1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού"

Transcript

1 . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας χαρακτηριτικής τιµής του µ, δηλαδή H 0 : µ = µ 0 ενάντια ε µια εναλλακτική υπόθεη H τέτοια ώτε H : µ µ 0 ( ε έλεγχο διπλό) η H : µ > µ 0 (ε µονό έλεγχο) Με βάη την µ.τ. ενός τυχαίου δείγµατος πληθυµού αποφαίζεται ποια υπόθεη είναι η ωτή. Εδώ θα δούµε πως επεκτείνεται η ιδέα ε ένα ευρύ φάµα περιπτώεων. Έτω ότι ένα τυχαίο δείγµα πληθυµού έχει µ.τ. Χµ. Είναι Ε[ ] = µ και var( ) = Πρέπει να υποτεθεί ότι: () To δείγµα µέης τιµής έχει προεγγιτικά κανονική κατανοµή. Αυτό ικανοποιείται εάν : ο πληθυµός έχει κανονική κατανοµή ή το δείγµα είναι χετικά µεγάλο () Η τυπική απόκλιη είναι γνωτή: Η το δείγµα είναι αρκετά µεγάλο (>50) έτι ώτε είναι λογικό να εκτιµηθεί η τυπική απόκλιη από την τ.α. του δείγµατος s Οι δύο αυτές παραδοχές ικανοποιούνται αυτοµάτως για µεγάλα δείγµατα αλλά οι µέθοδοι αυτού του κεφαλαίου εφαρµόζονται και ε πολύ µικρά δείγµατα αν είναι γνωτή η και ο πληθυµός έχει περίπου κανονική κατανοµή. Η µ.τ. του δείγµατος έχει χεδόν κανονική κατανοµή, µε µ.τ. µ και τ.α. άρα µ µ η έχει (προεγγιτικά) τυπική κατανοµή. ηλ. ~Ν(0,) Για να ελεγχθεί H 0 : µ = µ 0 µ Θέτουµε Ζ = Εάν H 0 αληθής, τότε Ζ~Ν(0,) Σχηµατίζεται µια περιοχή απόρριψης αποτελούµενη από τιµές του Ζ που ανταποκρίνονται την αντίθετη υπόθεη H, τέτοια ώτε όταν H 0 αληθές ( Ζ~Ν(0,)) η πιθανότητα το Ζ να βρίκεται εντός αυτής της περιοχής είναι ίη µε το επίπεδο ηµαντικότητας του ελέγχου (υνήθως 5% ή όπως προδιοριτεί). µ Για το δοµένο δείγµα υπολογίζουµε την τιµή του τατιτικού Ζ = Εάν η τιµή βρίκεται την περιοχή απόρριψης τότε η H 0 δεν γίνεται δεκτή ε διαφορετική περίπτωη γίνεται. Υπάρχει πιθανότητα δύο ειδών λαθών την απόφαη αποδοχής:

2 a) απόρριψη της H 0 ενώ είναι αληθής, η πιθανότητα του λάθους αυτού είναι ίη µε το επίπεδο ηµαντικότητας. b) Αποδοχή της H 0 ενώ είναι ψευδής. Παράδειγµα Περιεχόµενο φιάλης κραιού ενός οινοποιείου έχει µ.τ. µ ml και τ.α. = ml. Σε επιθεώρηη του υπουργείου Εµπορίου ελέγχεται η υπόθεη H 0 : µ =700ml κόντρα την H : µ < 700, µετράται το µέο περιεχόµενο ml ενός τυχαίου δείγµατος 50 φιαλών µε επίπεδο ηµαντικότητας 5%. ) για ποια τιµή του γίνεται δεκτή η υπόθεη; ) αν µ = 696ml ποια η πιθανότητα να γίνει αποδεκτή; µ 700 ) έτω Ζ = = / 50 εάν H 0 αληθής τότε Ζ~Ν(0,) και η H ευνοείται από αρνητικές τιµές του Ζ αν Ζ>-.645 τότε γίνεται αποδεκτή η H έτι είναι >-.645 > / 50 > 697.ml 50 ) έτω ότι η έχει προεγγιτικά κανονική κατανοµή µε µ.τ. µ και τ.α.. Αν µ=696ml τότε η έχει µ.τ. 696 και τ.α. 50 έτι έχουµε Ρ(αποδοχή της H 0 ) = Ρ( >697.) = Ρ(Ζ > 50 = Ρ(Ζ >0.7) = =0.383 προκύπτει ότι αν µ=696ml δηλαδή η ποτοποιεία δεν έχει ωτά γεµάτες τις φιάλες, υπάρχει µια πιθανότητα 3.83% να περάουν από τον έλεγχο του Υπουργείου. ιαφορές τις µέες τιµές Έτω δύο πληθυµοί µε µ.τ. µ, µ και τ.α., αντίτοιχα. Είναι δυνατό να ελεγχθεί αν οι πληθυµοί έχουν ίες ή όχι µ.τ. χωρίς να έχουµε γνώη του πραγµατικού µεγέθους των µ.τ. ιαµορφώνεται η υπόθεη H 0 : µ = µ µε εναλλακτική την H : µ µ ή (αν υπάρχουν ενδείξεις ότι ο δεύτερος πληθυµός είναι π.χ. µεγαλύτερος) H : µ < µ. Έτω λοιπόν ότι υπάρχουν δύο δείγµατα (ένα από κάθε πληθυµό) µε µ.τ., αντίτοιχα, τότε έχουµε: προεγγιτικά κανονική µε µ.τ. µ και τ.α. προεγγιτικά κανονική µε µ.τ. µ και τ.α. τότε

3 Ε[ - ] = Ε[ ]-Ε[ ] = µ - µ και λόγω της ανεξαρτηίας των, ιχύει var ( - ) = var ( ) + var( ) = + Άρα η ( - ) είναι προεγγιτικά κανονική µε µ.τ. (µ - µ ) και ( ) ( µ µ ) N(0,) + έτι προκύπτει + άρα Για να ελεγχθεί H 0 : µ = µ Θέτουµε Z = + Εάν H 0 αληθής, τότε Ζ~Ν(0,) Παράδειγµα Έτω δύο θέρετρα Α και Β, τα οποία θέλουµε να υγκρίνουµε τις µέες θερµοκραίες µεηµεριού. Για τυχαίο δείγµα 50 ηµερών το θέρετρο Α είχαµε µέη θερµοκραία 7. 0 C µε τυπική απόκλιη C, ενώ το Β για άλλο τυχαίο δείγµα 80 ηµερών ήταν µέη θερµοκραία 8. 0 C και τυπική απόκλιη C. Για ποιο επίπεδο ηµαντικότητας έχουµε ενδείξεις διαφοράς την µέη θερµοκραία της θερµοκραίας µεηµεριού; Έτω ότι για τα δύο θέρετρα είναι αντίτοιχα: Θέρετρο Α µέη θερµοκραία µ και τυπική απόκλιη Θέρετρο Β µέη θερµοκραία µ και τυπική απόκλιη Ελέγχουµε την H 0 : µ = µ ενάντια την H : µ µ για τυχαία δείγµατα, ηµερών αντίτοιχα έχουµε µέες θερµοκραίες, έτω λοιπόν Z = εάν η H 0 είναι αληθής τότε Ζ~Ν(0,) + είναι ύµφωνα µε τα δεδοµένα = 50, = 80, = 7., = 8. και λόγω του µεγέθους των δειγµάτων µπορεί να δεχτούµε 3.9 και 5.6 έτι προκύπτει Z = = εάν η H 0 είναι αληθής (δηλ. Ζ< -.856) τότε Ρ(Ζ< -.856) = και αφού πρόκειται για υµµετρικό έλεγχο η τιµή Ζ = είναι ηµαντική ε επίπεδο x 3.8% = 6.36%, επειδή η τιµή αυτή είναι µεγαλύτερη του 5% υνήθως δεν λογίζεται ως αρκετή απόδειξη της διαφοράς των µέων θερµοκραιών. Πρέπει να ηµειωθεί ότι η δειγµατοληψία είναι απαραίτητο να είναι ανεξάρτητη για κάθε πληθυµό. Αν είχαν επιλεχτεί 00 τυχαίες ηµέρες κοινές για τα δύο θέρετρα και

