίνεται μία γραφική αράσταση και εμείς θα βρίσκουμε διάφορα χαρακτηριστικά της κίνησης και θα κατασκευάζουμε άλλες γραφικές αραστάσεις και εξισώσεις.στο διλανό σχήμα έχουμε τη μεταβολή της αομάκρυνσης με το χρόνο.παρατηρούμε ότι: Α=.4m T = sec f =.5Hz ω=rad / sec u α MAX ΜΑΧ =ω A =.4 m / sec =ω Α=.4 m / sec t = x =,u< ϕ =rad Τώρα μορούμε να γράψουμε όλες τις εξισώσεις με το χρόνο. o
3 4. Προσδιορισμός της αρχικής φάσης. x =.4ημ t+ u =.4συν t + α =.4ημ t + Η αρχική φάση ροσδιορίζεται αό τις αρχικές (για t=)συνθήκες της αομάκρυνσης και της ταχύτητας ενός κινητού ου εκτελεί α.α.τ. Οι συνθήκες αυτές θα δίνονται στην εκφώνηση της άσκησης.πότε δεν θα έχουμε αρχική φάση; Όταν για t=, το κινητό ερνά αό τη θέση ισορροίας (x=o) με θετική ταχύτητα(u>).πότε θα έχουμε αρχική φάση; Σε όλες τις άλλες εριτώσεις. Η τιμή της αρχικής φάσης βρίσκεται λύνοντας μια τριγωνομετρική εξίσωση. Ας δούμε μερικά αραδείγματα. [Α] Γιαt= x =, u>. Αό τη γενική εξίσωση της αομάκρυνσης έχουμε: ( φ ) x A t ημφ = ημφ = ημ φ = κ, φ = κ + 1) } t= x= = ημ ω + A = A ημφ { ( όμως φ <. Άρα φ =,.Ποια αό της δύο θα είναι αοδεκτή θα μας το εί η ταχύτητα. Πράγματι για t= έχουμε: t= u = ωα συν ( ω t+ φ) u = ωα συνφ Εάν θέσουμε φ = αίρνουμε u> ενώ με φ = αίρνουμε u<.δεκτή είναι ροφανώς η φ =.Η εξίσωση τελικά γίνεται : χ=α ημωt [Β] Για t = x= A. Όμοια, αό τη γενική εξίσωση της αομάκρυνσης έχουμε: t= x= A x= A ημ ( ω t+ φ) A= A ημφ ημφ = 1 φ = Άρα η εξίσωση γίνεται : x = A ημ ω t+ = A συν ( ω t ) 5. Προσδιορισμός του χρόνου. Όταν μας ζητούν να ροσδιορίσουμε σε οια χρονική στιγμή το κινητό διέρχεται αό μια ορισμένη θέση. Αφού έχουμε βρεί την αρχική φάση, αντικαθιστούμε την τιμή της θέσης στην εξίσωση της αομάκρυνσης με το χρόνο και λύνουμε την τριγωνομετρική εξίσωση ου ροκύτει. Ας δούμε ένα αράδειγμα. [Α].Για ένα κινητό ου εκτελεί α.α.τ, η εξίσωση της αομάκρυνσης με το χρόνο δίνεται αό τη σχέση:
4 x = A ημ t Να βρείτε τη χρονική στιγμή στην οοία το κινητό ερνά αό τη θέση χ=α / με κατεύθυνση ρος τη θέση ισορροίας για ρώτη φορά. Πρώτος τρόος λύσης: Στην εξίσωση της αομάκρυνσης θέτουμε χ = Α / και υολογίζουμε το χρόνο. A 1 = A ημ t = ημ t ημ = ημ t 6 ή t = k + t = k + Εειδή για ρώτη φορά θα εράσει αό αυτή τη θέση ρέει να βρούμε το μικρότερο χρόνο. Γι αυτό διαλέγουμε κ =. Μετά αό ράξεις στις δύο αραάνω εξισώσεις αίρνουμε: t 1 = 1sec και t = 5sec. Πάλι όμως ρέει να ειλέξουμε μεταξύ των δύο. Εειδή μας ζητά η ταχύτητα να βλέει ρος τη θέση ισορροίας θα έχουμε u<.πηγαίνουμε στην εξίσωση της ταχύτητας και θέτουμε όου t τις αντίστοιχες τιμές 1sec και 5sec.