ρ. Ευστρατία Μούρτου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ρ. Ευστρατία Μούρτου"

Transcript

1 ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία Μούρτου ρ. Ευτρατία Μούρτου 1

2 4.5. Η Κανονική Κατανοµή (normal distribution)ή Κατανοµή του Gauss (Gaussian distribution )ή κατανοµή των φαλµάτων (law of errors) H κανονική κατανοµή θεωρείται η πουδαιότερη υνεχής κατανοµή την Στατιτική, όχι µόνο γιατί αρκετές τυχαίες µεταβλητές Χ περιγράφονται από αυτήν ε αρκετά ικανοποιητικό βαθµό, αλλά και γιατί πολλές από της ιδιότητές της προεγγίζουν πολλές παρατηρήεις και πειράµατα τύχης. Πολλά φυικά φαινόµενα καθώς και µετρήεις ακολουθούν την κανονική κατανοµή, όπως για παράδειγµα το βάρος, το ύψος και η αρτηριακή πίεη, τα επίπεδα ουρίας και χολητερόλης ε µεγάλο πλήθος ατόµων (πλήθος µεγαλύτερο ή ίο του 1000). Αυτό ηµαίνει ότι η απεικόνιη του πολύγωνου υχνοτήτων αυτών των µετρήεων, τείνει να ακολουθήει την κανονική καµπύλη ή καµπύλη του Gauss. Το χαρακτηριτικό της κανονικής κατανοµής είναι η απεικόνιή της µε την κανονική καµπύλη, η οποία έχει κωδωνοειδή µορφή, είναι υµµετρική και το αριτερό και δεξί άκρο της τείνουν να ακουµπήουν αυµπτωτικά τον οριζόντιο άξονα χχ. Ο µεγάλος αριθµός των εφαρµογών που ακολουθούν την κανονική κατανοµή τηρίζεται το Κεντρικό Οριακό Θεώρηµα της Θεωρίας Πιθανοτήτων, κατά το οποίο κάθε ποότητα της οποίας η τιµή µπορεί να θεωρηθεί ότι διαµορφώνεται από ένα µεγάλο αριθµό ανεξάρτητων παραγόντων ή µεταβλητών ακολουθεί προεγγιτικά την κανονική κατανοµή. Οι ανεξάρτητοι παράγοντες είναι αυτοί που παίζουν ηµαντικό ρόλο ε µια παρατήρηη και φυικά την επηρεάζουν ε διαφορετικό βαθµό, χωρίς όµως ο ρ. Ευτρατία Μούρτου

3 ένας να επηρεάζει τον άλλο. Για παράδειγµα, τα επίπεδα χολητερόλης το αίµα ενός ενήλικα είναι αποτέλεµα πολλών παραγόντων, όπως η κληρονοµικότητα, η διατροφή, η ηλικία, η έλλειψη άκηης, το υπερβολικό πάχος, ο υποδρατήριος θυρεοειδής αδένας, ο διαβήτης ή προβλήµατα µε τα νεφρά. Καθένας από τους παράγοντες αυτούς επιβαρύνει τα επίπεδα χολητερόλης και αν αυτοί υνυπάρχουν τότε αθροιτικά επιβαρύνουν περιότερο την κατάταη αυτή. Αυτό ακριβώς εκφράζει και το Κεντρικό Οριακό Θεώρηµα: Ας θεωρήουµε καθένα από τους παραπάνω παράγοντες ως ανεξάρτητες µεταβλητές και ας τους υµβολίουµε αντίτοιχα µε Χ 1, Χ,..., Χn. Αν υποθέουµε ότι έχουν µέη τιµή µ και διακύµανη ², τότε το άθροιµα Σ i Χ 1 + Χ +...+Χn, i-1,,,n, προεγγίζει την κανονική κατανοµή. Η ονοµαία της κανονικής κατανοµής ως και κατανοµή των φαλµάτων οφείλεται την διαπίτωη του µεγάλου µαθηµατικού Gauss ότι τα φάλµατα των ατρονοµικών παρατηρήεων περιγράφονται ικανοποιητικά από την κανονική κατανοµή. Η υνάρτηη πιθανότητας της κανονικής κατανοµής, µε παραµέτρους την διακύµανη και την µέη τιµή μ, δίνεται από τον παρακάτω τύπο, όπου µε χ (, + ) : 1 f ( x) P( x< X< x+ dx) π * ρ. Ευτρατία Μούρτου 3 *e (x-µ) - * Όπου π3,14 και e,71. Στον ανωτέρω τύπο προέχουµε την διαφορά της f(x) µε την αντίτοιχη των διακριτών µεταβλητών, τις οποίες η f(x) εκφράζει την πιθανότητα P(Xx). Αντίθετα τις υνεχείς µεταβλητές η F(x) εκφράζει υνάρτηη πυκνότητας, διότι P ( X x i ) f ( x ) dx 0 x x i i Τότε λέµε ότι η τυχαία µεταβλητή Χ ακολουθεί την κανονική κατανοµή και µ γράφουµε X ~ N (, )