4 γινόταν µετρήεις των θερµοκραιών θα είχαµε µεν τυχαίο αλλά όχι ανεξάρτητο δείγµα µε =00 και υνέπεια η χέη var ( - ) = var ( ) + var( ) = + να µην ιχύει απαραίτητα και ο έλεγχος της αρχικής υπόθεης δεν είναι έγκυρος. Σε τέτοιες περιπτώεις δέον όπως χρηιµοποιείται έλεγχος ζεύγους (βλ. ελ. 33). Ακήεις. Έλεγχοι µέης τιµής πληθυµών. Σε χηµική βιοµηχανία παράγονται ρητίνες οι οποίες υκευάζονται ε δοχεία των οποίων τα βάρη έχουν κανονική κατανοµή µε τ.α. 0.5kg. Η µέη τιµή του βάρους δεν πρέπει να είναι λιγότερο από 7.5 kg. Σε τυχαίο δείγµα δοχείων αν βρεθεί το µέο βάρος τους <7.4 kg η παραγωγή ταµατά αυτόµατα.. έτω ότι λαµβάνουµε τυχαίο δείγµα 0 δοχείων, να βρεθεί το επίπεδο ηµαντικότητας του ελέγχου. Να δοθεί η έννοια της τιµής αυτής.. Ποιο το µέγεθος του δείγµατος για επίπεδο ηµαντικότητας 5%.. Οι ταχύτητες εξόδου των βληµάτων από την κάνη όπλου έχουν κανονική κατανοµή µε µέη ταχύτητα µ m/sec και τυπική απόκλιη 5 m/sec. Με µέτρηη της µέης ταχύτητας τυχαίου δείγµατος βληµάτων ελέγχεται η υπόθεη H 0 : µ =600 (ε επίπεδο ηµαντικότητας 5%) ενάντια την H : µ Για ποιες τιµές του είναι αποδεκτή η H 0 ε τυχαίο δείγµα 75 βληµάτων; Αν µ = 605 να δοθεί η µέη ταχύτητα και τυπική απόκλιη του και να βρεθεί η πιθανότητα αποδοχής της H 0.. Ποια η πιθανότητα αποδοχής της H 0 τυχαίο δείγµα 50 βληµάτων όταν µ= 605 ; Σχολιάτε την επιρροή του µεγέθους δείγµατος την πιθανότητα αποδοχής. 3. Σε δύο αποµονωµένα νηιά Α,Β έγινε µια οικολογική έρευνα κατά την οποία παγιδεύτηκαν και καταγράφηκαν χελιδόνια. Για την νήο Α βρέθηκε, ε δείγµα 60 πουλιών, µέο ύψος.8 cm µε τυπική απόκλιη.4 cm, αντίτοιχα για την νήο Β ε δείγµα 45 πουλιών ήταν µέο ύψος. cm και τυπική απόκλιη.6 cm. Υπάρχουν ενδείξεις ότι τα χελιδόνια τα δύο νηιά έχουν διαφορετικά ύψη; 4. Στην περιοχή της Έδεας ε οπωρώνα µε δαµακηνιές κάποια δέντρα ψεκάτηκαν µε ζιζανιοκτόνο. Για τυχαίο δείγµα 80 δέντρων που ψεκάτηκαν µετρήθηκε η απόδοη ε kg και ήταν x = 0, x = 975. Σε τυχαίο δείγµα µη ψεκαµένων δέντρων είχαµε αντίτοιχα y = 0, y = 975. Μπορεί να αποδειχτεί αύξηη της απόδοης λόγω της χρήης ζιζανιοκτόνου; 5. εχόµατε ότι η µέη ηλικία κατά την οποία ένα παιδί αρχίζει να µιλά έχει κανονική κατανοµή µε τυπική απόκλιη.8 µήνες. Τυχαία δείγµατα παιδιών από δύο διαφορετικές περιοχές είχαν τις παρακάτω ηλικίες(ε µήνες) έναρξης οµιλίας: Περιοχή : 4.5,3.9,5.,4.0,3.3,9.8,.9,6.6 Περιοχή : 4.0,0.0,0.5,4.6,.4

5 Υπάρχει ηµαντική διαφορά µεταξύ των δύο περιοχών όον αφορά την ηλικία που τα παιδιά αρχίζουν να µιλούν; 6. Επιλέγονται ανεξάρτητα δείγµατα µεγέθους, πληθυµών µε µέες τιµές µ, µ και τυπική απόκλιη,. Αν δίνονται οι µέες τιµές των δειγµάτων, να δοθεί η µέη τιµή και η τυπική απόκλιη του ( - ). Υποθέτωντας (προεγγιτικά) κανονική κατανοµή του ( - ) να δείξετε ότι ( ) ± είναι τα επίπεδα ηµαντικότητας 95% του (µ - µ ). Μια χηµική αντίδραη επαναλήφθηκε 50 φορές χωρίς την παρουία καταλύτη, και κατόπιν άλλες 00 φορές µε την παρουία καταλύτη. Ο χρόνος αντίδραης χωρίς καταλύτη είχε µέη τιµή 348 sec µε τυπική απόκλιη 6 sec, ενώ µε την παρουία καταλύτη είχαµε µέη τιµή 6 sec µε τυπική απόκλιη sec. Να βρεθούν τα όρια εµπιτούνης 95% της µείωης του χρόνου αντίδραης λόγω της παρουίας του καταλύτη. 7. Θεωρούµε ότι τα δέντρα την νότια πλαγιά ενός λόφου γίνονται ψηλότερα από ότι αυτά που βρίκονται την βόρεια πλαγιά. Τυχαίο δείγµα 60 δέντρων της νότιας πλαγιάς είχε µέο ύψος 8.3 m µε τυπική απόκλιη 4.6 m, ενώ τυχαίο δείγµα από την βόρεια πλαγιά είχε µέο ύψος 6.7 m µε τυπική απόκλιη 3.5 m. Να δειχτεί αν ιχύει η παραδοχή που αρχικά κάναµε και να δοθεί το όριο εµπιτούνης 99% για την διαφορά µεταξύ των µέων υψών. 8. Έτω τυχαίο δείγµα µεγέθους πληθυµού που ακολουθεί την κατανοµή Posso µ µε µέη τιµή µ. Εάν η µέη τιµή δείγµατος είναι εξηγήτε γιατί η µ έχει προεγγιτικά την τυπική κανονική κατανοµή. Για µια µακρά περίοδο ο καθηµερινός αριθµός των πελατών ενός κατατήµατος είχε κατανοµή Posso µε µέη τιµή 75. Στις 0 ηµέρες που ακολούθηαν µια διαφηµιτική καµπάνια του κατατήµατος εξυπηρετήθηκαν υνολικά 565 πελάτες. Υπάρχουν αποδείξεις ότι η διαφηµιτική εκτρατεία αύξηε τον µέο καθηµερινό αριθµό των πελατών; 9. Ο εβδοµαδιαίος αριθµός των ατυχηµάτων ε οριµένο µήκος οδού είχε κατανοµή Posso µε µέη τιµή 5.8. Έγιναν αλλαγές την χάραξη κάποιων διαταυρώεων και ε µια περίοδο 5 εβδοµάδων µετά τις αλλαγές αυτές ο εβδοµαδιαίος αριθµός των ατυχηµάτων ήταν 6.6. Υπάρχει ένδειξη αλλαγής του ρυθµού των ατυχηµάτων (χρηιµοποιήτε επίπεδο ηµαντικότητας %).. Έλεγχοι αναλογιών(τµηµάτων). Αν θεωρηθεί πληθυµός του οποίου ένα ποοτό θ έχει κάποιο χαρακτηριτικό (π.χ. ε ανθρώπινο πληθυµό θ το ποοτό των αριτερόχειρων, ε πληθυµό βιοµηχανικών προϊόντων θ το ποοτό των ελαττωµατικών). Θέλοντας να ελέγξουµε αν το θ παίρνει µια υγκεκριµένη τιµή ελέγχουµε την υπόθεη Η 0 : θ = θ 0

6 ενάντια την Η 0 : θ θ 0. Έτω ότι ε τυχαίο δείγµα µεγέθους, Χ κατέχουν κάποια χαρακτηριτικά. Τότε το Χ ακολουθεί διωνυµική κατανοµή Β(,θ). Είναι λοιπόν Ε[Χ] = θ και var() = θ(-θ). Έτω ότι οι υνθήκες είναι τέτοιες ώτε η διωνυµική κατανοµή Β(,θ) µπορεί να προεγγιτεί από µια κανονική κατανοµή. Τότε η Χ είναι κατά προέγγιη κανονική, θ µε µέη τιµή θ και τυπική απόκλιη θ ( θ ) ώτε Ν(0,) θ θ ( ) Για να ελεγχθεί H 0 : θ = θ 0 θ Θέτουµε Z = θ ( θ ) Εάν H 0 αληθής, τότε Ζ~Ν(0,) Παράδειγµα Γνωρίζουµε ότι % του πληθυµού παρακολούθηε το πρώτο επειόδιο µιας νέας τηλεοπτικής ειράς. Την επόµενη εβδοµάδα ε τυχαίο δείγµα πληθυµού 500 ανθρώπων βρέθηκε ότι 75 από αυτούς παρακολούθηαν το δεύτερο επειόδιο. Υπάρχει διαφορά τα ποοτά τηλεθέαης µεταξύ των δύο επειοδίων(εβδοµάδων); Έτω θ το ποοτό των ανθρώπων που παρακολούθηαν το δεύτερο επειόδιο η υπόθεη µας είναι αν το ποοτό θ είναι το ίδιο µε αυτό του πρώτου επειοδίου. Ελέγχουµε H 0 : θ = 0. ενάντια την H 0 : θ 0. Για τυχαίο δείγµα ανθρώπων, από τους οποίους παρακολούθηαν το δεύτερο 0. επειόδιο έχουµε Z = Εάν H 0 αληθής, τότε Ζ~Ν(0,), µε τα δεδοµένα του προβλήµατος είναι =500,= έτι προκύπτει Z = = Και η Η 0 απορρίπτεται, δηλ. όντως υπάρχει διαφορά ανάµεα τις τηλεθεάεις. ιόρθωη υνέχειας Χρηιµοποιώντας την Κανονική προέγγιη της ιωνυµικής κατανοµής Β(,θ) είναι απαραίτητη µια διόρθωη υνέχειας, όµως λόγω της µικρής επίδραης την τιµή της Ζ αυτή αγνοείται. Κατά τον υπολογιµό του επιπέδου ηµαντικότητας η χρήη διόρθωης δίνει ακριβέτερες τιµές. Π.χ. ας υπολογίουµε το επίπεδο ηµαντικότητας για Χ = 75 το προηγούµενο παράδειγµα. Εάν H 0 αληθής, τότε Χ~ Β(500,0.) και Ρ(Χ 75) = Ρ(Χ>74.5 την κανονική) = Ρ( Ζ > ) = Ρ(Ζ >.995) = = 0.030