Τότε θα έχουμε: u( t = 1sec) = umax συν 1 > u( t = 5sec) = umax συν 5 < Προφανώς δεκτή είναι η τιμή t=5sec. Δεύτερος τρόος λύσης: Όως φαίνεται και αό το διλανό σχήμα, όταν ένα σώμα εκτελεί ομαλή κυκλική κίνηση η ροβολή του εκτελεί γραμμική αρμονική ταλάντωση. Αό τη θέση χ = Α/ η ροβολή ερνά δύο φορές : διαδρομή Ο Ρ σε χρόνο t 1 διαδρομή Ο Ρ Π Ρ σε χρόνο t. Την ίδια ώρα στην κυκλική κίνηση το κινητό ηγαίνει αό : διαδρομή Κ Λ σε χρόνο t 1 διαδρομή Κ Λ Π Μ σε χρόνο t. Εειδή ΟΡ=Α/ η γωνία ΟΛΡ=3. Άρα η είκεντρη γωνία ΚΟΜ= =15. Με τη βοήθεια της σχέσης: 5 Δ φ = ω Δt = Δt Δ t = 6. Συνθήκη για αλή αρμονική ταλάντωση. 5sec Σ αυτή τη κατηγορία ασκήσεων μας ζητούν να αοδείξουμε ότι ένα σώμα εκτελεί Α.Α.Τ. Αυτό θα συμβαίνει εάν αοδείξουμε ότι η συνιστάμενη δύναμη είναι ανάλογη της αομάκρυνσης και αντίθετη αό αυτήν. Σ F = D x Για την αόδειξη ακολουθούμε τα αρακάτω βήματα :
5 1. Τοοθετούμε τις δυνάμεις άνω στο σώμα στη θέση ισορροίας.. Εφαρμόζουμε τη συνθήκη ισορροίας ΣF= στον άξονα της κίνησης και σημειώνουμε τη σχέση ου ροκύτει. 3. Σε μία τυχαία θέση, αφού τοοθετήσουμε τις δυνάμεις στον άξονα της κίνησης, υολογίζουμε τη συνιστάμενη δύναμη μέχρι να καταλήξουμε στη μορφή: Σ F = D x m 4. Αντικαθιστούμε τη σταθερά D στη σχέση: T = και υολογίζουμε D τη ερίοδο της ταλάντωσης. 7. Εφαρμογή της αρχής διατήρησης της ενέργειας. Ένα βασικό εργαλείο για τη λύση των ασκήσεων είναι και η αρχή διατήρησης της μηχανικής ενέργειας στην αλή αρμονική ταλάντωση. Συνήθως εφαρμόζεται όταν η άσκηση μας δίνει ζευγάρια (x,u) ή (q,i) ενώ αουσιάζει ο χρόνος. Προσοχή!!! Στην ακραία θέση τα ζευγάρια είναι (x=a,u=) (q=q max,i=) ενώ στη θέση ισορροίας (x=,u=u max ) (q=,i=i max ). Τότε ανάμεσα στα ζευγάρια γράφουμε: 1 1 Ε ολ = Ε = = u ή στις ηλεκτρικές ταλαντώσεις ( x, u ) ( x, u ) D A m 1 1 ολ m ax 1 1 Q max Ε ολ ( q1, i1) = Ε ολ ( q, i ) = L I m ax = C Διαλέγουμε την ισότητα ου εριέχει τον άγνωστό μας και λύνουμε. 8. Κρούση και ταλάντωση. Διακρίνουμε τρία στάδια στη λύση της άσκησης: 1. Πριν τη κρούση: Συνήθως εφαρμόζουμε την Α.Δ.Μ.Ε ή το Θ.Μ.Κ.Ε ή τις εξισώσεις κίνησης της Α Λυκείου με σκοό να βρούμε τις ταχύτητες των σωμάτων λίγο ριν την εαφή τους.. Κατά τη κρούση: Εφαρμόζουμε την Α.Δ.Ο ανάμεσα στις καταστάσεις λίγο ριν και λίγο μετά τη κρούση με σκοό να βρούμε τις τελικές ταχύτητες των σωμάτων. 3. Μετά τη κρούσ η: Όμοια εφαρμόζουμε την Α.Δ.Μ.Ε ή Θ.Μ.Κ.Ε ή τις εξισώσεις κίνησης με σκοό να βρούμε ένα νέο λάτος ή μια νέα ταχύτητα ή ένα νέο ύψος. Οι κρούσεις ου θα συναντήσουμε μορεί να είναι : ελαστικές λαστικές ( τα σώματα μετά τη κρούση συμεριφέρονται σαν ένα συσσωμάτωμα και έχουν αοκτήσει την ίδια (κοινή) ταχύτητα. Σύμφωνα με την Α.Δ.Ο ισχύει:
Physics by Chris Simopoulos
ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...