4 ΠΑΡΑΜΕΤΡΟΙ ΤΗΣ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ [1]. Ο µέος µ ή η µαθηµατική ελπίδα Ε(Χ) ή η αναµενόµενη µέη τιµή της τ.µ. Χ: Ορίζεται ως το παρακάτω ολοκλήρωµα: + E ( X ) µ xf ( x) dx []. Η διακύµανη της τ.µ. Χ, υµβολίζεται µε V(X) και ορίζεται ως ο ταθµιµένος µέος όρος των τετραγωνιµένων αποκλίεων από την µέη τιµή και δίνεται από την χέη: + V ( X ) ( x µ ) f ( x) dx Για τον υπολογιµό της διακύµανης (ή διαπορά) µπορεί να χρηιµοποιηθεί και ο τύπος: V ( X) E(X ) [ E( X )] [3]. Η τυπική απόκλιη της τ.µ. Χ, δίνεται από την χέη: Ι ΙΟΤΗΤΕΣ ΤΗΣ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ 1. Η µέη τιµή, η διάµεος και η επικρατούα τιµή (Μο) υµπίπτουν. Είναι υµµετρική ως προς τη µέη τιµή 3. Στο ηµείο x μ παρουιάζει µέγιτο που ιούται µε 1 π 4. Στα ηµεία μ και μ + παρουιάζει ηµεία καµπής ρ. Ευτρατία Μούρτου 4

5 [5]. Η υνάρτηη πυκνότητας της κανονικής κατανοµής ορίζει µια οικογένεια κανονικών κατανοµών δηλαδή ένα ύνολο υµµετρικών καµπύλων τύπου καµπάνας για τις διαφορετικές τιµές των παραµέτρων μ και. Για παράδειγµα: Στο χήµα 5α βλέπουµε µια οικογένεια κανονικών κατανοµών µε ίδια µέη τιµή και διαφορετικές τυπικές αποκλίεις, ενώ το χήµα 5β βλέπουµε µια οικογένεια κανονικών κατανοµών µε διαφορετικές µέες τιµές και ίδια τυπική απόκλιη. f(x) Ίδιο µ x Σχήµα 5α: καµπύλες κανονικής κατανοµής µε ίδιο µ ρ. Ευτρατία Μούρτου 5

6 f(x) Ίδιο x Σχήµα 5β: καµπύλες κανονικής κατανοµής µε ίδιο Η ΤΥΠΟΠΟΙΗΜΕΝΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Όπως είναι εύκολα αντιληπτό ανάλογα µε τις τιµές του ζεύγους (µ, ) ορίζονται τα διάφορα µέλη της οικογένειας των κανονικών κατανοµών N ( µ, ). Αν έχουµε µια κανονική κατανοµή που έχει µέη τιµή µ 0 και τυπική απόκλιη 1 (διαπορά 1), τότε αυτή υµβολίζεται µε N(0,1) και ονοµάζεται τυποποιηµένη κανονική κατανοµή (standard normal distribution). Η υνάρτηη πυκνότητας πιθανότητας της N(0,1) µε παραµέτρους την διακύµανη 1 και την µέη τιµή μ0, δίνεται από τον παρακάτω τύπο, όπου µε χ (, + ) : f ( x) P( x< X< x+ dx) 1 *e π Όπου π3,14 και e,71. Ο λόγος για τον οποίο χρηιµοποιούµε την τυποποιηµένη κανονική κατανοµή είναι ότι µας δίνει την δυνατότητα της τυποποίηης µιας τυχαίας ρ. Ευτρατία Μούρτου 6 x -