7 αφού ο έλεγχος είναι υµµετρικός το αποτέλεµα Χ = 75 είναι ηµαντικό ε επίπεδο.3 % = 4.6 %. ιαφορές τις αναλογίες (τµήµατα) Έτω δύο πληθυµοί, τον πρώτο υπάρχει ένα ποοτό θ µε κάποιο χαρακτηριτικό και τον δεύτερο ένα ποοτό θ µε κάποιο χαρακτηριτικό, για τα οποία θέλουµε αν ελέγξουµε κατά πόο τα δύο ποοτά θ και θ είναι όµοια δηλαδή ελέγχουµε την υπόθεη H 0 : θ = θ. Υποθέτουµε δύο ανεξάρτητα δείγµατα, ένα από κάθε πληθυµό. Στο τυχαίο δείγµα µεγέθους του πρώτου πληθυµού Χ κατέχει κάποιο χαρακτηριτικό, αντίτοιχα το τυχαίο δείγµα µεγέθους του δεύτερου πληθυµού Χ κατέχει το ίδιο χαρακτηριτικό. Τότε Χ ~ Β(,θ ) και η Χ είναι κατά προέγγιη κανονική µε µέη τιµή θ και διαπορά θ (-θ ) προκύπτει ότι το ποοτό του δείγµατος είναι προεγγιτικά κανονικό, Με µέη τιµή θ θ = και διαπορά ( ) ( ) θ θ θ θ = αντίτοιχα η είναι προεγγιτικά κανονική µε Με µέη τιµή θ και διαπορά ( ) ( ) θ θ θ θ = Τότε η έχει µέη τιµή θ = θ = E E E Και αφού τα δείγµατα είναι ανεξάρτητα ( ) ( ) var var var θ θ θ θ + = + = έτι προκύπτει ( ) ( ) ( ) (0,) N + θ θ θ θ θ θ όταν θ = θ τότε (θ - θ ) = 0. Χρηιµοποιούµε το p + + = δηλαδή το υνδυαµένο ποοτό των δύο δειγµάτων για να εκτιµήουµε τις τιµές των θ, θ.

8 Για να ελεγχθεί H 0 : θ = θ Θέτουµε Z = όπου p( p) p( p) + Εάν H 0 αληθής, τότε Ζ~Ν(0,) p = + + Παράδειγµα Μια εταιρεία παράγει χάλυβες προένταης ε δύο ποιότητες κανονική και ειδική. Κάποια τεχνική εταιρεία αγόραε 0 ράβδους κανονικές και 80 ειδικές οι οποίες χρηιµοποιήθηκαν το ίδιο έργο (χωρίς να ληφθεί υπ όψη πιθανή διαφορά). Τρία χρόνια αργότερα 33 κανονικές ράβδοι και 3 ειδικές παρουίααν χαλάρωη (µορφή ατοχίας). Προκύπτουν ικανοποιητικές αποδείξεις (για επίπεδο ηµαντικότητας %) για το ότι οι ειδικές ράβδοι είναι καλύτερες από τις κανονικές ; Υποθέτουµε ότι η πιθανότητα χαλάρωης κατά τα πρώτα 3 χρόνια είναι θ για τις κανονικές ράβδους και θ για τις ειδικές. Αναµένεται οι ειδικές ράβδοι να έχουν χαµηλότερη πιθανότητα χαλάρωης γι αυτό δεν απαιτείται υµµετρικός έλεγχος, έτι ελέγχουµε H 0 : θ = θ ενάντια την H 0 : θ > θ. Εάν χαλαρώουν Χ κανονικές ράβδοι και Χ ειδικές είναι + Z = όπου p = και εάν H 0 αληθής, τότε Ζ~Ν(0,) p( p) p( p) + + η Η ευνοείται από θετικές τιµές του Ζ και µε τα δεδοµένα που έχουµε = 0, = = 33, = 3 άρα p = = Έτι προκύπτει Z = 0 80 = ( 0.3) 0.3( 0.3) Άρα η H 0 αληθής, δηλ. δεν υπάρχουν ικανοποιητικές αποδείξεις ότι η ειδική ποιότητα είναι καλύτερη της κανονικής (για επίπεδο ηµαντικότητας %). Ακήεις. Έλεγχοι αναλογιών. Ρίχνουµε κέρµα 00 φορές και φέρνουµε φορές κορώνα. Υπάρχει απόδειξη ότι το κέρµα είναι πειραγµένο ;. Ρίχνουµε ζάρι 0 φορές και το 6 εµφανίζεται 30 φορές. Για ποιο επίπεδο ηµαντικότητας έχουµε ένδειξη αλλοίωης; Βρείτε κατά προέγγιη το όριο εµπιτούνης 95% της πιθανότητας εµφάνιης του 6 το υγκεκριµένο ζάρι. 3. Οι οργανωτές πουδών δια αλληλογραφίας υποτηρίζουν ότι 80% των µαθητών ολοκληρώνουν µε επιτυχία τις πουδές τους. Κάποιος που πιτεύει ότι το ποοτό αυτό είναι µικρότερο επικοινώνηε µε τυχαίο δείγµα 7 µαθητών και

9 προέκυψε ότι 50 από αυτούς ολοκλήρωαν µε επιτυχία τις πουδές. Ποιο υµπέραµα προκύπτει όον αφορά τους ιχυριµούς των οργανωτών? 4. Από έρευνες είναι γνωτό ότι το ύνολο του πληθυµού 4% φορούν γυαλιά. Σε τυχαίο δείγµα 50 φοιτητών του Πανεπιτηµίου βρέθηκαν 7 διοπτροφόροι, κατά πόο δείχνει αυτό ότι το ποοτό των φοιτητών που φορούν γυαλιά είναι διαφορετικό από αυτό του υνολικού πληθυµού? 5. Κατά την διάρκεια του Αυγούτου ε δηµοκόπηη δείγµατος 000 ατόµων, 376 απάντηαν ότι θα ψήφιζαν την παρούα κυβέρνηη, τον Σεπτέµβριο ε δείγµα 500 ατόµων 5 απάντηαν ότι θα ψήφιζαν την κυβέρνηη. Προκύπτει ηµαντική αλλαγή το ποοτό υποτήριξης της κυβέρνηης? 6. Φαρµακευτική εταιρεία εφεύρε προϊόν που ελπίζει να µεγαλώει τις πιθανότητες ανάρρωης προβάτων που πάχουν από κάποια αθένεια. Στις δοκιµές που έγιναν ένα δείγµα 0 άρρωτων ζώων χωρίτηκε τυχαία ε δύο οµάδες των 60. Η µία οµάδα πήρε το νέο φάρµακο και 48 πρόβατα ανάρρωαν, η άλλη οµάδα πήρε το παλαιό φάρµακο και 37 πρόβατα έγιναν καλά. Υπάρχουν αρκετές αποδείξεις, για επίπεδο ηµαντικότητας %, ότι το νέο φάρµακο αυξάνει τις πιθανότητες ανάρρωης? 7. Εταιρεία που κατακευάζει πυροτεχνήµατα υποτηρίζει ότι κάτω από 0% των προϊόντων της είναι ελαττωµατικά. Κάποιος πελάτης αγόραε 0 πυροτεχνήµατα και 5 από αυτά ήταν ελαττωµατικά. Να εξηγηθεί γιατί δεν µπορούµε να χρηιµοποιήουµε την Κανονική προέγγιη της ιωνυµικής κατανοµής την περίπτωη αυτή. Αν υποτεθεί ότι 0% των προϊόντων είναι ελαττωµατικά να υπολογιτεί η πιθανότητα ότι ε τυχαίο δείγµα 0 πυροτεχνηµάτνω 5 είναι ελαττωµατικά. Γίνεται δεκτή η υπόθεη ότι τα ελαττωµατικά προϊόντα είναι πραγµατικά 0%?. 8. Στη υκευαία χυµού φρούτων αναγράφεται ότι ο όγκος της είναι λίτρα e (όπου e δηλώνει ότι χρηιµοποιείται η µέη τιµή) πρέπει να ικανοποιούνται οι παρακάτω υνθήκες: A) Το µέο περιεχόµενο της υκευαίας δεν πρέπει να είναι µικρότερο από lt B) Λιγότερο από τις 40 υκευαίες µπορεί να περιέχει <970 ml C) Καµία υκευαία δεν επιτρέπεται να περιέχει λιγότερο από 940 ml. Μετρήθηκαν τα περιεχόµενα τυχαίου δείγµατος 500 υκευαιών και το αποτέλεµα δίνεται οµαδοποιηµένο τον παρακάτω πίνακα Περιεχόµενο ε ml Αριθµός υκευαιών Περιεχόµενο ε ml Αριθµός υκευαιών Ελέγξετε µε τη χρήη του επιπέδου ηµαντικότητας 5% εάν: ) Ικανοποιείται η υνθήκη Α ) Ικανοποιείται η υνθήκη Β.