1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.
σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.
ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΘΕΜΑ Α Στις αρακάτω ροτάσεις να ειλέξετε την σωστή αάντηση A. Σε μια αλή αρμονική ταλάντωση η αομάκρυνση και η ειτάχυνση την ίδια χρονική
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική ερίοδος 05-6 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 7-0-05 Διάρκεια: ώρες Ύλη: Κρούσεις - Ταλαντώσεις Καθηγητής: Ονοματεώνυμο:
Physics by Chris Simopoulos
ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ ΘΕΩΡΙΑ Να διαβάσετε τις σελίδες 8-1 του σχολικού βιβλίου. Να ροσέξετε ιδιαίτερα τα σχήµατα 1.1, 1.3 και 1.4 καθώς και τους ορισµούς της αρχικής φάσης και της φάσης της ταλάντωσης.
Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις
Κεφάλαιο 7 ο Ερωτήεις κρίσεως, για καλύτερη κατανόηση της θεωρίας 1 Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις Αό τις ακόλουθες ερωτήσεις να σηµειώσετε το γράµµα ου αντιστοιχεί στη σωστή αάντηση. 1.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 5 ΝΟΕΜΒΡΙΟΥ 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α δ Α α Α4 δ Α5. α Σωστό β Λάθος γ Λάθος δ Λάθος ε Λάθος ΘΕΜΑ Β Β. Σωστό
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2016
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α β Α β Α γ Α5. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος ΘΕΜΑ Β Β. Σωστό το γ Αν υ είναι
σκήσεις στις Μηχανικές Ταλαντώσεις
σκήσεις στις Μηχανικές Ταλαντώσεις 1. Ένα σώμα εκτελεί αλή αρμονική ταλάντωση. Να υολογίσετε την αρχική φάση της ταλάντωσης αν α. Για t 0 = 0, το σώμα βρίσκεται στην θέση x = + A. β. Για t 0 = 0, το σώμα
Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικές Ταλαμηώζεις Οι ααμηήζεις Καλοκαίρι - Διδάζκωμ: Καραδημηηρίοσ Μιτάλης http://perifysikhs.wordpress.com Πηγή: Study4exams.gr Οι Ααμτήσεις στις
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 0 ΣΕΠΤΕΜΒΡΙΟΥ 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α γ Α β Α δ Α4 β Α5. α Λάθος β Σωστό γ Λάθος δ Σωστό ε Λάθος ΘΕΜΑ Β Β. Σωστό το β Αό
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ. Αβ. α. Αα. β. Αβ. β. Α3α. β. Α3β. α. Α4α. β. Α4β. δ. Α5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ
ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ:
ΙΟΥΛΙΟΣ 07 ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ταλαντώσεις) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.00sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ/ΤΜΗΜΑ: ΘΕΜΑ Α Α. Η ερίοδος μιας αλής αρμονικής ταλάντωσης είναι Τ. Στο αρακάτω διάγραμμα
4. η εξίσωση της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο και να γίνει η αντίστοιχη γραφική παράσταση F
ΠΡΟΒΛΗΜΑ Σώμα μάζας m kg είναι στερεωμένο στο άνω άκρο κατακόρυφου ατηρίου σταθεράς k N, το άλλο άκρο του οοίου είναι m στερεωμένο στο δάεδο, όως φαίνεται στο σχμα. Αρχικά το σώμα ισορροεί. Αομακρύνουμε
Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:
Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =
Απλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρου - πλαστική κρούση - αλλαγή της σταθεράς επαναφοράς.
Αλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρο - λαστική κρούση - αλλαγή της σταθεράς εαναφοράς. Σώμα Σ μάζας = g είναι δεμένο στο δεξιό άκρο οριζόντιο ιδανικού ελατηρίο σταθεράς = 5N / το οοίο το άλλο
Ταλαντώσεις ερωτήσεις κρίσεως
Ταλαντώσεις (Γενικές ερωτήσεις κρίσεως) 1. Σώµα εκτελεί γ.α.τ. Τη στιγµή t = 0 είναι x = 0 και υ > 0. Στη διάρκεια µιας εριόδου (Τ) η ταχύτητα του σώµατος αλλάζει φορά: α) δύο φορές, β) τρεις φορές, γ)
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 7: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ. Αβ. α. Αα. β. Αβ. β. Α3α. β. Α3β. α. Α4α. β. Α4β. δ. Α5.
Φίλε μαθητή, Το βιβλίο αυτό, ου κρατάς στα χέρια σου ροέκυψε τελικά μέσα αό την εμειρία και διδακτική διαδικασία ολλών χρόνων στον Εκαιδευτικό Όμιλο Άλφα. Είναι το αοτέλεσμα συγγραφής ολλών καθηγητών μας
Τετάρτη 10 Δεκεμβρίου 2014 ΔΗΜΟΣΙΕΥΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β B1.
ΘΕΜΑ B. Τετάρτη 0 εκεμβρίου 04 ΗΜΟΣΙΕΥΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ (Α) () Α ΘΙΤ Α Τα δύο σώματα Α και, του διλανού σήματος, είναι τοοθετημένα το ένα άνω στο άλλο και εκτελούν αλή αρμονική ταλάντωση κυκλικής
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική ερίοδος 05 Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 700 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: Ονοματεώνυμο: ΘΕΜΑ Α Στις ημιτελείς
i) A/4 ii) 3A/4 iii) A/2 iv) A/3
ΟΜΙΛΟΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ ΕΚΚΕΝΤΡΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ ΕΝΟΤΗΤΑ Γ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΕΦΑΛΑΙΟ Ο ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ 0 ΝΟΕΜΒΡΙΟΥ 0 ΣΕΙΡΑ Α ΚΥΚΛΟΣ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΧΕΙΜΕΡΙΝΗ ΠΕΡΙΟΔΟΣ
α. έχει δυναµική ενέργεια E 2 β. έχει κινητική ενέργεια E 4 γ. έχει κινητική ενέργεια ίση µε τη δυναµική δ. έχει κινητική ενέργεια 3E 4.
Φυσική κκαττεεύύθυυννσηηςς ΘΕΜΑ ο Να γράψετε τον αριθµό καθεµιάς αό τις αρακάτω ροτάσεις -5 και δίλα το γράµµα ου αντιστοιχεί στη σωστή αάντηση.. Kατά τη διάρκεια µιας εριόδου µιας γραµµικής αρµονικής
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 1o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1 (β) (γ) 3 (δ) 4 (α) 5 α (Σ), β (Λ), γ (Λ), δ (Λ), ε (Λ) ΘΕΜΑ 1ο ΘΕΜΑ ο 1 (α, στ) Το έργο W της
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
1 Ονοματεώνυμο.. Υεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τετάρτη -1-011 ΘΕΜΑ 1ο Να γράψετε στο
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (13/06/2018)
ΠΑΝΕΛΛAΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΕΙΑΣ (3/06/08) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A. γ Α. δ Α3. α Α4. δ Α5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ ΘΕΜΑ Β
t 0 = 0 u = 0 F ελ (+) χ 1 u = 0 t 1
ΑΑΠΑΑΝΗΣΣΙΙΣΣ ΣΣΟ ΙΙΑΑΓΓΩ ΩΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΣΣ ΠΡΡΟΣΣΑΑΝΑΑΟΛΛΙΙΣΣ ΣΣΜΟΥΥ ΓΓ ΛΛΥΥΚΚΙΙΟΥΥ 88 -- 55 Θέµα Α Α. α Α. β Α3. α Α4. γ Α5. α. Λ β. Σ γ. Σ δ. Σ ε. Σ Θέµα Β Β. Α. Σωστή αάντηση: (α) Η ιδιοσυχνότητα
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΡΙΑΚΗ 20 ΝΟΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΡΙΑΚΗ 0 ΝΟΕΜΒΡΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α δ Α α Α4 β Α5. α Σωστό β Σωστό γ Λάθος δ Σωστό ε Σωστό ΘΕΜΑ Β Β. Σωστό το α Αν υ
Ασκήσεις σε τρέχοντα µηχανικά κύµατα
Ασκήσεις σε τρέχοντα µηχανικά κύµατα 1. Η ηγή διαταραχής Π αρχίζει τη χρονική στιγµή µηδέν να εκτελεί α.α.τ. λάτους Α=1 cm και συχνότητας f=, Hz. Το κύµα ου δηµιουργεί διαδίδεται κατά µήκος γραµµικού οµογενούς
Φυσική Γ Θετ. και Τεχν/κης Κατ/σης
Φυσική Γ Θετ. και Τεχν/κης Κατ/σης 07-08 Φυσική Γ Θετ. και Τεχν/κης Κατ/σης 07-08 ΣΥΝΘΕΣΗ Α ΤΥΠΟΥ Ασκήσεις - Ερωτήσεις σχολικού: 5,, 4, 5, 45. ΣΥΝΘΕΣΗ Β ΤΥΠΟΥ Ασκήσεις - Ερωτήσεις σχολικού: 6, 6, Σύνθεση
ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ
Ταλάντωση με την βοήθεια σταθερής δύναμης. 1. Σε σώμα μάζας m = kg ου ηρεμεί σε λείο οριζόντιο είεδο δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθερά k = N/m, όως στο σχήμα ασκούμε σταθερή δύναμη μέτρου
Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.