7 µεταβλητής η οποία ακολουθεί την κανονική κατανοµή. Αναλυτικότερα αποδεικνύεται ότι: ΠΡΟΤΑΣΗ 1 Αν η τυχαία µεταβλητή Χ ακολουθεί την κανονική κατανοµή, µ δηλαδή αν X ~ N (, ), τότε η τυχαία µεταβλητή Ζ που ορίζεται ως X µ δηλαδή ~ (0,1), ακολουθεί την τυποποιηµένη κανονική κατανοµή, N µε την παρακάτω γραφική παράταη ΥΠΟΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΜΕΘΟ ΟΛΟΓΙΑ Α. ΟΤΑΝ Η Τ.Μ. Ζ ΑΚΟΛΟΥΘΕΙ ΤΗΝ ΤΥΠΟΠΟΙΗΜΕΝΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Για να υπολογίουµε διάφορες πιθανότητες της τυχαίας µεταβλητής Ζ η οποία ακολουθεί την τυποποιηµένη κανονική κατανοµή, χρηιµοποιούµε τον πίνακα πιθανοτήτων (Πίνακας, Παράρτηµα, βιβλίο), µε τον ακόλουθο τρόπο: ρ. Ευτρατία Μούρτου 7

8 Ας δούµε τον πίνακα 1 που αποτελεί ένα τµήµα από τον πίνακα, µε τιµές που αντιπροωπεύουν την επιφάνεια που περιέχεται µεταξύ της καµπύλης της τυποποιηµένης κανονικής κατανοµής και τα ηµεία εκείνα του άξονα των χχ για τα οποία 0<χ<z. Τότε θα είναι P(0<χ<z) το γραµµοκιαµένο εµβαδόν, όπως φαίνεται το παρακάτω χήµα. 0 z x ρ. Ευτρατία Μούρτου 8

9 Πίνακας 1 ρ. Ευτρατία Μούρτου 9

10 Με την βοήθεια του ανωτέρω πίνακα θα υπολογίουµε ζητούµενες πιθανότητες ως εξής: 1. Ας υποθέουµε ότι ζητείται η πιθανότητα η τ. µ να παίρνει τιµές το διάτηµα [0, 1.46], δηλαδή πρέπει να υπολογίουµε την P ( 0 z 1,46) Τότε θεωρούµε τον αριθµό 1,46 ως αποτελούµενο από τµήµατα: α) Τα πρώτα ψηφία δηλαδή το 1,4 και β) το δεύτερο δεκαδικό ψηφίο ως 0,06 (προφανώς 1,46 1,4 + 0,06). Τότε το α) τµήµα ορίζει την γραµµή που πρέπει να εντοπίουµε τον πίνακα 1 και το β) τµήµα ορίζει την τήλη που πρέπει να εντοπίουµε τον πίνακα αυτόν. Η τοµή της γραµµής µε την τήλη που εντοπίαµε ορίζει την ζητούµενη πιθανότητα, που όπως φαίνεται είναι 0,979. Αρα ( 0 z 1,46) P(0< z< 1,46) 0, 979 P, ιότι ( z 1,46) 0, p και p ( z 0) 0. Ας υποθέουµε ότι ζητείται η πιθανότητα η τ. µ να παίρνει τιµές το διάτηµα [-1.46, 0], δηλαδή πρέπει να υπολογίουµε την P ( 1,46 z 0) Επειδή η καµπύλη της τυποποιηµένης κανονικής κατανοµής είναι υµµετρική ως προς τον µέο µ (µ0), θα ιχύει: ρ. Ευτρατία Μούρτου 10