10 .3 Ο έλεγχος της προαρµογής χ Κατανοµές χ Εάν οι Ζ, Ζ,., Ζ είναι ανεξάρτητες τυχαίες µεταβλητές οι οποίες έχουν τυπική Κανονική κατανοµή τότε η ανεξάρτητη µεταβλητή Y = Z + Z + + Z έχει την x κατανοµή (κατανοµή χι τετράγωνο µε βαθµούς ελευθερίας) και είναι µια υνεχής τυχαία µεταβλητή που παίρνει µη-αρνητικές τιµές µε υνάρτηη την f ( x)= Cx e x αν χ 0 f ( x)= 0 αν χ 0 0 ( ) όπου C ταθερά επιλεγµένη ώτε f x dx =. Για κάθε θετικό ακέραιο υπάρχει διαφορετική χ κατανοµή, x. Για παράδειγµα, αν =8 (χ. 4.5) η υνάρτηη της κατανοµής είναι x 3 x f ( x)= Cx e Και αν = 5 (χ. 4.6) η υνάρτηη της κατανοµής είναι x.5 f ( x)= 6 Cx e x Σηµειώτε ότι οι χ κατανοµές έχουν θετική λοξότητα. Η υνάρτηη είναι δύκολο να ολοκληρωθεί (εκτός αν το είναι µικρό και περιττό). Πίνακες χ (βλ. ελ.398) δίνουν την τιµή χ που ξεπερνάται µε πιθανότητα p% από µια ανεξάρτητη µεταβλητή που έχει την κατανοµή (χ.4.7). x αν Υ ~ x τότε Ρ(Υ p >χ) = 00 Για παράδειγµα αν = 3 και p = 5 (χ. 4.8) οι πίνακες δίνουν χ = Αν Υ ~ τότε Ρ(Υ >7.85) = 0.05 x 3 Όταν = 7 και p = 90 από τους πίνακες προκύπτει χ =.833. Αν Υ ~ τότε Ρ(Υ >.833) = x 3

11 Καταλληλότητα της προαρµογής Σε αρκετές περιπτώεις υπολογίτηκαν αναµενόµενες υχνότητες από µια θεωρητική κατανοµή οι οποίες υγκρίθηκαν µε τις πραγµατικά παρατηρούµενες. Εδώ θα δούµε κατά πόο υµφωνούν οι παρατηρούµενες µε τις αναµενόµενες υχνότητες. Έτω ανεξάρτητες δοκιµές µε k πιθανά αποτελέµατα κάθε δοκιµής (π.χ. αν ρίξουµε ζάρι υπάρχουν 6 πιθανά αποτελέµατα,,3,4,5,6, αν επιλέξουµε τυχαία ένα όχηµα ανήκει ε µια από 8 κατηγορίες µοτοικλέτα, αυτοκίνητο, ηµιφορτηγό, λεωφορείο, φορτηγό, νταλίκα, αγροτικό, άλλο ειδικό όχηµα. Μια τυχαία επιλεγµένη οικογένεια κατατάεται ύµφωνα µε τον αριθµό των παιδιών: χωρίς παιδιά, ένα παιδί, δύο παιδιά, περιότερα από δύο παιδιά κ.ο.κ.). Τα πιθανά αποτελέµατα καλούνται κλάεις ή κελιά και έτω ότι τα k πιθανά αποτελέµατα έχουν πιθανότητες P, P,, P κ ώτε p + p + + pk = Τότε για δοκιµές οι αναµενόµενες υχνότητες είναι p, p,.., p k αν θέουµε για τις δοκιµές Χ πόες φορές προκύπτει το πρώτο αποτέλεµα Χ πόες φορές προκύπτει το δεύτερο αποτέλεµα και υνεχίουµε όµοια έως το k αποτέλεµα τότε οι τυχαίες µεταβλητές Χ, Χ,., Χ k εκφράζουν τις παρατηρούµενες υχνότητες και ιχύει k = ορίαµε ότι Χ είναι το πόες φορές προκύπτει το πρώτο αποτέλεµα ε ανεξάρτητες δοκιµές έτι έχουµε Χ ~Β(,p ). Αν τώρα το p δεν είναι πολύ µικρό p τότε η Χ είναι κατά προέγγιη κανονική και ~Ν(0,) όµοια αν p p ( ) υποθέουµε για τις υπόλοιπες µεταβλητές Χ ι ιχύει τελικά για το άθροιµα των τετραγώνων k τυπικών κανονικών µεταβλητών ( p ) ( p ) ( k pk ) p p p p p p ( ) ( ) k ( ) ότι αναµένουµε να έχει την x k κατανοµή. Επειδή οι Χ, Χ,., Χ k δεν είναι ανεξάρτητες (αφού k = ) το επιχείρηµα αυτό δεν ιχύει. Χρειαζόµατε δύο τροποποιήεις για την ωτή θεωρητική αντιµετώπιη, οι παράγοντες (-p ), (-p ),, (-p k ), απαλείφονται από τους παρονοµατές και η κατανοµή γίνεται αντί της δηλαδή η x k x k ( p ) ( p ) ( p ) k p + p + + έχει κατά προέγγιη την xk κατανοµή. Έτι οι Χ, Χ,., Χ k είναι οι παρατηρούµενες υχνότητες(ο) και p, p,.., p k είναι οι αναµενόµενες (Ε) και ( ) µπορεί να γραφεί O E ~ x k E πρέπει να παρατηρήουµε ότι οι Χ, Χ,., Χ k είναι ακέραιοι αριθµοί p k k k

12 ώτε η k = υνεχή κατανοµή ( p ) p x k έχει διακριτή κατανοµή την οποία προεγγίζουµε µε την θα έπρεπε να γίνει µια διόρθωη υνέχειας αλλά την αγνοούµε λόγω της πολυπλοκότητάς της. Έτι θα ελέγξουµε την υπόθεη H 0 ότι οι πιθανότητες P, P,, P κ έχουν υγκεκριµένες τιµές ενάντια την υπόθεη H (οι πιθανότητες έχουν κάποιες άλλες τιµές) ύµφωνα µε τον παρακάτω τρόπο. Υποθέτουµε ότι ιχύει η H 0 και υπολογίζουµε τις αναµενόµενες υχνότητες(ε) ( O E) κατόπιν θέτουµε Y =, το τατιτικό ελέγχου Υ δίνει ένα µέτρο της E διαφοράς µεταξύ των παρατηρούµενων και αναµενόµενων υχνοτήτων. Αν η H είναι αληθής οι Ο και Ε διαφέρουν ηµαντικά, κατά υνέπεια η ποότητα (Ο-Ε) γίνεται µεγάλη, δηλαδή η H ευνοείται από µεγάλες τιµές του Υ και η H 0 θα απορρίπτεται όταν το Υ λαµβάνει µεγάλες τιµές. Εάν η H 0 είναι αληθής τότε Υ ~ x k και µε τη χρήη πινάκων χ επιλέγουµε την περιοχή απόρριψης για το επιθυµητό επίπεδο ηµαντικότητας (υνήθως 5%). Παράδειγµα Βιοµηχανία υποδηµάτων κατακευάζει παιδικά παπούτια ε πέντε µεγέθη Α,B,C,D,E τις παρακάτω αναλογίες: A: % B: 8% C: 30% D: 40% E: 0% Σε τυχαίο δείγµα 500 παιδιών βρέθηκαν για κάθε κατηγορία µεγέθους: A: B: 46 C: 7 D: 78 E: 93 Προκύπτει από το δείγµα αυτό ότι τα µεγέθη παπουτιών των παιδιών είναι διαφορετικά από αυτά που υπέθεε ο κατακευατής? Στο υγκεκριµένο παράδειγµα ορίζουµε ως δοκιµή την επιλογή ενός παιδιού και την κατάταξή του ε µία από τις πέντε κλάεις µεγεθών (αυτό επαναλαµβάνεται για ολόκληρο το δείγµα των 500 παιδιών). Ελέγχονται οι υποθέεις: H 0 τα ποοτά είναι όντως A: % B: 8% C: 30% D: 40% E: 0% H τα παρατηρούµενα ποοτά είναι διαφορετικά από τα αναµενόµενα. Έτω λοιπόν ότι H 0 αληθής έχουµε: Κλάη µεγέθους A B C D E Πιθανότητα Αναµενόµενη υχνότητα (Ε) Παρατηρούµενη υχνότητα (Ο) ( O E) E

13 ( O E) Θέτουµε Y = και αφού E υπάρχουν 5 κλάεις, αν η H 0 αληθής τότε Υ ~. Είναι όµως x 4 Y = = 7.5 άρα η H0 γίνεται αποδεκτή. Το δείγµα δεν µας δίνει ικανοποιητικές αποδείξεις (το επίπεδο ηµαντικότητας 5%) για να υποτηρίξουµε διαφορές µεταξύ των ποοτών που παρατηρήθηκαν και αυτών που υπέθεε ο κατακευατής. Όταν θέλουµε να ελέγξουµε την υπόθεη H 0 η οποία όµως δεν έχει αρκετές πληροφορίες ώτε να υπολογιτούν οι πιθανότητες P, P,, P κ είναι απαραίτητο να χρηιµοποιηθούν οι παρατηρούµενες υχνότητες Χ, Χ,., Χ k για εκτιµηθούν παράµετροι του πληθυµού (π.χ. η µέη τιµή) προτού µπορέουµε να εκτιµήουµε τις πιθανότητες και κατά υνέπεια τις αναµενόµενες υχνότητες. Για παράδειγµα αν προαρµόζουµε µια κατανοµή Posso ε κάποια δεδοµένα, πρώτα βρίκουµε την µέη τιµή του δείγµατος, κατόπιν υπολογίζουµε την πιθανότητα η κατανοµή Posso να έχει αυτή τη µέη τιµή. k ( p ) Στην οι πιθανότητες p I εξαρτώνται από τις Χ, Χ,., Χ k άρα είναι και = p αυτές ανεξάρτητες µεταβλητές, µια ωτή θεωρητική αντιµετώπιη γίνεται λοιπόν εξαιρετικά πολύπλοκη. k ( p ) Σηµειωτέον ότι η έχει (προεγγιτικά) την χ κατανοµή, αλλά για = p κάθε φορά που χρηιµοποιούνται τα δεδοµένα για την εκτίµηη µιας παραµέτρου πρέπει να αφαιρείται ένας βαθµός ελευθερίας. Ο έλεγχος προαρµογής χ εφαρµόζεται ε ένα ευρύ φάµα περιπτώεων εάν τηρούνται οι παρακάτω όροι: () Είναι δυνατή η αναγνώριη ανεξάρτητων δοκιµών οι οποίες µπορεί να καταταγούν ε k πιθανές κλάεις. () Οι κλάεις πρέπει να ανταποκρίνονται ε όλα τα ενδεχόµενα (ακόµη κι αν δεν υπάρχουν δεδοµένα για κάποιες). () Καµία από τις αναµενόµενες υχνότητες δεν πρέπει να είναι µικρότερη από 5 (αν είναι απαραίτητο υνδυάζουµε περιότερες κλάεις ε µία). Για να ελεγχθεί υ υπόθεη H 0 υπολογίζουµε τις αναµενόµενες υχνότητες, θεωρώντας ότι η H 0 είναι αληθής και θέτουµε ( ) = O E Y E Αν χρηιµοποιήθηκαν k κλάεις για τον υπολογιµό της Υ και από τη χρήη των δεδοµένων προέκυψαν m παράµετροι πληθυµού τότε Όταν η H 0 είναι αληθής Υ ~ x k m Σηµειώνεται ότι οι παρατηρούµενες υχνότητες (Ο) είναι πραγµατικές υχνότητες εµφάνιης και πρέπει κατά υνέπεια να είναι ακέραιοι αριθµοί, αντίθετα οι αναµενόµενες υχνότητες (Ε) δεν είναι απαραίτητο να είναι ακέραιοι. Παράδειγµα 3 Να ελεγχθεί (το επίπεδο ηµαντικότητας %) η προαρµογή µιας κατανοµής Posso τα παρακάτω δεδοµένα

14 Αριθµός Η/Υ που πωλήθηκαν ε µια ηµέρα Αριθµός ηµερών Στο παράδειγµα αυτό µια δοκιµή είναι να εξετατεί µια ηµέρα η οποία κατόπιν θα καταταγεί ε µια κλάη ανάλογα µε τον αριθµό των υπολογιτών που πωλήθηκαν, η διαδικαία θα επαναληφθεί 00 φορές (όες ο αριθµός των ηµερών). Γίνεται ο έλεγχος των υποθέεων H 0 είναι κατανοµή Posso Ενάντια τον έλεγχο H δεν είναι κατανοµή Posso. Η υπόθεη H 0 είναι κατανοµή Posso είναι αρκετή για τον υπολογιµό των πιθανοτήτων αφού είναι απαραίτητη η γνώη της µέης τιµής. 560 Υπολογίζουµε την µέη τιµή του δείγµατος = xf x = =. 8 καθώς και τις f 00 πιθανότητες, και τις αναµενόµενες υχνότητες της κατανοµής Posso (.8). Είναι απαραίτητη η ειαγωγή µιας κλάης περιότερες από 9 πωλήεις ώτε να καλύπτονται τα ενδεχόµενα να είναι υλλεκτικά εξαντληµένα. Αριθµός πωλήεων Πιθανότητα από Posso (.8) Αναµενόµενη υχνότητα Αριθµός πωλήεων >9 Πιθανότητα από Posso (.8) Αναµενόµενη υχνότητα Λόγω του ότι οι τέερις τελευταίες κλάεις έχουν αναµενόµενες υχνότητες της οµαδοποιούµε ε µία κλάη περιότερες από 7 πωλήεις Αριθµός πωλήεων Αναµενόµενη υχνότητα (Ε) Παρατηρούµενη υχνότητα (Ο) ( O E) E ( O E) Θέτουµε Y = E Επειδή υπάρχουν 8 κλάεις και τα δεδοµένα χρηιµοποιήθηκαν για την εκτίµηη της µέης τιµής ο αριθµός των βαθµών ελευθερίας είναι 8--=6 Εάν η H 0 είναι αληθής τότε Υ ~ Είναι Υ = =8.7 Άρα η H 0 απορρίπτεται, υπάρχουν πολύ ιχυρά πειτήρια ότι οι καθηµερινές πωλήεις υπολογιτών δεν ακολουθούν κατανοµή Posso. x 6 9

15 Παράδειγµα 3 Να εξετατεί αν το παρακάτω δείγµα µπορεί ύµφωνα µε την λογική να προέκυψε από µια κανονική κατανοµή. Ηλιοφάνεια µηνός Ιουνίου (ακέραιες τιµές) Αριθµός ετών 3 6 Ηλιοφάνεια µηνός Ιουνίου (ακέραιες τιµές) Αριθµός ετών 0 5 Στο παράδειγµα αυτό µια δοκιµή είναι να εξετατεί ένα έτος το οποίο κατόπιν θα καταταγεί ε µια κλάη ανάλογα µε τον αριθµό των ωρών ηλιοφάνειας, η διαδικαία θα επαναληφθεί 80 φορές (όες ο αριθµός των ετών). Γίνεται ο έλεγχος των υποθέεων H 0 είναι κανονική κατανοµή Ενάντια τον έλεγχο H δεν είναι κανονική κατανοµή. (Τα υγκεκριµένα δεδοµένα εξετάτηκαν και την παράγραφο 3.5 βλ. ελ. 90). Βρήκαµε την µέη τιµή x = και τυπική απόκλιη s = του δείγµατος και υπολογίτηκαν οι αναµενόµενες υχνότητες για µια κανονική κατανοµή µε αυτά τα δεδοµένα, οι υπολογιµοί δίνονται τον πίνακα. Ώρες ηλιοφάνειας < >0.5 Αναµενόµενη υχνότητα Παρατηρούµενη υχνότητα ( O E) E Θέτουµε Y = ( O E) E ( O E) Επειδή υπάρχουν 6 κλάεις για τον υπολογιµό του και τα δεδοµένα E χρηιµοποιήθηκαν για την εκτίµηη της µέης τιµής καθώς και της τυπικής απόκλιης ο αριθµός των βαθµών ελευθερίας είναι 6--=3 Εάν η H 0 είναι αληθής τότε Υ ~ Είναι Υ = =.8 Άρα η H 0 γίνεται αποδεκτή, η κανονική κατανοµή προαρµόζεται ικανοποιητικά τα δεδοµένα. x 3

16 Πίνακες υχέτιης Ας θεωρήουµε πληθυµό που µπορεί να καταταχθεί µε δύο διαφορετικούς τρόπους (π.χ. ένας άνθρωπος µπορεί να καταταγεί ύµφωνα µε το χρώµα των µατιών : γαλάζιο ή κατανό αλλά και ύµφωνα µε το χρώµα των µαλλιών: κατανό, ξανθό, κόκκινο). Καλούµατε να απαντήουµε αν οι δύο κατατάξεις χετίζονται κατά κάποιο τρόπο µεταξύ τους (π.χ. οι γαλανοµάτηδες είναι και ξανθοί?), ή είναι οι κατατάξεις ανεξάρτητες µεταξύ τους? Σε τέτοιε περιπτώεις η αρχική υπόθεη είναι τέτοια ώτε δηλώνει την µηχετικότητα µεταξύ των κατατάξεων (δηλ. ότι είναι ανεξάρτητες µεταξύ τους). Αν αντίθετα υποθέουµε πιθανή υχέτιη δεν είναι δυνατό να γίνουν ακριβείς υπολογιµοί εκτός αν γνωρίζουµε επακριβώς τον τρόπο υχέτιης. Παράδειγµα 4 Σε τυχαίο δείγµα 60 αξιωµατικών των Ενόπλων υνάµεων, καταγράφηκε ο κλάδος τον οποίο ανήκουν (Στρατός Ξηράς, Ναυτικό, Αεροπορία) καθώς και ο τύπος του Λυκείου από το οποίο αποφοίτηαν ( ηµόιο, Ιδιωτικό). Τα αποτελέµατα της καταγραφής δίνονται τον παρακάτω πίνακα υχέτιης. ηµόιο Λύκειο Ιδιωτικό Λύκειο Σύνολα Στρατός Ξηράς Ναυτικό Αεροπορία Σύνολα Όπου για παράδειγµα 5 αξιωµατικοί του δείγµατος είναι µέλη του Στρατού Ξηράς και αποφοίτηαν από ηµόιο Λύκειο. Να υπολογιτούν οι αναµενόµενες υχνότητες µε βάη την υπόθεη ότι δεν υπάρχει υχέτιη µεταξύ του κλάδου των Ενόπλων υνάµεων και του τύπου του Λυκείου αποφοίτηης. Αν οι δύο κατατάξεις είναι ανεξάρτητες τότε έχουµε π.χ. Ρ(Ναυτικό και ηµόιο Λύκειο) = Ρ(Ναυτικό) * Ρ( ηµόιο Λύκειο) 5 Από τη τιγµή που 5 αξιωµατικοί ανήκουν το Ναυτικό προκύπτει Ρ(Ναυτικό)= και αφού 06 αξιωµατικοί αποφοίτηαν από ηµόιο Λύκειο Ρ( ηµ.λύκειο)= και προκύπτει Ρ(Ναυτικό και ηµόιο Λύκειο)= άρα η αναµενόµενη υχνότητα Ναυτικό και ηµόιο Λύκειο είναι 60 = κατά τον ίδιο τρόπο είναι για την αναµενόµενη υχνότητα Ναυτικό και Ιδιωτικό Λύκειο = 7. κ.ο.κ προκύπτουν οι αναµενόµενες υχνότητες που δίνονται τον παρακάτω πίνακα.

17 Ε Ναυτικό Στρατός Ξηράς Αεροπορία ηµόιο Λύκειο Ιδιωτικό Λύκειο Τώρα µπορούµε να ελέγξουµε την αρχική υπόθεη (δεν υπάρχει υχέτιη) κάνοντας µια δοκιµαία προαρµογής χ, µε την ύγκριη των αναµενόµενων υχνοτήτων (Ε) µε αυτές που πραγµατικά παρατηρήθηκαν (Ο) και δίνονται τον πρώτο πίνακα. Στο υγκεκριµένο παράδειγµα µια δοκιµή είναι η επιλογή ενός αξιωµατικού και η κατάταξή του ε ένα από τα έξη κελιά του πίνακα, αυτό επαναλαµβάνεται 60 φορές (όες και το µέγεθος του δείγµατος). Κατά τον υπολογιµό των αναµενόµενων υχνοτήτων χρηιµοποιήαµε τα δεδοµένα για να υπολογιτούν οι πιθανότητες Ρ(Ναυτικό) =, Ρ(Στρατός Ξηράς) =60, Ρ( ηµόιο Λύκειο) =60 60 Μένει να υπολογιτούν οι εναποµείναες πιθανότητες Ρ(Αεροπορία) =- Ρ(Ναυτικό)- Ρ(Στρατός Ξηράς) και Ρ(Ιδιωτικό Λύκειο) = - Ρ( ηµόιο Λύκειο) Προκύπτει λοιπόν ότι τα δεδοµένα χρηιµοποιήθηκαν 3 φορές, και αφού έχουµε ένα πίνακα υχέτιης 3 δηλ. έξη κλάεις ο αριθµός των βαθµών ελευθερίας είναι υνεπώς 6 3 = Γενικά για ένα πίνακα υχέτιης r s έχουµε rs κλάεις (κελιά). Ακολούθως τα δεδοµένα χρηιµοποιούνται για την εκτίµηη (r-) πιθανοτήτων για την κατάταξη των ειρών του πίνακα και (s-) πιθανοτήτων για την κατάταξη που δίνεται τις τήλες του πίνακα, έτι προκύπτει ο αριθµός των βαθµών ελευθερίας rs (r - ) (s - ) = rs r s + = (r - )(s -) Για ένα πίνακα υχέτιης r s Προκειµένου να ελεγχθεί η H 0 : δεν υπάρχει υχέτιη, θέτουµε ( ) = O E Y E Όταν η H 0 είναι αληθής τότε Υ ~ x ( r )( s) Παράδειγµα 5 Να δειχθεί αν από τα δεδοµένα που δίνονται τον πίνακα υχέτιης του προηγούµενου παραδείγµατος προκύπτουν αποδείξεις υχέτιης µεταξύ του κλάδου των αξιωµατικών του Στρατού Ξηράς και του τύπου Λυκείου αποφοίτηης. Ελέγχουµε την υπόθεη H 0 : δεν υπάρχει υχέτιη Ενάντια την υπόθεη H : υπάρχει υχέτιη Οι πραγµατικά παρατηρούµενες υχνότητες εµφάνιης δίνονται τον αρχικό πίνακα υχέτιης. Υποθέτοντας την H 0 οι αναµενόµενες υχνότητες υπολογίζονται όπως είδαµε το προηγούµενο παράδειγµα 4.

18 Για κάθε κλάη υπολογίζουµε ( O E ) ηµόιο Λύκειο είναι π.χ., E ( O E) = E για την κλάη αξιωµατικοί Ναυτικού και ( ) 33.8 =.37 και οµοίως για τις άλλες. Παρατηρούµενες υχνότητες Αναµενόµενες υχνότητες ( O E) E ηµόιο Ιδιωτικό Σύνολο ηµόιο Ιδιωτικό ηµόιο Ιδιωτικό Ναυτικό Στρατός Ξηράς Αεροπορία Σύνολο ( ) Έτω λοιπόν = O E Y αφού έχουµε πίνακα υχέτιης 3 ο αριθµός των E βαθµών ελευθερίας είναι = εάν η υπόθεη H0 είναι αληθής τότε Υ ~ x, έχουµε Υ = =6.4 Άρα η υπόθεη H 0 απορρίπτεται. Υπάρχει λοιπόν κάποια ένδειξη (το επίπεδο ηµαντικότητας 5%) για την υχέτιη µεταξύ των αξιωµατικών του κλάδου του Στρατού Ξηράς και του τύπου του Λυκείου από το οποίο αποφοίτηαν. ( O E) Η υψηλότερη τιµή του,.69 εµφανίζεται την κλάη Ναυτικό και E Ιδιωτικό Λύκειο. Συγκρίνοντας τις παρατηρούµενες µε τις αναµενόµενες υχνότητες (Ο =4, Ε =7.) γίνεται αντιληπτό ότι οι αξιωµατικοί του Ναυτικού που αποφοίτηαν από Ιδιωτικό Λύκειο είναι περιότεροι από ότι θα περιµέναµε. Ακήεις.3 Κατανοµές χ και καταλληλότητα προαρµογής. Χρηιµοποιώντας τους πίνακες της κατανοµής χ. οθέντος Υ ~, να υπολογιτεί η τιµή του a όταν Ρ(Υ >a) =0.05 x 5. οθέντος Υ ~, να υπολογιτεί η τιµή του b όταν Ρ(Υ <b) =0.0 x 0

19 . οθέντος Υ ~, να υπολογιτεί η Ρ(Υ >0.09) x 8 v. οθέντος Υ ~, να υπολογιτεί η Ρ(8.94<Υ<50.89) x 30 v. οθέντος Υ ~, και Ρ(Υ >0.64) =0.0, να βρεθεί η τιµή του x v. οθέντος Υ ~, να υπολογιτεί η τιµή του c όταν Ρ(Υ >c) =0.005 x x 50 v. οθέντος Υ ~, να υπολογιτεί η τιµή του d όταν Ρ(Υ >d) =0.05. Χρηιµοποιώντας τους πίνακες κανονικών κατανοµών, µε δεδοµένο ότι η Ζ είναι µια τυπική κανονική µεταβλητή, να βρεθούν:. Η Ρ(Ζ <.706). Η τιµή της a όταν Ρ(Ζ > a) =0.0 Να ελεγχθούν τα αποτελέµατα µε τη χρήη πινάκων χ (η Ζ έχει την x κατανοµή). 3. Η τυχαία µεταβλητή Υ ακολουθεί την κατανοµή χ. Να βρεθούν µε ολοκλήρωη :. Η ταθερά C της υνάρτηης Υ. Η τιµή της Ρ(Υ > 6). Η τιµή της a όταν Ρ(Υ > a) =0.09 v. Ο µέος όρος της Υ Να ελεγχθούν οι απαντήεις των () και () µε τη χρήη πινάκων χ. 4. Η τυχαία µεταβλητή Υ ακολουθεί την κατανοµή x 4, να βρεθεί η ταθερά C της υνάρτηης κατανοµής της και να δείξετε ότι η cdf της Υ είναι η x F( x) = ( x + ) e (για x 0) Έπειτα να βρεθούν οι Ρ(Υ < ) και Ρ(Υ > 8). 5. Η τυχαία µεταβλητή Υ ακολουθεί την κατανοµή. Με τη χρήη της Y = Z + Z + + Z [ Z ] E = και var( ) = x ε υνδυαµό µε τα αποτελέµατα Z (βλ. άκηη 3.4, ερώτηµα 6) να δειχθεί ότι η µεταβλητή Υ έχει µέη τιµή και απόκλιη. Να εξηγηθεί γιατί µεταβλητή Υ έχει προεγγιτικά την κανονική κατανοµή όταν το λαµβάνει µεγάλες τιµές. Εάν =30, µε τη χρήη της κανονικής προέγγιης να βρεθούν τα a και b ώτε Ρ(Υ < a)=0.05 και Ρ(Υ > b)=0.05. Να υγκριθούν οι τιµές που προκύπτουν µε τις πραγµατικές (οι οποίες δίνονται τους πίνακες χ. 6. Γνωρίζουµε ότι η κανονική προέγγιη της κατανοµής x (βλ. ερώτηµα 6) δεν είναι ικανοποιητική εάν το δεν είναι αρκετά µεγάλο. Μια καλύτερη προέγγιη δίνεται από την : Υ ~ x, τότε η Y είναι προεγγιτικά κανονική µε µέη τιµή και τυπική απόκλιη. Χρηιµοποιώντας την προέγγιη αυτή :. Εάν Υ ~, βρείτε τα a και b ώτε Ρ(Υ < a) =0.05 και Ρ(Υ > b) =0.05 x 30. Εάν Υ ~, βρείτε το c ώτε Ρ(Υ > c) =0.0. x 50

20 7. Ρίχνουµε ένα ζάρι 00 φορές µε τα ακόλουθα αποτελέµατα Αριθµός που εµφανίζεται Συχνότητα εµφάνιης Υπάρχουν ενδείξεις ότι το ζάρι είναι πειραγµένο? 8. Σύµφωνα µε θεωρητικές αναλύεις οι γενετικοί τύποι A,B,C,D απαντώνται τους απογόνους ενός υγκεκριµένου πληθυµού µε αναλογία :::. Σε τυχαίο δείγµα 50 απογόνων του πληθυµού είχαµε 9 τύπου A, 66 τύπου B, 4 τύπου C, και 3 τύπου D. Μπορούµε να ιχυριτούµε ότι η θεωρία αληθεύει? 9. Οι υχνότητες εµφάνιης των ψηφίων τις πρώτες 800 θέεις του π = είναι αυτές που φαίνονται τον παρακάτω πίνακα Ψηφίο εκαδικές θέεις εκαδικές θέεις Να ελεγχθεί η υπόθεη ότι όλα τα ψηφία έχουν ίδια πιθανότητα εµφάνιης.. Με τη χρήη των πρώτων 400 ψηφίων. Με τη χρήη των πρώτων 800 ψηφίων. 0. Σε δείγµα οικογενειών που έχουν 6(έξη) παιδιά ο αριθµός των κοριτιών ήταν Αριθµός κοριτιών Αριθµός οικογενειών Θεωρώντας ίες πιθανότητες ύπαρξης αγοριών και κοριτιών να υπολογιτούν οι αναµενόµενες υχνότητες εµφάνιης και η ποιότητα προαρµογής.. Αφού προαρµόετε µια ιωνυµική κατανοµή τα παρακάτω δεδοµένα να ελεγχθεί η ποιότητα προαρµογής. Αριθµός ηµερών µε βροχή ε µία εβδοµάδα Αριθµός εβδοµάδων Να ελεγχθεί ο ιχυριµός ότι το παρακάτω δείγµα είναι ε ακολουθία µε κάποιο που έχει παρθεί από µια κατανοµή Posso µε µέη τιµή.5.

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012 Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2 Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στην ενότητα «Από τις Πιθανότητες τη Στατιτική» εξηγήαμε ότι τη Στατιτική «όλα αρχίζουν από τα

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων II. Στατιστική IΙ, Τμήμα Ο.Ε. ΑΠΘ. Χ. Εμμανουηλίδης, 1

Έλεγχος Υποθέσεων II. Στατιστική IΙ, Τμήμα Ο.Ε. ΑΠΘ. Χ. Εμμανουηλίδης, 1 Έλεγχος Υποθέεων II Στατιτική IΙ, Τμήμα Ο.Ε. ΑΠΘ Στατιτική ΙΙ Συμπεραματολογία Βαιμένη ε Ένα Δείγμα: Έλεγχοι υποθέεων Μέρος ο Εϖιλογή Μεγέθους είγατος για Έλεγχο του Μέου - 1 - Παράδειγα Δειγματοληψία

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα

[ ] = ( ) ( ) ( ) = { }

[ ] = ( ) ( ) ( ) = { } Πρόταη: Δίνεται η θετική τμ, δηλαδή 1 [ ] ανιότητα Mrkov: P{ } P > = Εάν >, έχουμε την Εάν υποθέουμε ότι η ~ f είναι υνεχής, τότε για κάθε > ιχύει ότι x f x dx x f x dx f x dx P [ ] = = { } Παρατηρείτε

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 1 ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΣΗΜΕΙΩΣΕΙΣ ( Κυρίως επιλεγµένα και ελεύθερα µεταφραµένα

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ 1 1. ΕΙΣΑΓΩΓΗ 1. Η Αγορά Κεφαλαίου Η αγορά κεφαλαίου αποτελεί ένα από τους ηµαντικότερους χρηµατοοικονοµικούς θεµούς

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Ελληνικό Στατιτικό Ιντιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιτικής (005) ελ.57-65 ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Γεώργιος Μενεξές, Άγγελος Μάρκος, Γιάννης Παπαδημητρίου

Διαβάστε περισσότερα

PDF processed with CutePDF evaluation edition

PDF processed with CutePDF evaluation edition Κατανοµές ιαφάνειες ιαλέξεων - 0-0303 Περιεχόµενα της Ενότητας ειγµατοληψία και Κατανοµές Ενότητα η. ειγµατοληψία Πιθανοτικέςκαι και µη πιθανοτικές µέθοδοι. Εκτιµητές, ηµειακές εκτιµήεις, φάλµα δειγµατοληψίας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών

ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Καθηγητή Κων/νου Ευταθίου, Εργατήριο Αναλυτικής Χηµείας Πανεπιτηµίου Αθηνών Η χρηιµότητα ενός αναλυτικού αποτελέµατος ποτέ δεν µπορεί να είναι καλύτερη από την ποιότητα του

Διαβάστε περισσότερα

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών Διαφορές μεταξύ Αφαλίεων Ζωής και Γενικών Ζωής Αφαλιμένο κεφάλαιο (γνωτό Ένα υμβάν 3 Μικρή εξέλιξη ζημιάς (πχ άνατος, το μααίνεις αμέως Γενικές Μπορεί να είναι γνωτό, μπορεί και όχι (πχ το πίτι αν κατατραφεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

Συµπληρωµατικές Ασκήσεις Στατιστικής ΙΙΙ

Συµπληρωµατικές Ασκήσεις Στατιστικής ΙΙΙ Boutsks MV 3, Σηµειώεις Στατιτικής ΙΙΙ, Τµήµα Οικονοµικής Επιτήµης, Πανεπιτήµιο Πειραιώς Συµπηρωµατικές Ακήεις Στατιτικής ΙΙΙ ΚΕΦΑΛΑΙΑ -3 Άκ Η κατανοµή των βαρών των µαθητών ενός χοείου είναι κανονική

Διαβάστε περισσότερα

6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Εισαγωγή. 6.2 Μεταβλητότητα και Τυχαιότητα. 6.3 Κλάσεις Μεταβλητότητας

6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Εισαγωγή. 6.2 Μεταβλητότητα και Τυχαιότητα. 6.3 Κλάσεις Μεταβλητότητας Σχεδιαµός και Έλεγχος Συτηµάτων Παραγωγής 1 6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Ειαγωγή Η µεταβλητότητα (vibiliy) είναι η ποιότητα της µη οµοιοµορφίας ε µια κλάη οντοτήτων. Σε υτήµατα παραγωγής υπάρχουν

Διαβάστε περισσότερα

όπου Z 1,Z 2,,Z n ανεξ. τ.μ. που ακολουθούν N(0,1), δηλαδή μ Δt + σ Δt Zi σ 2 Δt) για κάποιες σταθερές μ, σ 2. Οι τ.μ. Δ t Z1, Δt

όπου Z 1,Z 2,,Z n ανεξ. τ.μ. που ακολουθούν N(0,1), δηλαδή μ Δt + σ Δt Zi σ 2 Δt) για κάποιες σταθερές μ, σ 2. Οι τ.μ. Δ t Z1, Δt 5.3. Προομοίωη τιμών χρηματοοικονομικών προϊόντων Σε αυτή την παράγραφο θα εξετάουμε ένα μοντέλο που μπορεί να χρηιμοποιηθεί για την μελέτη της εξέλιξης των τιμών χρηματοοικονομικών προϊόντων (π.χ. μετοχές,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes ΚΕΑΛΑΙΟ 6 Τιμολόγηη Δικαιμάτν ε υνεχή χρόνο Το μοντέλο τν Blk nd hol 6.. Το Μοντέλο τν Blk hol ή Blk hol Mon Έτ μια χρηματοοικονομική αγορά εξεταζόμενη το χρονικό διάτημα [0 ] για κάποιο δεδομένο Τ. Συμβολίζουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίη και Πολιτικές Ανάπτυξης και Συνοχής 0ο Τακτικό Επιτημονικό

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Ακαδηµαϊκό έτος 015-016 Εαρινό Εξάµηνο ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Α.Α.Δράκος Διάλεξη 5 η 6 η. Υποδειγµα Ιορροπίας τις Κεφαλαιαγορές Υπόδειγµα Αποτίµηης Περιουιακών Στοιχείων Γραµµή Αξιογράφων Συντελετής βήτα

Διαβάστε περισσότερα

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ Μάριος Βαφειάδης Αν. Καθηγητής ΤΥΤΠ-ΑΠΘ Θεαλονίκη 0 ΕΙΣΑΓΩΓΗ...4 I. ΜΕΤΡΗΣΕΙΣ...5. ΓΕΝΙΚΑ...5. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΕΩΝ...6 3. ΚΑΝΟΝΕΣ ΓΙΑ ΕΠΙΤΥΧΕΙΣ

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής Κεφάαιο Αξιοπιτία μονάδων - υτημάτων το χρόνο Κατανομές χρόνων ζωής Στο προηγούμενο κεφάαιο εξετάαμε την αξιοπιτία μονάδων ή υτημάτων τατικά δηαδή υποθέταμε ότι η μεέτη γίνονταν πάντα ε κάποια υγκεκριμένη

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ Μετάδοη Τάεων λόγω Επιβολής Φορτίων Σελίδα ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ 8. Ειαγωγή Ένα ύνηθες αποτέλεµα των έργων Πολιτικού Μηχανικού είναι η επιβολή φορτίων το έδαφος

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα

Πιθανότητες & Τυχαία Σήματα Πιθανότητες & Τυχαία Σήματα Συχέτιη Διγαλάκης Βαίλης Η έννοια της υχέτιης Για τυχαίες μεταβλητές ΧΥ: Συχέτιη: ΕΧ Υ Συμμεταβλητότητα: Συντελετής υχέτιης: ρ / Έτω ΧΥ Τ.Μ. με ΥΧb και ΕΧμ Χ ΕΧ-μ Χ Χ Υπολογίτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

Μια ακόμη πιο δύσκολη συνέχεια.

Μια ακόμη πιο δύσκολη συνέχεια. Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο

Διαβάστε περισσότερα

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις ρ.χ. Στρουθόπουλος, e-mail: stch@teise.g ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ

Διαβάστε περισσότερα

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006 ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 006 ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΕΣ: ΣΠΥΡΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΑΛΗΟΥ ΧΡΥΣΑΝΘΗ

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Κεφάλαιο 1 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Ο προδιοριμός του φυικού εντατικού πεδίου έχει α κοπό να δώει αφενός μεν τη βαική γνώη για το πεδίο των τάεων, αφετέρου δε τη υγκεκριμένη γνώη των υνοριακών υνθηκών που

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα ΒΕΣ 6 Προαρµοτικά Συτήµατα τις Τηλεπικοιννίες Θερία Στοχατικών Σηµάτν: Εκτίµηη φάµατος, Παραµετρικά µοντέλα Ειαγγή Μοντέλα Στοχατικών Βιβλιογραφία Ενότητας uto []: Κεφάλαιo Widrow [985]: Chaptr 3 Hayi

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευστών Εργαστήριο Θερµικών Στροβιλοµηχανών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευστών Εργαστήριο Θερµικών Στροβιλοµηχανών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευτών Εργατήριο Θερµικών Στροβιλοµηχανών Υπολογιτικό θέµα : «Η βέλτιτη χεδίαη πτερύγωης τροβιλοµηχανής και η δηµιουργία χετικού µεταπροτύπου»

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΤΟΝ ΚΥΚΛΟ ΤΟΥ ΑΝΘΡΑΚΑ ΣΠΑΤΑΛΟΥ ΕΛΕΑΝΑ ΑΜ: /4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΙΟΥΝΙΟΣ 7

Διαβάστε περισσότερα

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής.

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. η Εφαρμογή (Το επιτυχημένο service) Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. Νεαρός τενίτας που έχει ύψος h ν =,6m εκτελεί service και το μπαλάκι φεύγει από ύψος h =,4m πάνω από το κεφάλι του με

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΕΦΑΛΑΙΟ 4 ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ειαγωγή Υπάρχουν προβήµατα πιθανοτήτων τα οποία θα πρέπει να µεετηθούν δύο ή περιότερες τυχαίες µεταβητές από κοινού για να µπορεί να περιγραφεί επαρκώς και πήρως το αντίτοιχο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Το χήμα που ακολουθεί είναι το φάμα μάζας ενός κατιόντος Α +. Υπολογίτε το ατομικό βάρος του τοιχείου Α και βρείτε για ποιο τοιχείο πρόκειται. Εκατοτιαία φυική αναλογία

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΠΡΟΓΝΩΣΗΣ ΚΑΙ ΑΝΑΛΥΣΗΣ ΚΑΙΡΟΥ ΚΑΙ ΑΕΡΙΑΣ ΡΥΠΑΝΣΗΣ Σπύρος Ανδρονόπουλος Εργατήριο Περιβαλλοντικών Ερευνών Ιντιτούτο Πυρηνικής Τεχνολογίας και Ακτινοπροταίας ΕΚΕΦΕ «ηµόκριτος» sandron@ipta.demokritos.gr

Διαβάστε περισσότερα

G G. = - +kr. 4 as. σ α s. Για τις ισχυρές αλληλεπιδράσεις ισχύει: 2. Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρησιμοποιείται συνηθέστερα είναι:

G G. = - +kr. 4 as. σ α s. Για τις ισχυρές αλληλεπιδράσεις ισχύει: 2. Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρησιμοποιείται συνηθέστερα είναι: Για τις ιχυρές αλληλεπιδράεις ιχύει: s gs 00 s = π Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρηιμοποιείται υνηθέτερα είναι: s V s = - kr r e - e Πειραματική μαρτυρία και για τους δύο όρους. Εγκλωβιμός

Διαβάστε περισσότερα

1 Το Μεθοδολογικό Πλαίσιο Μέσου- ιακύμανσης... 11

1 Το Μεθοδολογικό Πλαίσιο Μέσου- ιακύμανσης... 11 Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Το Μεθοδολογικό Πλαίιο Μέου- ιακύμανης.... Ειαγωγή.... Απόδοη και Κίνδυνος....3 Διαφοροποίηη Χαρτοφυλακίων... 5.4 Το Αποτελεματικό Μέτωπο... 7.5 Τεχνικές

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ 5. Ειαγωγικά Στα προηγούµενα κεφάλαια, αχοληθήκαµε µε τη µελέτη πεδίων που η δηµιουργία τους οφείλονταν την παρουία ακίνητων ηλεκτρικών φορτίων.

Διαβάστε περισσότερα

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1) ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α. Το 50% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα (α), ενώ το 30% των κατοίκων διαβάζουν την εφηµερίδα (α) και δε διαβάζουν την εφηµερίδα (β). Ποια είναι η πιθανότητα ένας

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ 1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα