ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I"

Transcript

1 ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I Ευτάθιος Στυλιάρης Αναπληρωτής Καθηγητής Συντονιτής Εργατηρίων Φυικής I Με την υνδρομή των: Α. Καραμπαρμπούνη, Κ.Ν. Παπανικόλα, Ν. Μαμαλούγκου

2 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ «Καίαρ Δ. Αλεξόπουλος» Διαδικτυακός Τόπος Web: physlab.phys.uoa.gr e class: Διευθυντής Εργατηρίου Αναπ. Καθηγητής Έκτορας Νιταζάκης Συντονιτής Εργατηρίων Φυικής I Ευτάθιος Στυλιάρης stlars@phys.uoa.gr Τηλέφωνο Γραφείου: : E. STILIARIS - UoA (Oct 08)

3 Α αμαξίδ ιο φ αιθητήρας κίνηηςθέης d Moton Detector h Γ Β 3 E. STILIARIS - UoA (Oct 08) 3

4 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΔΙΑΛΕΞΕΩΝ Πειραματική Μέθοδος Μέτρηη και Πειραματική Αβεβαιότητα (Σφάλμα) Τύποι Σφαλμάτων: Στατιτικό & Συτηματικό Σφάλμα Διάδοη Σφαλμάτων Σύγκριη Θεωρίας & Πειράματος: Προαρμογή Θεωρητικής Καμπύλης (Ft) Σχεδιαμός και Προετοιμαία Πειράματος Διεξαγωγή Μετρήεων Παρουίαη Αποτελεμάτων Διαδικαίες και Κανονιμοί του Εργατηρίου Φυικής E. STILIARIS - UoA (Oct 08) 4

5 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Η Φυική είναι πειραματική επιτήμη. ΠΕΡΙ ΜΕΤΡΗΣΕΩΝ Η γνώη μας για τον φυικό κόμο προέρχεται (όπως και για κάθε επιτήμη) από παρατήρηη ή από πείραμα. Απορρίπτουμε ή διευρύνουμε το ερμηνευτικό μας πλαίιο (θεωρία ή πρότυπο / μοντέλο ώτε να υνάδει με τα πειραματικά δεδομένα) Παρατήρηη: Η καταγραφή μεγεθών που αφορούν φαινόμενα μη ελεγχόμενα και υνήθως μη επαναλήψιμα (λ.χ. μια έκρηξη Supernova, κάποιος ειμός). Πείραμα: Η καταγραφή μεγεθών που αφορούν φαινόμενα ελεγχόμενα και επαναλήψιμα (π.χ. η μέτρηη της θερμικής αγωγιμότητας κάποιου υλικού, η κέδαη ωματίων από κάποιο πυρήνα...) E. STILIARIS - UoA (Oct 08) 5

6 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΘΕΩΡΙΑΣ ΚΑΙ ΠΕΙΡΑΜΑΤΟΣ Πότε και με ποια βεβαιότητα μπορούμε να ιχυριτούμε ότι κάποιο πειραματικό αποτέλεμα απορρίπτει ή επιβεβαιώνει κάποια θεωρητική πρόβλεψη; Θεωρητική Πρόβλεψη: Ιοδύναμο με υγκεκριμένη πρόταη ή αριθμητικό αποτέλεμα που μπορεί όμως να απορριφθεί πειραματικά. Πειραματικό αποτέλεμα: Ιοδύναμο με αποτέλεμα μέτρηης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα (φάλμα). E. STILIARIS - UoA (Oct 08) 6

7 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΩΡΗΤΙΚΕΣ ΠΡΟΒΛΕΨΕΙΣ Θεωρητική Πρόβλεψη: Ιοδύναμο με υγκεκριμένη πρόταη ή αριθμητικό αποτέλεμα που μπορεί να απορριφθεί πειραματικά. ΠΑΡΑΔΕΙΓΜΑΤΑ Το ηλεκτρόνιο είναι ταθερό (το χρόνο) ωμάτιο. Το πρωτόνιο έχει χρόνο ημιζωής έτη. Σώματα μαζών M και m έλκονται με δύναμη: Η περίοδος (T) υτήματος ελατηρίου (Κ) και μάζας m είναι: π m H ακτίνα του πυρήνα του μολύβδου είναι: T K r F G Mm R R m E. STILIARIS - UoA (Oct 08) 7

8 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΠΕΙΡΑΜΑΤΙΚΟ ΑΠΟΤΕΛΕΣΜΑ Πειραματικό αποτέλεμα: Ιοδύναμο με αποτέλεμα μέτρηης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα (φάλμα). ΠΑΡΑΔΕΙΓΜΑΤΑ Το πρωτόνιο έχει χρόνο ημιζωής μεγαλύτερο από: έτη (90% cf*) H ακτίνα του πυρήνα του μολύβδου είναι: Θεωρητική Πρόβλεψη R ( R m ± ) 0 5 m *confdence level επίπεδο εμπιτούνης E. STILIARIS - UoA (Oct 08) 8

9 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΤΡΗΣΕΙΣ ΑΠΑΙΤΗΣΕΙΣ (Κλαική Φυική) Αποτέλεμα ανεξάρτητο των οργάνων μέτρηης Αποτέλεμα ανεξάρτητο του παρατηρητή Να υπάρχει επαναληψιμότητα Παράγοντες που επηρεάζουν Περιβάλλον και υνθήκες μέτρηης Όργανα Μέτρηης: Ακρίβεια και Βαθμονόμηη Επανερχόμενοι το προηγούμενο ερώτημα: Πώς και με ποια βεβαιότητα μπορούμε από τα πειραματικά δεδομένα να επιβεβαιώουμε ή να απορρίψουμε μια θεωρητική πρόβλεψη; E. STILIARIS - UoA (Oct 08) 9

10 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΤΡΗΣΕΙΣ Πειραματικό αποτέλεμα: Ιοδύναμο με αποτέλεμα μέτρηης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα ή φάλμα. Ή ακόμη καλύτερα (τιμή) ± (φάλμα / αβεβαιότητα) (τιμή) ± (τατιτικό φάλμα) ± (υτηματικό φάλμα) ΠΑΡΑΔΕΙΓΜΑΤΑ Η μάζα του ηλεκτρονίου είναι: ( ± )MeV Η παγκόμια ταθερά βαρύτητας είναι: G (6.673± 0.0) 0 3 m kg s E. STILIARIS - UoA (Oct 08) 0

11 Ακρίβεια ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΚΑΙ ΑΙΣΘΗΤΗΡΕΣ Χαρακτηριτικό του οργάνου και της τεχνολογίας την οποία βαίζεται. Βαθμονόμηη Μας οδηγεί την ανάγκη αναγωγής των μετρήεων μας ε ύγκριη με κάποια γνωτά (πρότυπα) μεγέθη. Καταγραφή Παραδοιακά (ο άνθρωπος αν όργανο καταγραφής). Απευθείας ε ηλεκτρονικό υπολογιτή. Τότε τα όργανα μέτρηης αποκαλούνται «αιθητήρες». E. STILIARIS - UoA (Oct 08)

12 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Πότε υπειέρχεται τατιτική αβεβαιότητα ε μία μέτρηη φυικού μεγέθους;. Σε φαινόμενα όπου το ίδιο το ύτημα χαρακτηρίζεται από διακυμάνεις: Ο χρόνος ημιζωής ραδιενεργού πυρήνα Η διακύμανη της μέης θερμοκραίας κάποια υγκεκριμένη μέρα του χρόνου. Όπου η «ανάγνωη» του οργάνου ειάγει πολυπλοκότητα και ατάθμητους (χαοτικής υμπεριφοράς) παράγοντες: Η παρουία θορύβου το ήμα (λ.χ. ε ηλεκτρονικά όργανα) Η διακύμανη τον χρόνο της αντίδραης του παρατηρητή E. STILIARIS - UoA (Oct 08)

13 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΣΤΗΜΑΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Τι καθορίζει την πειραματική αβεβαιότητα ε μία μέτρηη φυικού μεγέθους; Η ακρίβεια του οργάνου μέτρηης Η βαθμονόμηη του οργάνου μέτρηης Ο μη απόλυτος έλεγχος (ή γνώη) των πειραματικών υνθηκών Η πειραματική αυτή αβεβαιότητα αναφέρεται ως «υτηματική». Όες φορές και να επαναλάβουμε μια τέτοια μέτρηη δεν είναι δυνατό να ξεπεράουμε τους περιοριμούς αυτούς. Απλά επαναλαμβάνουμε το ίδιο φάλμα. E. STILIARIS - UoA (Oct 08) 3

14 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΟ ΣΦΑΛΜΑ ΑΝΑΓΝΩΣΗΣ ΩΣ ΣΥΣΤΗΜΑΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Τι καθορίζει το φάλμα ανάγνωης ενός οργάνου; Για τα αναλογικά όργανα εξαρτάται από την απόταη ανάμεα τις υποδιαιρέεις του οργάνου. Για τα ψηφιακά όργανα υνήθως είναι το μιό του τελευταίου ψηφίου. Ακρίβεια οργάνου είναι η αβεβαιότητα που προκύπτει λόγω της κατακευής του οργάνου και υνήθως δίδεται από τον κατακευατή. Κατά κανόνα το φάλμα οργάνου είναι μικρότερο από το φάλμα ανάγνωης. E. STILIARIS - UoA (Oct 08) 4

15 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΡΟΠΟΣ ΓΡΑΦΗΣ ΣΦΑΛΜΑΤΩΝ (τιμή ± αβεβαιότητα) G ± δg (6.673± 0.0) 0 3 m kg s τιμή (αβεβαιότητα) G () 0 3 m kg s ΣΧΕΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ η δ Απόλυτος αριθμός που μπορεί να εκφρατεί και ποοτιαία. δg G ή δg G 0.65 % E. STILIARIS - UoA (Oct 08) 5

16 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Παραδείγματα διακριτών τιμών Ρίψη ενός νομίματος Ρίψη ενός ζαριού ΣΥΧΝΟΤΗΤΑ ΕΜΦΑΝΙΣΗΣ ΣΥΧΝΟΤΗΤΑ ΕΜΦΑΝΙΣΗΣ ΕΠΑΝΑΛΗΨΕΙΣ Πείραμα Πόες φορές έρχεται «κεφαλή» τις 0 ρίψεις ΕΠΑΝΑΛΗΨΕΙΣ Πείραμα Πόες φορές έρχεται «εξάρα» τις 60 ρίψεις E. STILIARIS - UoA (Oct 08) 6

17 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Παράδειγμα υνεχούς κατανομής: Καταγράφουμε τη μέη θερμοκραία ενός τόπου ε υγκεκριμένη ημερομηνία για μια ειρά ετών Αποτέλεμα μετά από 70 έτη Μετά από άπειρες καταγραφές ο C ο C Σύμφωνα με την τατιτική θεωρία, αν το φαινόμενο είναι πραγματικά τυχαίο, η οριακή κατανομή (μετά από άπειρες μετρήεις του φαινομένου) που θα προκύψει θα είναι μια κατανομή Gauss (κανονική κατανομή). E. STILIARIS - UoA (Oct 08) 7

18 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗ ΑΒΕΒΑΙΟΤΗΤΑ Χρόνος ζωής λαμπτήρων πυρακτώεως E. STILIARIS - UoA (Oct 08) 8

19 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ (Gauss) Η ποότητα (μ ± ) μας υποδεικνύει ότι η πιθανότητα μια μέτρηη να βρίκεται το διάτημα αυτό είναι 68.3 %. Η ποότητα (μ ± ) μας υποδεικνύει ότι η πιθανότητα μια μέτρηη να βρίκεται το διάτημα αυτό είναι 95.5 %. f() μ π e (μ ) (μ ± ): % (μ ± ): % (μ ± 3): % (μ ± 4): % E. STILIARIS - UoA (Oct 08) 9

20 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ P ( ) ( ) ( μ ) e π Κατανομή Gauss P ( ) d μ: μέη τιμή : τυπική ή μέη τετραγωνική απόκλιη : διαπορά δ : φάλμα μέης τιμής μ δ ( ) ( ) E. STILIARIS - UoA (Oct 08) 0

21 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ E. STILIARIS - UoA (Oct 08)

22 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ (Gauss) Full Wdth at Half Mamum FWHM Γ Γ Γ f f (0) μ Γ ln f() π e (μ ) Γ.35 E. STILIARIS - UoA (Oct 08)

23 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ (Gauss) Γ Απόδειξη Γ f f (0) f() μ π e (μ ) e ( Γ / ) π e Γ ln π ( Γ / ) ( Γ / ) E. STILIARIS - UoA (Oct 08) 3 e 0 ln

24 Στατιτική Αβεβαιότητα Έτω ότι μετρούμε Ν φορές την ίδια ποότητα καιβρίκουμε τις τιμές, όπου,,,,. Μέη Τιμή ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ δ Δίνουμε αν απάντηη: (τιμή) ± (αβεβαιότητα) ( ) ± (δ) Αβεβαιότητα (Σφάλμα) Μέης Τιμής ( ) ( ) E. STILIARIS - UoA (Oct 08) 4

25 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Παράδειγμα: Μέτρηη του βάρους Β (ε Ν) ενός ώματος δίνει τα αποτελέματα του παρακάτω πίνακα για υνολικά 6 μετρήεις: (B B ) 0 3 B B δb ( ) B ± δb 0.0 ± E. STILIARIS - UoA (Oct 08) 5 0.6

26 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Παράδειγμα: Μέτρηη του βάρους Β (ε Ν) ενός ώματος δίνει τα αποτελέματα του παρακάτω πίνακα για υνολικά 6 μετρήεις: (B B ) B ± δb 0.0 ± 0.6 E. STILIARIS - UoA (Oct 08) 6

27 ΣΤΑΤΙΣΤΙΚΟ ΚΑΙ ΣΥΣΤΗΜΑΤΙΚΟ ΣΦΑΛΜΑ Παράδειγμα: Κάποιος μετράει 6 φορές το μήκος ενός αντικειμένου και βρίκει τις ακόλουθες τιμές (ε cm): Με βάη τα προηγούμενα βρίκει: L δl Και δίνει αν αποτέλεμα: L ± δl ± 0.07 Αν όλες οι μετρήεις έδιναν 3.6 ποιό θα ήταν το φάλμα της μέης τιμής; Μηδέν; Αν το φάλμα ανάγνωης του οργάνου είναι 0.cm τότε η ωτή απάντηη είναι: L ± δl 3.60 ± 0.0 E. STILIARIS - UoA (Oct 08) 7

28 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Στρογγυλοποίηη αποτελέματος Να αποδώετε με τρογγυλοποίηη τα παρακάτω πειραματικά αποτελέματα, τα οποία πριν την ωτή εκτίμηη των ημαντικών ψηφίων έχουν ως ακολούθως: E. STILIARIS - UoA (Oct 08) 8

29 ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΟΣ Έτω παράγωγο φυικό μέγεθος u f(, y, z, ), όπου, y, z, είναιοι άμεα μετρούμενες ποότητες. Γνωρίζοντας τις μέες τιμές και τα φάλματα των μεγεθών αυτών, y, z,... και δ, δ y, δz,... ιχύει: u f (, y, z,...) Το φάλμα της μέης τιμής δu υπολογίζεται με τη βοήθεια των μερικών παραγώγων της υνάρτηης uωςπροςτιςμεταβλητές, y, z, z, οιοποίεςδομούνυντελετές βαρύτητας την τετραγωνική άθροιη των επιμέρους φαλμάτων (διάδοη φάλματος): δu u δ + u y δy + u z δz +... E. STILIARIS - UoA (Oct 08) 9

30 ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΟΣ ΠΑΡΑΔΕΙΓΜΑ Υπολογιμός της επιτάχυνης ε ευθύγραμμη, ομαλά μεταβαλλόμενη κίνηη, μέω μέτρηης του αντίτοιχου διατήματος sκαιχρόνουt. s a s (35.0 ± 0.0) m t (.0 ± t Η μέη τιμή της επιτάχυνης a υπολογίζεται: s 35. a t m/s 0.5)s Το φάλμα της μέης τιμής δa υπολογίζεται: δa a s δs + a t δt t δs + - 4s 3 t δt Το τελικό αποτέλεμα είναι: a ± δa (0.49 ± 0.04) m/s E. STILIARIS - UoA (Oct 08) 30

31 ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΟΣ Ο τύπος της διάδοης φάλματος για παράγωγο φυικό μέγεθος u f(, y, z) της μορφής u λ y μ z ν απλουτεύεται με τη χρήη του χετικού φάλματος. Εύκολα αποδεικνύεται πως: δu u λ δ + μ δy y + ν δz z Στο προηγούμενο παράδειγμα της επιτάχυνης ιχύει δηλαδή: δa a δs s + δt t και κατά υνέπεια: δ α a με τελικό αποτέλεμα: a ± δa (0.49 ± 0.04) m/s E. STILIARIS - UoA (Oct 08) 3

32 ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Μέθοδος Μαθηματικής Βελτιτοποίηης Το κλαικό πρόβλημα: Η βέλτιτη ευθεία που περιγράφει πειραματικά ημεία ενός γραμμικά εξαρτημένου φυικού μεγέθους. Απόκλιη Σημείου Δy y ep y th E. STILIARIS - UoA (Oct 08) 3

33 ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Μέθοδος Μαθηματικής Βελτιτοποίηης Επίλυη: Ελαχιτοποίηη της υνάρτηης κότους, η οποία ορίζεται ως το υνολικό άθροιμα των τετραγωνικών αποκλίεων. Συνάρτηη Κότους χ ( ep th y y ) mn χ Ελαχιτοποίηη του χ Απόκλιη Σημείου Δy y ep y th E. STILIARIS - UoA (Oct 08) 33

34 ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Μέθοδος Μαθηματικής Βελτιτοποίηης Ερώτημα: Γιατί το άθροιμα των τετραγωνικών αποκλίεων; ος Παίκτης Άθροιμα Αποκλίεων: : + Άθροιμα Τετραγωνικών Αποκλίεων: : + Κερδίζει ο ος Παίκτης! ος Παίκτης Άθροιμα Αποκλίεων: : 0 + Άθροιμα Τετραγωνικών Αποκλίεων: : E. STILIARIS - UoA (Oct 08) 34

35 ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Οι υντελετές Α και Β της βέλτιτης ευθείας καθορίζονται από το κριτήριο ελαχιτοποίηης της υνάρτηης χ. Υ Υ ΑΧ + Β χ ( ep th y y ) mn Χ E. STILIARIS - UoA (Oct 08) 35

36 Μπορούμε Μπορούμε να να υπολογίουμε υπολογίουμε τα τα Α και και Β και και να να χαράξουμε χαράξουμε τη τη βέλτιτη βέλτιτη ευθεία ευθεία ΜΕΘΟΔΟΣ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΤΕΤΡΑΓΩΝΩΝ B A y + y y B y y A όπου όπου οι οι υντελετές υντελετές Α και και Β δίνονται δίνονται από από τις τις χέεις χέεις: E. STILIARIS - UoA (Oct 08) 36

37 Τα φάλματα των Α και Β (δα δα, δβ δβ) υπολογίζονται: ΜΕΘΟΔΟΣ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΤΕΤΡΑΓΩΝΩΝ y y δb, δa όπου: ( ) B A y y E. STILIARIS - UoA (Oct 08) 37

38 (a,b) χ y b a χ b a f() Ν ι + + [ ] [ ] [ ] [ ] ι ι ι ι 0 y ) b (a 0 y ) b (a 0 y ) b (a 0 y ) b (a 0 b χ 0 a χ Εφόον Εύρεη Εύρεη των των παραμέτρων παραμέτρων της της ευθείας ευθείας a και και b Η ελαχιτοποίηη της ποότητας χ, η οποία εξαρτάται μόνο από τα aκαιb, επιτυγχάνεται με μηδενιμό των μερικών παραγώγων: ΜΕΘΟΔΟΣ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΤΕΤΡΑΓΩΝΩΝ E. STILIARIS - UoA (Oct 08) 38

39 + + ι ι ι ι ι ι y b a y b a Καταλήγουμε έτι το γραμμικό ύτημα των δύο εξιώεων ως προς a και b: Παρατηρούμε πως οι υπειερχόμενοι υντελετές είναι αθροίματα δυναμοειρών δυναμοειρών του του και και ροπών ροπών του του y. Αν για διευκόλυνη ορίουμε αντίτοιχα ι k k ι k k y W, S τότε το ύτημα γράφεται: W bs as W bs as ΜΕΘΟΔΟΣ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΤΕΤΡΑΓΩΝΩΝ E. STILIARIS - UoA (Oct 08) 39

40 Οι λύεις του υτήματος αυτού δίνουν: S S S S W S W S b, S S S S S W S W a W bs as W bs as y y b, y y a οι οποίες δίνουν τις προηγούμενες εκφράεις για τις τιμές των a και b: ΜΕΘΟΔΟΣ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΤΕΤΡΑΓΩΝΩΝ Σημείωη Σημείωη: Στην Στην παραπάνω παραπάνω απόδειξη απόδειξη έχουν έχουν υμπεριληφθεί υμπεριληφθεί και και τα τα φάλματα φάλματα των των μετρήεων μετρήεων, τα τα οποία οποία παίζουν παίζουν τον τον ρόλο ρόλο υντελετών υντελετών βαρύτητας βαρύτητας την την υνολική υνολική διαμόρφωη διαμόρφωη της της ποότητας ποότητας χ. E. STILIARIS - UoA (Oct 08) 40

41 ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Παράδειγμα γιαδεδομένα(ν7) Ya+bX E. STILIARIS - UoA (Oct 08) 4

42 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Για δομένη μάζα m μέτρηη της περιόδου T και της επιμήκυνης του ελατηρίου Δ. E. STILIARIS - UoA (Oct 08) 4

43 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Για δομένη μάζα m μέτρηη της περιόδου T και της επιμήκυνης του ελατηρίου Δ. Πειραματικάδεδομένατης8 ης Οκτωβρίου 08 (Αμφιθέατρο ΑΡΙΣΤΑΡΧΟΣ) E. STILIARIS - UoA (Oct 08) 43

44 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Για δομένη μάζα m μέτρηη της περιόδου T και της επιμήκυνης του ελατηρίου Δ. X ±0.00 m m (kg) π/t (s ) D (m) Δ (m) ± ± ± ± ± ± ± ± ± ± E. STILIARIS - UoA (Oct 08) 44

45 Δu Δv 0.05 E. STILIARIS - UoA (Oct 08) 45 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Νόμος του Hooke: : F mg k Δ

46 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Νόμος του Hooke: : F mg k Δ F k Δ E. STILIARIS - UoA (Oct 08) 46

47 Δu 0.0 Δv E. STILIARIS - UoA (Oct 08) 47 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Ταλάντωη Ελατηρίου: Τ π (m/k) /

48 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Ταλάντωη Ελατηρίου: Τ π (m/k) / Tp (T/π) T m k π E. STILIARIS - UoA (Oct 08) 48

49 ΑΝΑΛΥΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΙΡΑΜΑ ΑΜΦΙΘΕΑΤΡΟΥ για τον προδιοριμό ταθεράς ελατηρίου k Τελικά αποτελέματα με ανάλυη ελαχίτων τετραγώνων Νόμος του Hooke Ταλάντωη Ελατηρίου F k Δ m k T π k (3.63± 0.0) /m k (3.64± 0.) /m E. STILIARIS - UoA (Oct 08) 49

50 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΤΡΗΣΕΙΣ ΜΕ ΧΡΗΣΗ ΒΕΡΝΙΕΡΟΥ Perre Verner ( ) Άκηη Α6 Παχύμετρο ή Διατημόμετρο (Ακρίβειας 0.05mm) Χρηιμοποιήθηκε αρχικά για τη μέτρηη μηκών με μεγαλύτερη ακρίβεια. E. STILIARIS - UoA (Oct 08) 50

51 ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΤΡΗΣΕΙΣ ΜΕ ΧΡΗΣΗ ΒΕΡΝΙΕΡΟΥ Έχει δύο κλίμακες: ταθερή (4) και κινητή (6) (βερνιέρου). Γινόταν αρχικά υποδιαίρεη της κλίμακας του βερνιέρου ώτε να αντιτοιχούν 0 υποδιαιρέεις του ε 9 της κυρίας κλίμακας. Αυτό έδινε τη δυνατότητα να εκτιμηθεί με άνεη κλάμα της κυρίας κλίμακας με ακρίβεια /0. Σήμερα οι υποδιαιρέεις γίνονται το /0 (0.05 ακρίβεια) και υπάρχουν και ε άλλες μετρήεις π.χ. γωνιών. E. STILIARIS - UoA (Oct 08) 5

52 7, 35 mm κλίμακα βερνιέρος E. STILIARIS - UoA (Oct 08) 5

53 Μικρόμετρο Άκηη Α6 (0,0mm) E. STILIARIS - UoA (Oct 08) 53

54 (6, 6,50 + 0,5)6,65 6,65mm 6,00 mm 6,50 mm E. STILIARIS - UoA (Oct 08) 54

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων Υπολογιτικές Εφαρμογές την Στατιτική Επεξεργαία Δεδομένων Στα πλαίια του μαθήματος ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ & ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Δ. Φαουλιώτης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 3 3 Μέθοδοι Monte

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων

Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 4 η : Στοιχεία τατιτικής αξιολόγηης εκτιμήεων Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε

Διαβάστε περισσότερα

Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο

Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 3 η : Αρχές εκτίμηης παραμέτρων Μέρος ο Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας και

Διαβάστε περισσότερα

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ. ( είναι μια υνάρτηη που ε κάθε απλό ενδεχόμενο (ω ενός δειγματικού χώρου (Ω αντιτοιχεί έναν αριθμό. Ω ω (ω R ιακριτή τ.μ. : παίρνει πεπεραμένο

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ 16 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ Α. Περίπτωη Ενός Πληθυμού Αν μας ενδιαφέρει να κατακευάουμε ένα διάτημα εμπιτούνης για την διακύμανη ενός πληθυμού, χρηιμοποιούμε το γεγονός ότι αν

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιτημών του Ανθρώπου: Στατιτική Ενότητα 2: Βαίλης Γιαλαμάς Σχολή Επιτημών της Αγωγής Τμήμα Εκπαίδευης και Αγωγής την Προχολική Ηλικία Περιεχόμενα ενότητας Παρουιάζονται οι βαικές έννοιες

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012 Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ).

Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ). Υποδείγματα GARCH Γιατί; Κίνητρο: υποδείγματα που υποθέτουν γραμμική δομή δεν μπορούν να εξηγήουν ημαντικά χαρακτηρίτηκα των χρηματοοικονομικών χρονοειρών - λεπτοκύρτοη - volaili clusering Το παραδοιακό

Διαβάστε περισσότερα

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2 Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στην ενότητα «Από τις Πιθανότητες τη Στατιτική» εξηγήαμε ότι τη Στατιτική «όλα αρχίζουν από τα

Διαβάστε περισσότερα

Είδη σφαλµάτων. Σφάλµατα στις παρατηρήσεις. Θεωρία Σφαλµάτων ΑΚΡΙΒΕΙΕΣ ΙΕΙΚΟΝΙΚΩΝ ΑΠΟ ΟΣΕΩΝ

Είδη σφαλµάτων. Σφάλµατα στις παρατηρήσεις. Θεωρία Σφαλµάτων ΑΚΡΙΒΕΙΕΣ ΙΕΙΚΟΝΙΚΩΝ ΑΠΟ ΟΣΕΩΝ Είδη φαλµάτων Σφάλµα µετρηµένη αληθής τιµή Τυχαία - Εµφανίζονται χεδόν ε όλες τις παρατηρήεις και ακολουθούν υνήθως κανονική κατανοµή. Συτηµατικά - Εµφανίζονται ε όλες τις παρατηρήεις και µπορεί να µοντελοποιηθούν

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή Κεφάλαιο 4 ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ 4. Ειαγωγή Στο προηγούμενο κεφάλαιο εξετάαμε πώς ένας επενδυτής που αποτρέφεται τον κίνδυνο απώλειας ειοδήματος επιλέγει επενδυτικά χέδια κάτω από υνθήκες αβεβαιότητας.

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα

Πιθανότητες & Τυχαία Σήματα Πιθανότητες & Τυχαία Σήματα Συχέτιη Διγαλάκης Βαίλης Η έννοια της υχέτιης Για τυχαίες μεταβλητές ΧΥ: Συχέτιη: ΕΧ Υ Συμμεταβλητότητα: Συντελετής υχέτιης: ρ / Έτω ΧΥ Τ.Μ. με ΥΧb και ΕΧμ Χ ΕΧ-μ Χ Χ Υπολογίτε

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης που

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Γ Ε Ω Ρ Γ Ι Κ Ο Σ Π Ε Ι Ρ Α Μ Α Τ Ι Σ Μ Ο Σ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. Αν. Καθηγητής.Π.Θ. Υπ. ιδάκτορας Ορετιάδα 007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή... 11

Κεφάλαιο 1: Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Κεφάλαιο : Ειαγωγή.... Η Παγκόμια Χρηματοπιτωτική Κρίη.... Το Αντικείμενο και ο Στόχος του Βιβλίου... 9.3 Η Δομή του Βιβλίου... 0 Κεφάλαιο : Η ιαχείριη

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύεις ΘΕΜΑ Υλικό ηµείο κινείται τον άξονα x ' Ox υπό την επίδραη του δυναµικού ax x V( x) = a x, a > α) Βρείτε τα ηµεία ιορροπίας και την ευτάθειά τους β) Για

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ Η περίπτωη του εφελκυμού και της θλίψης των ραβδωτών φορέων είναι ενδεικτική για την αφετηρία της μελέτης παραμορφώιμων τερεών. Πρόκειται για προβλήματα

Διαβάστε περισσότερα

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20 Εισαγωγικές ιαλέξεις Εργαστηρίου Φυσικής 014-0 015 αν.καθηγητής Ανδρέας Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1 ιαλέξεις: Κ.Ν. Παπανικόλας, Α. Καραμπαρμπούνης Ε. Στυλιάρης

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

[ ] = ( ) ( ) ( ) = { }

[ ] = ( ) ( ) ( ) = { } Πρόταη: Δίνεται η θετική τμ, δηλαδή 1 [ ] ανιότητα Mrkov: P{ } P > = Εάν >, έχουμε την Εάν υποθέουμε ότι η ~ f είναι υνεχής, τότε για κάθε > ιχύει ότι x f x dx x f x dx f x dx P [ ] = = { } Παρατηρείτε

Διαβάστε περισσότερα

Μια ακόμη πιο δύσκολη συνέχεια.

Μια ακόμη πιο δύσκολη συνέχεια. Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΧΙΟΣ 009 ΠΕΡΙΕΧΟΜΕΝΑ. Ειαγωγή... 3. ιαιθητική ειγµατοληψία... 6 3. ειγµατοληψία Κατά Πιθανότητα...

Διαβάστε περισσότερα

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i . Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7)

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7) Περί φλµάτων µετρήεων κι ποτελεµάτων Προδιοριµός φάλµτος (ή ειότητς) ενός ποτελέµτος Σφάλµ µις µετρήεως: φάλµ νγνώεως, π.χ. ±/ υποδιιρέεως κλίµκος. Σφάλµ πολλπλών, επνληπτικών µετρήεων: ( ) ( ) Πρόκειτι

Διαβάστε περισσότερα

Στοχαστική Προσοµοίωση ισδιάστατων Τυχαίων Πεδίων µε ιατήρηση της Εµµονής

Στοχαστική Προσοµοίωση ισδιάστατων Τυχαίων Πεδίων µε ιατήρηση της Εµµονής Στοχατική Προοµοίωη ιδιάτατων Τυχαίων Πεδίων µε ιατήρηη της Εµµονής Παρουίαη ιπλωµατικής Εργαίας 22/07/2004 Νίκος Θεοδωράτος Επιβλέπων:. Κουτογιάννης, Αν. Καθηγητής Εθνικό Μετόβιο Πολυτεχνείο Σχολή Πολιτικών

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων II. Στατιστική IΙ, Τμήμα Ο.Ε. ΑΠΘ. Χ. Εμμανουηλίδης, 1

Έλεγχος Υποθέσεων II. Στατιστική IΙ, Τμήμα Ο.Ε. ΑΠΘ. Χ. Εμμανουηλίδης, 1 Έλεγχος Υποθέεων II Στατιτική IΙ, Τμήμα Ο.Ε. ΑΠΘ Στατιτική ΙΙ Συμπεραματολογία Βαιμένη ε Ένα Δείγμα: Έλεγχοι υποθέεων Μέρος ο Εϖιλογή Μεγέθους είγατος για Έλεγχο του Μέου - 1 - Παράδειγα Δειγματοληψία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά

Διαβάστε περισσότερα

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας

Διαβάστε περισσότερα

ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var (

ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var ( Στο γραμμικό υπόδειγμα y = β + u, =,,, ο εκτιμητής LS είναι = β = = y Οι βαικές ιδιότητες του εκτιμητή είναι: E ( β ) = β, αμεροληψία, Var ( β ) = = Αν έχουμε =, τότε y = β =, ο δειγματικός μέος του y

Διαβάστε περισσότερα

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N)

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N) ΠΡΟΒΛΗΜΑ 1 Α)Με βάη το θεώρηµα Shannon για την κωδικοποίηη αναλογικού ήµατος να χαράξετε το διάγραµµα της χέης (S/N) =(), =bit/sample για ένα ήµα µε Gaussian κατανοµή. Β) Χρηιµοποιείτε τους Πίνακες 6.

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Ακαδηµαϊκό έτος 015-016 Εαρινό Εξάµηνο ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Α.Α.Δράκος Διάλεξη 5 η 6 η. Υποδειγµα Ιορροπίας τις Κεφαλαιαγορές Υπόδειγµα Αποτίµηης Περιουιακών Στοιχείων Γραµµή Αξιογράφων Συντελετής βήτα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση ΚΕΦΑΛΑΙΟ 9 Σχετική κίνηη 1 Υλικό ηµείο µάζας m=1 κινείται πάνω ε επίπεδο Ο που περιτρέφεται γύρω από τον άξονα Ο µε γωνιακή ταχύτηταω = ωk, όπου ω=1/ s -1 Αν κάποια τιγµή το ώµα βρίκεται ε απόταη r=1 m

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Μετρήσεις, Σφάλµατα και Στατιστικά Μεγέθη

ΚΕΦΑΛΑΙΟ 2. Μετρήσεις, Σφάλµατα και Στατιστικά Μεγέθη ΚΕΦΑΛΑΙΟ. Μετρήεις, Σφάλµατα και Στατιτικά Μεγέθη . Ειαγωγή Αχοληθήκαµε το προηγούµενο Κεφάλαιο µε τον οριµό µαθηµατικών εργαλείων για την περιγραφή της πιθανότητας ή της πυκνότητας πιθανότητας ώτε µία

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ 5.1. Ειαγωγή Στο κεφάλαιο αυτό γίνεται µία ύντοµη περιγραφή µερικών επιπλέον θεµάτων τα οποία οι βιοηλεκτρικές αρχές έχουν εφαρµογή. Τα θέµατα που περιγράφονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίη και Πολιτικές Ανάπτυξης και Συνοχής 0ο Τακτικό Επιτημονικό

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

PDF processed with CutePDF evaluation edition

PDF processed with CutePDF evaluation edition Κατανοµές ιαφάνειες ιαλέξεων - 0-0303 Περιεχόµενα της Ενότητας ειγµατοληψία και Κατανοµές Ενότητα η. ειγµατοληψία Πιθανοτικέςκαι και µη πιθανοτικές µέθοδοι. Εκτιµητές, ηµειακές εκτιµήεις, φάλµα δειγµατοληψίας

Διαβάστε περισσότερα

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ακήεις για έκτες PIN και έκτες µε Οπτική Προενίχυη

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

Ολοκληρωτικός Λογισμός πολλών μεταβλητών

Ολοκληρωτικός Λογισμός πολλών μεταβλητών Ολοκληρωτικός Λογιμός πολλών μεταβλητών Πρόχειρες ημειώεις Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιτήμιο Κρήτης η εβδομάδα. Θεωρούμε ένα ορθογώνιο παραλληλόγραμμο τον 2 και μια πραγματική υνάρτηη

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Ελληνικό Στατιτικό Ιντιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιτικής (005) ελ.57-65 ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Γεώργιος Μενεξές, Άγγελος Μάρκος, Γιάννης Παπαδημητρίου

Διαβάστε περισσότερα

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ Εξίωη Schrıdinger Χρηιµότητα Εξαγωγή της εξίωης Schrıdinger Περιοχές κυµατοδήγηης οπτικού παλµού Αλληλεπίδραη µη γραµµικών φαινοµένων και διαποράς Αµελητέα η διαπορά και τα µη γραµµικά

Διαβάστε περισσότερα

Υπόδειγμα αποτίμησης κεφαλαιακών Περιουσιακών Στοιχείων (CAPM)

Υπόδειγμα αποτίμησης κεφαλαιακών Περιουσιακών Στοιχείων (CAPM) άθημα 2 Υπόδειγμα αποτίμηης κεφαλαιακών Περιουιακών Στοιχείων (CAP) Ο υνολικός κίνδυνος μιας μετοχής διαχωρίζεται το υτηματικό κίνδυνο και το μη υτηματικό κίνδυνο Συτηματικός κίνδυνος : o κίνδυνος που

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ,

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ, ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, Ο ΕΞΑΜΗΝΟ, 8-9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης ΠΡΟΟΔΟΣ, 7--8 Άκηη [] Περιγράψτε εν υντομία τις έννοιες α) της ακρίβειας, β) της ευτάθειας και γ) της ύγκλιης ε χέη με την διατύπη και εφαρμογή

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ Μάριος Βαφειάδης Αν. Καθηγητής ΤΥΤΠ-ΑΠΘ Θεαλονίκη 0 ΕΙΣΑΓΩΓΗ...4 I. ΜΕΤΡΗΣΕΙΣ...5. ΓΕΝΙΚΑ...5. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΕΩΝ...6 3. ΚΑΝΟΝΕΣ ΓΙΑ ΕΠΙΤΥΧΕΙΣ

Διαβάστε περισσότερα

Παραγωγή και Αξιολόγηση Φωτογραμμετρικών Προϊόντων Υψηλής Ανάλυσης με Χρήση μη Επανδρωμένου Αυτόνομου Πτητικού Μέσου (U.A.V.)

Παραγωγή και Αξιολόγηση Φωτογραμμετρικών Προϊόντων Υψηλής Ανάλυσης με Χρήση μη Επανδρωμένου Αυτόνομου Πτητικού Μέσου (U.A.V.) Παραγωγή και Αξιολόγηη Φωτογραμμετρικών Προϊόντων Υψηλής Ανάλυης με Χρήη μη Επανδρωμένου Αυτόνομου Πτητικού Μέου (U.A.V.) Η. Ποντίκας 1, Δ. Πέκαλης 1, Κ. Γκέντος 1, Ο. Γεωργούλα, Π. Πατιάς 1 ΠΜΣ Γεωπληροφορική

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

όπου Z 1,Z 2,,Z n ανεξ. τ.μ. που ακολουθούν N(0,1), δηλαδή μ Δt + σ Δt Zi σ 2 Δt) για κάποιες σταθερές μ, σ 2. Οι τ.μ. Δ t Z1, Δt

όπου Z 1,Z 2,,Z n ανεξ. τ.μ. που ακολουθούν N(0,1), δηλαδή μ Δt + σ Δt Zi σ 2 Δt) για κάποιες σταθερές μ, σ 2. Οι τ.μ. Δ t Z1, Δt 5.3. Προομοίωη τιμών χρηματοοικονομικών προϊόντων Σε αυτή την παράγραφο θα εξετάουμε ένα μοντέλο που μπορεί να χρηιμοποιηθεί για την μελέτη της εξέλιξης των τιμών χρηματοοικονομικών προϊόντων (π.χ. μετοχές,

Διαβάστε περισσότερα

Ένα µεγάλο Ευχαριστώ στον καθηγητή µου κ. Σαλπιστή Χρήστο για την υποµονή του όλα αυτά τα χρόνια...

Ένα µεγάλο Ευχαριστώ στον καθηγητή µου κ. Σαλπιστή Χρήστο για την υποµονή του όλα αυτά τα χρόνια... Ένα µεγάλο Ευχαριτώ τον καθηγητή µου κ. Σαλπιτή Χρήτο για την υποµονή του όλα αυτά τα χρόνια... ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΜΕΘΟ ΟΥ ΜΕΤΡΗΣΗΣ ΜΕΤΡΟΥ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΥΠΕΡΗΧΩΝ ΠΑΤΕΡΑΚΗΣ Ε.

Διαβάστε περισσότερα

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών Διαφορές μεταξύ Αφαλίεων Ζωής και Γενικών Ζωής Αφαλιμένο κεφάλαιο (γνωτό Ένα υμβάν 3 Μικρή εξέλιξη ζημιάς (πχ άνατος, το μααίνεις αμέως Γενικές Μπορεί να είναι γνωτό, μπορεί και όχι (πχ το πίτι αν κατατραφεί

Διαβάστε περισσότερα

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία)

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία) Σειμολογία Ελατική Τάη, Παραμόρφωη (Κεφ., Σύγχρονη Σειμολογία) Τι είναι Σειμός O ειμός είναι η γένεη και μετάδοη ελατικών κυμάτων μέα από το φλοιό της γης, τα κύματα δημιουργούνται από τη διάρρηξη των

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :

Διαβάστε περισσότερα