11 P ( 1,46 z 0) P( 1,46< z< 0) p(0< z< 1,46) 0, Ας υποθέουµε ότι ζητείται η πιθανότητα η τ. µ να παίρνει τιµές το διάτηµα (1.46, + ), δηλαδή πρέπει να υπολογίουµε την P ( z > 1,46) P ( z > k) 1 P( z < k) Εφαρµόζουµε την ιδιότητα : P ( z> 1,46) 1 P( z< 1,46) 1 0,979 0, 071 Έτι έχουµε: 4. Ας υποθέουµε ότι ζητείται η πιθανότητα P ( z 0) Τότε από τον πίνακα έχουµε P ( z 0) 0, 5 5. p ( < < ) Ας υποθέουµε ότι ζητείται η πιθανότητα p( a< < a) p( a) P( a) Εφαρµόζουµε την ιδιότητα: ρ. Ευτρατία Μούρτου 11

12 Αρα p( < < ) p( z ) p( ) [1 p( 0,977 [1 0,997] 0,977 0,08 P( z) 1 p( z) ιότι ιχύει ότι: P ( 1,55,1) 6. Ας υποθέουµε ότι ζητείται η πιθανότητα P( a b) P( b) P( a) Εφαρµόζουµε την ιδιότητα: 0,9544 )] Άρα P ( 1,55,1 ) P (,1 ) P ( P (,1) [1 P ( 1,55 )] 0, ,9394 0,915 1,55 ) ρ. Ευτρατία Μούρτου 1

13 Β. ΟΤΑΝ Η Τ.Μ. Ζ ΑΚΟΛΟΥΘΕΙ ΤΗΝ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Για να υπολογίουµε διάφορες πιθανότητες της τυχαίας µεταβλητής Χ η οποία ακολουθεί την κανονική κατανοµή, θα πρέπει πρώτα να τυποποιήουµε την Χ, δηλαδή να την µετατρέψουµε ε τυποποιηµένη κανονική κατανοµή, χρηιµοποιώντας την πρόταη 1. Αναλυτικότερα προέξτε τα παρακάτω παραδείγµατα (βιβλίο ελ ): ΠΑΡΑ ΕΙΓΜΑ Α Έτω ότι η τυχαία µεταβλητή Χ, ακολουθεί κανονική κατανοµή µε µέο μ 10 και τυπική απόκλιη 30. Τότε: 1. Ζητείται η πιθανότητα P ( 180 X 10 ) ΛΥΣΗ µ ίνεται ότι X ~ N (, ) N ( 10,900 ) Θα τυποποιήουµε µε τον παρακάτω τρόπο την τ.µ. Χ χρηιµοποιώντας τον τύπο : X Έτι θα έχουµε: µ P ( 180 X 10 ) P ( P ( 1 0) P( 0) P( P ( 0 ) [1 P ( 1)] 0, ,8413 0, ,13%. Ζητείται η πιθανότητα P ( X 5 ) ΛΥΣΗ ) 1) ρ. Ευτρατία Μούρτου 13

14 Θα τυποποιήουµε µε τον παρακάτω τρόπο την τ.µ. Χ χρηιµοποιώντας τον τύπο : X Έτι θα έχουµε: P ( X µ 5 ) P ( X P ( 0, 5 ) 1 P ( 1 0, , ,85 3. Ζητείται η πιθανότητα P ( X 150 ) % ) 0, 5 ) ΛΥΣΗ Θα τυποποιήουµε οµοίως την τ.µ. Χ και έτι έχουµε: X P ( X 150 ) P ( P ( ) 1 P( ) ) 1-0,977 0,08,8% 4. Ζητείται η πιθανότητα P ( 195 X 5 ) ΛΥΣΗ Θα τυποποιήουµε οµοίως την τ.µ. Χ και έτι έχουµε: P ( 195 X 5 ) X P ( ) P ( 0,5 0,5) P( 0,5) P( 0,5) P( 0,5) [1 P( 0, ,6915 0,383 38,3 % 0,5)] ρ. Ευτρατία Μούρτου 14

15 ΠΑΡΑ ΕΙΓΜΑ Β Έτω ότι η τυχαία µεταβλητή Χ, ακολουθεί κανονική κατανοµή µε µέο μ 13,9 και τυπική απόκλιη 13,74. Ζητείται ο πραγµατικός αριθµός κ έτι ώτε η πιθανότητα P(Χ>κ) να είναι ίη µε 0,10. ΛΥΣΗ µ ίνεται ότι X ~ N (, ) N (13.9,13.74 ) Θα τυποποιήουµε την τ.µ. Χ χρηιµοποιώντας τον τύπο : ίνεται ότι P ( Χ > κ ) 0,10 P ( P ( X 13 13,74,9 > k 13 13,74,9 ) k 13,9 > ) 0, 10 13,74 k 13,9 1 P( < ) 0, 10 13,74 P( k 13,9 < ) 0, 90 13,74 0,10 X µ Με την βοήθεια του πίνακα 1 βλέπουµε ότι το 0,90 αντιτοιχεί ε z 1,9. Άρα θα είναι : k 13,9 13,74 k k 1,9 13,9 1,9 * 13, ,6 ρ. Ευτρατία Μούρτου 15