Μια φθίνουσα ταλάντωση, στην οοία η μείωση του λάτους δεν είναι εκθετική. Το ένα άκρο οριζόντιου ελατηρίου σταθεράς =100N/, το οοίο έχει το φυσικό του μήκος, είναι ακλόνητα στερεωμένο σε ακλόνητο σημείο.
ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ
Ταλάντωση με την βοήθεια σταθερής ς.. Σε σώμα μάζας = kg ηρεμεί σε λείο οριζόντιο είεδο δεμένο στο ένα άκρο οριζοντίου ελατηρίου σταθερά k = N/, όως στο σχήμα. Ασκούμε σταθερή μέτρου = N έτσι ώστε το ελατήριο
2 α. Η συνισταμένη ταλάντωση έχει το ίδιο πλάτος με τις δύο ταλαντώσεις β. Η συνισταμένη ταλάντωση έχει συχνότητα f 2
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΔΙΑΓΩΝΙΣΜΑΤΑΚΙΟΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7-- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ο ΚΕΦΑΛΑΙΟ - ΤΑΛΑΝΤΩΣΕΙΣ Στις ημιτελείς
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ. Σώμα μάζας m = kg, είναι δεμένο στο άκρο οριζόντιου ελατηρίου με το άλλο άκρο του σε ακλόνητο τοίχο) και αό την άλλη άκρη είναι δεμένο με νήμα τεταμένο με
γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ύλη: Ονοματεώνυμο: Καθηγητές: Εαναλητικό σε όλη την ύλη. Ατρείδης Γιώργος - Κόζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις να γράψετε
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας αό τις αρακάτω ερωτήσεις 1-4 και δίλα το γράμμα ου
Θέµα 1 ο Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1-5 να επιλέξετε την σωστή απάντηση :
Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ *** ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Στις ερωτήσεις - 5 να ειλέξετε την σωστή αάντηση :. Η ερίοδος µιας γραµµικής αρµονικής ταλάντωσης α. εξαρτάται άντα αό τη
γραπτή εξέταση στη ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στη ΦΥΣΙΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: /04/0 Ύλη: Ονοματεώνυμο: αθηγητές: Όλη η ύλη Αθανασιάδης Φοίβος, Ατρείδης Γιώργος, όζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις
ΑΣΚΗΣΕΙΣ ΤΑΛΑΝΤΩΣΕΩΝ
ΑΣΚΗΣΕΙΣ ΤΑΛΑΝΤΩΣΕΩΝ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. Ένα σώμα μάζας = kg εκτελεί αλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με αομάκρυνση x = + το μέτρο της ταχύτητας του είναι u = 4 /, ενώ στη θέση
Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα.
Ταλάντωση μετά αό κόψιμο του νήματος. Σώματα δεμένα με νήμα σε κατακόρυο ελατήριο. Τα σώματα του σχήματος έχουν μάζες = g και Μ = g και συνδέονται με νήμα. Το σώμα μάζας αέχει αό το δάεδο αόσταση H = 7
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο 1
Physics by Chris Simopoulos
ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών
0e, όπου Λ θετική σταθερά και Α0 το αρχικό
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 06-07 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣ. Γ ΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΞΕΤΑΣΤΕΑ ΥΗ: ΚΡΟΥΣΕΙΣ-Α.Α.Τ.-ΦΘΙΝΟΥΣΕΣ-ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ-ΣΥΝΘΕΣΗ Α ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο
ΣΥΝΘΕΣΗ ΛΝΩΣΕΩΝ.5. Υλικό σηµείο εκτελεί... η χρονική στιγµή t = 0 το υλικό σηµείο βρίσκεται στη θέση µε αοµάκρυνση x = +, ενώ ο ρυθµός µεταβο- λής της κινητικής του ενέργειας τη στιγµή αυτή είναι θετικός.
Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον.
Δύο κύματα στο ίδιο γραμμικό ελαστικό μέσον. Σε δύο σημεία Ο 1 και Ο, τα οοία αέχουν αόσταση (Ο 1 Ο )=d=4m, ενός άειρου γραμμικού ελαστικού μέσου, υάρχουν δυο ηγές κύματος, οι οοίες αρχίζουν να ταλαντώνονται
Μηχανικές Ταλαντώσεις
Μηχανικές Ταλαντώσεις . Περιοδικά φαινόµενα - Γραµµική αρµονική ταλάντωση Περιοδικά ονοµάζονται τα φαινόµενα ου εαναλαµβάνονται µε τον ίδιο τρόο σε ίσα χρονικά διαστήµατα. Π.χ. οµαλή κυκλική κίνηση, χτύοι
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013. Ηµεροµηνία: Κυριακή 21 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 1 Αριλίου 013 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις αό Α1-Α4 να γράψετε στο τετράδιο
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ Το σηµείο Ο γραµµικού ελαστικού µέσου το οοίο ταυτίζεται µε τον άξονα χ Οχ, εκτελεί ταυτόχρονα δύο Α.Α.Τ ου γίνονται στην ίδια διεύθυνση, κάθετα στον άξονα χ
Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ
Προτεινόµενα Θέµατα Γ Λυκείου Νοέµβριος 00 Φυσική κατεύθυνσης ΘΕΜΑ Α Στις ροτάσεις αό -4 να βρείτε την σωστή αάντηση.. Μία αό τις αρακάτω σχέσεις εριγράφει την συχνότητα της αµείωτης ηλεκτρικής ταλάντωσης
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 2009
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 29 ΘΕΜΑ 1 ο Α. Για να ααντήσετε στις αρακάτω τέσσερις ερωτήσεις ολλαλής ειλογής, αρκεί να γράψετε στο φύλλο ααντήσεων τον αριθμό της ερώτησης και δεξιά αό
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ 010-11 ΘΕΜΑ 1 ο : 1) Κατά τη διάδοση ενός κύματος σ ένα ελαστικό μέσον i) μεταφέρεται ύλη. ii) μεταφέρεται ενέργεια και ύλη. iii) όλα τα σημεία του ελαστικού μέσου έχουν την ίδια
β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2
1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).
Ράβδος σε σκαλοπάτι. = Fημθ και Fy
Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου
u 0(2) = 0 (+) F ελ u 2 Θ.Ι.Τ. (Σ 1 ) u 1 του συσσωµατώµατος d = Α 1 u 0(1) = 0 V = 0 (Μ + m)g
ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑΓΓ ΓΓΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΓ ΛΥΚΕΙΙΟΥ 09-04 Θέµα Α Α. δ Α. γ Α3. β Α4. δ Α5. α. Σ β. Σ γ. Λ δ. Σ ε. Λ Β. ΣΣωσσττήή ααάάννττηησσηη εεί ίίννααι ιι ηη αα. α.. Θέµα Β Εειδή τη ρονική
ΘΕΜΑ 1 ο Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στην σωστή απάντηση.
ΚΟΨΙΔΑΣ ΔΗΜΗΤΡΙΟΣ Καθηγητς Φυσικς ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ (ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Διάρκεια εξέτασης: ώρα ΘΕΜΑ ο Οδηγία: Στις ερωτσεις - να γράψετε στο τετράδιο σας τον
π 5 = 6 δηλ. μας δίνει την αρχή του κύματος (το σημείο Ο), το μέσο που διαδίδεται ( η έκφραση οµογενές
Στην άσκηση για µηχανικό κύµα ο ακοοθεί, γίνεται ανατική εεξεργασία 7 ερωτηµάτων ΑΣΚΗΣΗ Αρµονικό κύµα διαδίδεται κατά µήκος γραµµικού οµογενούς εαστικού µέσο κατά τη διεύθνση το θετικού ηµιάξονα Ox. Η
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν
1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2
ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 β Α2 α Α3 γ Α4 δ Α5 α Λ, β Σ, γ Σ, δ Λ, ε Σ. ΘΕΜΑ Β Β1.Σωστό το β) Η απλή αρμονική ταλάντωση του σώματος
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α α Α γ Α4 δ Α5
y = π 2 π 2 π 4 1 f 1.0
Στην άσκηση για στάσιµο κύµα ου ακοουθεί, γίνεται αναυτική εεξεργασία 11 ερωτηµάτων ΑΣΚΗΣΗ Σε γραµµικό οµογενές εαστικό µέσο ου ταυτίζεται µε τον άξονα, διαδίδονται µε αντίθετες ταχύτητες µέτρου 8 m /
Μια εναλλακτική θεμελίωση των κυμάτων
Μια εναλλακτική θεμελίωση των κυμάτων Τα κύµατα δεν είναι η συνέχεια των ταλαντώσεων, όως για διδακτικούς λόγους κάνουµε 1. Η διάδοση ενός αλµού. Έστω ότι έχουµε ένα ελαστικό µέσο,.χ. µια τεντωµένη οριζόντια
Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
Ένα βαρούλκο με χάντρα.
Ένα βαρούλκο με χάντρα Το βαρούλκο ενός ηγαδιού αοτελείται αό τροχαλία ακτίνας R 0,5m και μάζας M 0Kg, στο οοίο είναι ροσαρμοσμένη χειρολαβή η οοία αοτελείται αό τρεις ράβδους αμελητέας μάζας Η ράβδος
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 07 ΘΕΜΑ Α Α δ Α5. α Σωστό Α β β Σωστό Α α γ Σωστό Α γ δ Λάθος ε Σωστό ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β Β. Σωστό το β Ορίζουμε
1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ: ΚΥΜΑΤΑ ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Αν γνωρίζουμε την εξίσωση της αομάκρυνσης ενός αρμονικού κύματος μορούμε να βρούμε την εξίσωσης της ταχύτητας
ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
ΚΟΡΙΝΘΟΥ 55, ΚΑΝΑΚΑΡΗ 0 ΤΗΛ. 60 65.360, 60 64.009, ΘΕΜΑ. a. γ 3. δ 4. γ 5. (α) Σωστό (β) Λάθος ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗ 07 ΙΟΥΝΙΟΥ 005 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (γ) Σωστό (δ) Σωστό (ε) Σωστό ΘΕΜΑ. (Σωστό το β)
ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.
ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας
Α1. β. Α2. γ. Α3. α. Α4. γ. Α5. α. Λάθος. β. Σωστό. γ. Λάθος. δ. Σωστό. ε. Σωστό ΝΕΑ ΠΑΙΔΕΙΑ 1 ΤΕΤΑΡΤΗ
ΤΕΤΑΡΤΗ 06 09 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΗΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Α. β Α. γ Α. α Α4. γ Α5. α. Λάθος β. Σωστό γ. Λάθος δ. Σωστό ε.
ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ. Μάθημα: ΦΥΣΙΚΗ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6
ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση
8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με
ΛΤΗ ΘΕΜΑΣΟ 1. K W 1 d x Τ.Θ W 2 W 2 F ΕΛ,1 F ΕΛ,2 (Ι) (ΙΙ) (ΙΙΙ) (ΙV) (V) (VI) (VII)
ΛΤΗ ΘΕΜΑΣΟ Σο σχήμα εριγράφει το φαινόμενο. (+) Σχήμα Θ.Φ.Μ F ΕΛ, ΔL m F ΕΛ, Θ.Ι.Τ.(m ) K W d x L 0 Τ.Θ N N W Α.Θ m m t = 0 W W F ΕΛ, F ΕΛ, (Ι) (ΙΙ) (ΙΙΙ) (ΙV) (V) (VI) (VII) Α. Για να δείξουμε ότι το
(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
Physics by Chris Simopoulos. Η μάζα m χάνει την επαφή της όταν F=0 A 2. 2 Δεκτή η τιμή με το θετικό πρόσημο (δεύτερο τεταρτημόριο) 5 rad 5.
. ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ ΛΥΣΕΙΣ. ( ) (f) 8 ) (f ), / sec γ) Τυχαία Θέση: F F B F F B D F B F g D () Η μάζα χάνει την επαφή της όταν F= () g D g. rad / sec U U U U U U U g (f ) D Δεκτή
1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
Εφαρμογή πρώτη: Στάσιμο κύμα
Εφαρμογή ρώτη: Στάσιμο κύμα Κατά μήκος μιας εαστικής χορδής x x διαδίδονται δύο όμοια κύματα με αντίθετες κατευθύνσεις. Αν η εξίσωση του ενός κύματος είναι y =0.2 ημ(0t 0x) (S.I.), τότε: Α. Να γραφεί η
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου
Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α
Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:
Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.
Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.
1. Η εξίσωση της αποµάκρυνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτους x0 και κυκλικής συχνότητας ω δίνεται από τη σχέση x = x0ηµωt
ΑΠΟΛΥΤΗΡΙΣ ΞΤΑΣΙΣ Γ ΤΑΞΗΣ ΝΙΑΙΟΥ ΛΥΚΙΟΥ ΣΑΒΒΑΤΟ 9 ΜΑΙΟΥ ΞΤΑΟΜΝΟ ΜΑΘΗΜΑ ΘΤΙΚΗΣ ΚΑΙ ΤΧΝΟΛΟΓΙΚΗΣ ΚΑΤΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ Θέµα ο. Η εξίσωση της αοµάκρυνσης σε έναν αλό αρµονικό ταλαντωτή, λάτους
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίλα σε κάθε αριθµό το γράµµα ου αντιστοιχεί στη σωστή
Αναγωγή στο 1ο τεταρτημόριο
ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0
ΔΙΑΓΩΝΙΣΜΑ B. α. φ 3 -φ 1 = β. φ 3 -φ 2 = γ. φ 3 -φ 1 = δ. φ 3 -φ 2 = (Μονάδες 5)
ΔΙΑΓΩΝΙΣΜΑ B Θέµα ο Οδηγία: Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δία το γράµµα ου αντιστοιχεί στη σωστή αάντηση.. Υικό σηµείο εκτεεί ταυτόχρονα δύο αές αρµονικές τααντώσεις
F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &
Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό
κινητού και να βρούµε ποιο από τα δυο προηγείται, πρέπει να ακολουθήσουµε τα εξής βήµατα:
Ποιο µέγεθος ροηγείται ανάµεσα σε δυο µεγέθη ου αρουσιάζουν διαφορά φάσης µεταξύ τους Προκειµένου να καθορίσουµε τη διαφορά φάσης ανάµεσα σε δύο φυσικά µεγέθη ενός κινητού και να βρούµε οιο αό τα δυο ροηγείται,
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5
ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 05 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 ΘΕΜΑ Ο : Στις αρακάτω ερωτήσεις έως 4 να γράψετε στο τετράδιό
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το B.. Σωστό το Γ. 3. Σωστό το Δ. 4. Σωστά τα Α, Β, Γ. 5. Σωστό το Δ. ΘΕΜΑ Β:. Σωστό το Β. Αιτιολόγηση: Έχουµε διαδοχικά:. Σωστό το Α. D D K E U =
26. Στη διάταξη του σχήµατος της άσκησης 23, ας δεχτούµε ότι το σώµα (Μ) εκτε-
Ασκήσεις Γ.Α.Τ. (). Στη διάταξη του σχήµατος, σώµα µάζας M= Kg, είναι στερεωµένο στο εάνω άκρο ελατηρίου, σταθερής K=0 /m σε κεκλιµένο είεδο γωνίας κλίσης φ=0 ο. Ένα δεύτερο σώµα, µάζας m=1 Kg, ξεκινάει
Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά
Tριγωνομετρικές εξισώσεις
Tριγωνομετρικές εξισώσεις Εχουμε μάθει να λύνουμε εξισώσεις ρώτου βαθμού και δευτέρου βαθμού ου είναι ισότητες ου εριέχουν έναν άγνωστο και ροσαθούμε να βρούμε για οιά (ή οιές) τιμές αυτού του αγνώστου
3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx
1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε
Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 ΕΩΣ 0/0/06 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ημερομηνία: Πέμτη 9 Δεκεμβρίου 06 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A. Να αοδείξετε ότι ημ ω συν ω Α. Να δώσετε τον ορισμό της εριοδικής