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά

Διαβάστε περισσότερα

Το θεώρηµα του Green

Το θεώρηµα του Green 57 58 Το θεώρηµα του Green :, Υπενθυµίζουµε ότι µια απλή κλειτή καµπύλη [ ] κλειτή καµπύλη ( = ) ώτε ο περιοριµός [, ) R είναι µια να είναι απεικόνιη Μια απλή κλειτή καµπύλη του επιπέδου ονοµάζεται και

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012 Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με

Διαβάστε περισσότερα

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2 Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στην ενότητα «Από τις Πιθανότητες τη Στατιτική» εξηγήαμε ότι τη Στατιτική «όλα αρχίζουν από τα

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα

Αποδοτικότητα Χαρτοφυλακίου

Αποδοτικότητα Χαρτοφυλακίου Αποδοτικότητα Χαρτοφυλακίου n E( R ) ΣWE( R ) P i i i όπου: E(Ri) : αντιπροωπεύει την προδοκώµενη αποδοτικότητα από το τοιχείο i. Wi : το ποοτό που αντιπροωπεύει η αξία του τοιχείου αυτού τη υνολική αξία

Διαβάστε περισσότερα

[ ] = ( ) ( ) ( ) = { }

[ ] = ( ) ( ) ( ) = { } Πρόταη: Δίνεται η θετική τμ, δηλαδή 1 [ ] ανιότητα Mrkov: P{ } P > = Εάν >, έχουμε την Εάν υποθέουμε ότι η ~ f είναι υνεχής, τότε για κάθε > ιχύει ότι x f x dx x f x dx f x dx P [ ] = = { } Παρατηρείτε

Διαβάστε περισσότερα

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Γ Ε Ω Ρ Γ Ι Κ Ο Σ Π Ε Ι Ρ Α Μ Α Τ Ι Σ Μ Ο Σ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. Αν. Καθηγητής.Π.Θ. Υπ. ιδάκτορας Ορετιάδα 007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =

Διαβάστε περισσότερα

Ορισμός και Ιδιότητες

Ορισμός και Ιδιότητες ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y

Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y 5 Απόκλιη και τροβιλιµός ενός διανυµατικού πεδίου Έτω F ένα C διανυµατικό πεδίο του R, δηλαδή υνάρτηη µε D ανοικτό το F = F, F, F. R και F : D R R Στο διανυµατικό πεδίο F αντιτοιχούµε ένα άλλο διανυµατικό

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Μετρήσεις, Σφάλµατα και Στατιστικά Μεγέθη

ΚΕΦΑΛΑΙΟ 2. Μετρήσεις, Σφάλµατα και Στατιστικά Μεγέθη ΚΕΦΑΛΑΙΟ. Μετρήεις, Σφάλµατα και Στατιτικά Μεγέθη . Ειαγωγή Αχοληθήκαµε το προηγούµενο Κεφάλαιο µε τον οριµό µαθηµατικών εργαλείων για την περιγραφή της πιθανότητας ή της πυκνότητας πιθανότητας ώτε µία

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ 16 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ Α. Περίπτωη Ενός Πληθυμού Αν μας ενδιαφέρει να κατακευάουμε ένα διάτημα εμπιτούνης για την διακύμανη ενός πληθυμού, χρηιμοποιούμε το γεγονός ότι αν

Διαβάστε περισσότερα

ειγματοληπτικές κατανομές

ειγματοληπτικές κατανομές ειγματοληπτικές καταομές Σκοπός της τατιτικής υμπεραματολογίας: η εξαγωγή ατικειμεικώ υμπεραμάτω για έα πληθυμό από περιοριμέο αριθμό δεδομέω (δείγμα). Με τη περιγραφική τατιτική υχά μπορούμε α βγάλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις ρ.χ. Στρουθόπουλος, e-mail: stch@teise.g ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ

Διαβάστε περισσότερα

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ακήεις για έκτες PIN και έκτες µε Οπτική Προενίχυη

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα

Πιθανότητες & Τυχαία Σήματα Πιθανότητες & Τυχαία Σήματα Συχέτιη Διγαλάκης Βαίλης Η έννοια της υχέτιης Για τυχαίες μεταβλητές ΧΥ: Συχέτιη: ΕΧ Υ Συμμεταβλητότητα: Συντελετής υχέτιης: ρ / Έτω ΧΥ Τ.Μ. με ΥΧb και ΕΧμ Χ ΕΧ-μ Χ Χ Υπολογίτε

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιτημών του Ανθρώπου: Στατιτική Ενότητα 2: Βαίλης Γιαλαμάς Σχολή Επιτημών της Αγωγής Τμήμα Εκπαίδευης και Αγωγής την Προχολική Ηλικία Περιεχόμενα ενότητας Παρουιάζονται οι βαικές έννοιες

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιη των εκβάεων ενός πειράµατος τύχης την ευθεία των πραγµατικών αριθµών οδηγεί την τυχαία µεταβλητή. 9 3 6 ( ω ω 9 36 44 Τα αποτελέµατα ενός πειράµατος τύχης ορίζουν

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από

Διαβάστε περισσότερα

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i . Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα

Διαβάστε περισσότερα

Στραγγίσεις (Εργαστήριο)

Στραγγίσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιευτικό Ίρυμα Ηπείρου Στραγγίεις (Εργατήριο Ενότητα 6 : Η κίνηη του νερού το έαφος IV Δρ. Μενέλαος Θεοχάρης Άκηη Ένας κλειτός υπό πίεη υροφορέας έχει μεταβλητό πάχος

Διαβάστε περισσότερα

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή Κεφάλαιο 4 ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ 4. Ειαγωγή Στο προηγούμενο κεφάλαιο εξετάαμε πώς ένας επενδυτής που αποτρέφεται τον κίνδυνο απώλειας ειοδήματος επιλέγει επενδυτικά χέδια κάτω από υνθήκες αβεβαιότητας.

Διαβάστε περισσότερα

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram). Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΧΙΟΣ 009 ΠΕΡΙΕΧΟΜΕΝΑ. Ειαγωγή... 3. ιαιθητική ειγµατοληψία... 6 3. ειγµατοληψία Κατά Πιθανότητα...

Διαβάστε περισσότερα

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7)

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7) Περί φλµάτων µετρήεων κι ποτελεµάτων Προδιοριµός φάλµτος (ή ειότητς) ενός ποτελέµτος Σφάλµ µις µετρήεως: φάλµ νγνώεως, π.χ. ±/ υποδιιρέεως κλίµκος. Σφάλµ πολλπλών, επνληπτικών µετρήεων: ( ) ( ) Πρόκειτι

Διαβάστε περισσότερα

PDF processed with CutePDF evaluation edition

PDF processed with CutePDF evaluation edition Κατανοµές ιαφάνειες ιαλέξεων - 0-0303 Περιεχόµενα της Ενότητας ειγµατοληψία και Κατανοµές Ενότητα η. ειγµατοληψία Πιθανοτικέςκαι και µη πιθανοτικές µέθοδοι. Εκτιµητές, ηµειακές εκτιµήεις, φάλµα δειγµατοληψίας

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύεις ΘΕΜΑ Υλικό ηµείο κινείται τον άξονα x ' Ox υπό την επίδραη του δυναµικού ax x V( x) = a x, a > α) Βρείτε τα ηµεία ιορροπίας και την ευτάθειά τους β) Για

Διαβάστε περισσότερα

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων Υπολογιτικές Εφαρμογές την Στατιτική Επεξεργαία Δεδομένων Στα πλαίια του μαθήματος ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ & ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Δ. Φαουλιώτης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 3 3 Μέθοδοι Monte

Διαβάστε περισσότερα

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα), ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ).

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ). Υποδείγματα GARCH Γιατί; Κίνητρο: υποδείγματα που υποθέτουν γραμμική δομή δεν μπορούν να εξηγήουν ημαντικά χαρακτηρίτηκα των χρηματοοικονομικών χρονοειρών - λεπτοκύρτοη - volaili clusering Το παραδοιακό

Διαβάστε περισσότερα

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N)

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N) ΠΡΟΒΛΗΜΑ 1 Α)Με βάη το θεώρηµα Shannon για την κωδικοποίηη αναλογικού ήµατος να χαράξετε το διάγραµµα της χέης (S/N) =(), =bit/sample για ένα ήµα µε Gaussian κατανοµή. Β) Χρηιµοποιείτε τους Πίνακες 6.

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΑΡΧΙΤΕΚΤΟΝΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΑΡΧΙΤΕΚΤΟΝΕΣ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΑΡΧΙΤΕΚΤΟΝΕΣ Κουγιουµτζής ηµήτρης Γενικό Τµήµα, Πολυτεχνική Σχολή ΑΠΘ Θερινό Εξάµηνο 004 ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ...4 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...8. Περιγραφή τατιτικών δεδοµένων...8..

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Κατανόηση της έννοιας κατανοµής πιθανοτήτων συνεχούς τυχαίας µεταβλητής Υπολογισµός της συνάρτησης κατανοµής πιθανοτήτων τυχαίων µεταβλητών καθώς και την µέση τιµή και διασπορά τους

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Φροντιστήριο 3o. όπου x = max{m N 0 : m x} και N 0 = {0, 1, 2,...} Λύση. Ιδιότητες αθροιστικής: lim F (x) = 0 αφού F (x) = 0 για x < 1.

Φροντιστήριο 3o. όπου x = max{m N 0 : m x} και N 0 = {0, 1, 2,...} Λύση. Ιδιότητες αθροιστικής: lim F (x) = 0 αφού F (x) = 0 για x < 1. Φροντιστήριο 3o Όπως έχουμε πει, αναλόγως με τη μορφή που έχει το στήριγμα, διακρίνουμε τις κατανομές σε διακριτές και μη διακριτές. Συγκεκριμένα, μια κατανομή ονομάζεται διακριτή όταν έχει διακριτό στήριγμα,

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ Μάριος Βαφειάδης Αν. Καθηγητής ΤΥΤΠ-ΑΠΘ Θεαλονίκη 0 ΕΙΣΑΓΩΓΗ...4 I. ΜΕΤΡΗΣΕΙΣ...5. ΓΕΝΙΚΑ...5. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΕΩΝ...6 3. ΚΑΝΟΝΕΣ ΓΙΑ ΕΠΙΤΥΧΕΙΣ

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +

Διαβάστε περισσότερα

ΕΙΣΗΓΗΤΗΣ Κωνταντινος Πετροπουλος Επικουρος Καηγητης Τμημα Μαηματικων Πανεπιτημιου Πατρων ΕΠΙΤΡΟΠΗ Φιλιππος Αλεβιζος Αναπληρωτης Καηγητης Τμημα Μαηματ

ΕΙΣΗΓΗΤΗΣ Κωνταντινος Πετροπουλος Επικουρος Καηγητης Τμημα Μαηματικων Πανεπιτημιου Πατρων ΕΠΙΤΡΟΠΗ Φιλιππος Αλεβιζος Αναπληρωτης Καηγητης Τμημα Μαηματ ΚΥΡΙΑΚΗ Σ. ΓΕΩΡΓΙΑΔΟΥ ΕΚΤΙΜΗΣΗ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ ΑΠΟ ΕΝΑΝ ΕΠΙΛΕΓΜΕΝΟ ΚΑΝΟΝΙΚΟ ΠΛΗΘΥΣΜΟ Μεταπτυχιακη Διατριβη ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Διατμηματικο Προγραμμα Μεταπτυχιακων Σπουδων «Μαηματικα

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής Κεφάαιο Αξιοπιτία μονάδων - υτημάτων το χρόνο Κατανομές χρόνων ζωής Στο προηγούμενο κεφάαιο εξετάαμε την αξιοπιτία μονάδων ή υτημάτων τατικά δηαδή υποθέταμε ότι η μεέτη γίνονταν πάντα ε κάποια υγκεκριμένη

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα