Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών"

Transcript

1 Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές δυνάµις, όπως η βαρύτητα, οι αδρανιακές και οι µαγνητικές δυνάµις, πνργούν αµέως πί των µορίων του ώµατος. Οι πιφανιακές δυνάµις πνργούν αµέως την πιφάνια του ώµατος και µταβιβάζονται µµέως το ωτρικό του µ τη βοήθια του πλέγµατος των υνδέµων µταξύ των µορίων και ατόµων του ώµατος. Οι τάις ένα τοιχιώδη όγκο νός φορτιµένου ώµατος ορίζονται µ τη µορφή διανύµατος, ως ξής: [ ] Τ = (1) όπου,, και ίναι οι ορθές υνιτώς των τάων και,, οι διατµητικές υνιτώς των τάων, ως προς τους άξονς x,y,z. Εάν πάρουµ την ιορροπία νός τοιχιώδους παραλληλπίπδου βρίκουµ τις παρακάτω χέις 1

2 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών f x = 0 xz f y = 0 yx f z = 0 zy όπου, f T =[f x, f y, f z ] το διάνυµα των ανά µονάδα όγκου φαρµοµένων καθολικών δυνάµων. Οι χέις αυτές λέγονται διαφορικές ξιώις ιορροπίας και ίναι οι διαφορικές ξιώις που πιλύουν το πρόβληµα νός παραµορφώιµου ώµατος. Ας υποθέουµ ότι το ύνορο του ώµατος φαρµόζονται οι κατανµηµένς δυνάµις Τ T =[Τ x,τ y,τ z ] αυτές υνδέονται µ τις τάις που αναπτύονται το ώµα µ τη χέη τις χέις: Tx = nx + yxny + nz Ty = nx + ny + zynz (3) T = n + n + n z xz x y z όπου n x,n y,n z τα υνηµίτονα κατύθυνης ένα δδοµένο ηµίο της πιφάνιας του ώµατος. Ένα πδίο που ικανοποιί τις (2) και (3) λέγται πδίο των τάων τατικά αποδκτό. (2) 2. ΠΑΡΑΜΟΡΦΩΣΕΙΣ Η ύπαρξη δυνάµων που πνργούν πί νός ώµατος έχι αν υνέπια την δηµιουργία µτατοπίων και παραµορφώων τα ηµία του ώµατος. Εάν οι µτατοπίις νός ηµίου του ώµατος κατά τις διυθύνις x,y,z ίναι αντίτοιχα u,υ,w, τότ η τριδιάτατη παραµορφωιακή κατάταη ' αυτό το ηµίο µπορί να οριθί µ τη µορφή διανύµατος, ως ξής: [ ] Τ = γ γ γ (1) όπου,, και ίναι οι ορθές υνιτώς των παραµορφώων και γ, γ, γ οι διατµητικές υνιτώς των παραµορφώων. Αν το ύτηµα ίναι κύριο, το διάνυµα των παραµορφώων παίρνι τη µορφή Τ = [ I II III ] (2) Οι χέις µταξύ των παραµορφώων και των µτατοπίων u,υ,w νός δοθέντος ηµίου, ίναι

3 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 3 u u υ = γ = + υ υ w = γ = + (3) w w u = γ = + Οι (3) ιχύουν µ την προϋπόθη ότι οι µτατοπίις u,υ,w ίναι απιροτές, ώτ τα γινόµνα των παραγώγων τους να ίναι αµλητές ποότητς, καθώς και ότι οι u,υ,w ίναι υνχίς υναρτήις των υντταγµένων x,y,z. 3. ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Οι χέις που υνδέουν τις τάις µ τις παραµορφώις για ένα γραµµικό, λατικό ανιότροπο και οµογνές υλικό, υνιτούν το γνικυµένο νόµο του Hooke. Οι χέις αυτές ' ένα τριδιάτατο ώµα [1], ίναι D D... D D D... D = D D... D γ γ γ ή = D (1 ) ανάλογα, οι παραµορφώις υνδέονται µ τις τάις, ως ξής ή γ γ γ C C... C C C... C = C C... C (1) (2) = C (2 ) όπου, και ίναι τα µητρώα τάων και παραµορφώων, αντίτοιχα. Οι υντλτές D των χέων (1) καλούνται λατικές ταθρές νώ οι υντλτές C των χέων (2) καλούνται λατικοί υντλτές. Τα µητρώα D και C ίναι υµµτρικά [2,3], ποµένως για την πλήρη πριγραφή νός ανιότροπου υλικού απαιτίται η κτίµηη των 21 λατικών ταθρών D ή των 21 λατικών υντλτών C.

4 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 4 Στην πρίπτωη νός γραµµικού, ιότροπου και λατικού υλικού δηλαδή νός κρυταλλικού υλικού που παρουιάζι παντός ίδους υµµτρία η (1) γίνται υµµτρικό 1 ν ν ν ν ν ν E 1 2ν = 0 0 ( 1+ ν)( 1 2ν) 2 γ ν 1 2 υµµτρικό 0 γ 2 1 2ν γ 2 ή, ως προς τις υνιτώς των παραµορφώων η (3) γίνται γ γ γ 1/ E ν / E ν / E / E ν / E E 1/ ( + ν) = 0 0 E ( + ν) 21 υµµτρικό 0 E 21 ( + ν) E όπου, Ε το µέτρο του Young και ν ο λόγος του Poisson. (3) (4) Ι ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΣΤΗ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 3.1. Επίπδη Εντατική Κατάταη Η πίπδη ντατική κατάταη χαρακτηρίζται από την πολύ µικρότρη z- διάταη του ώµατος χέη µ τις x,y διατάις του. Επίης, οι φαρµοµένς δυνάµις τα ύνορα του ώµατος, ίναι παράλληλς προς το πίπδο (x,y) και πιπλέον ίναι υµµτρικά κατανµηµένς ως προς το µέο πίπδό του. Οπότ, ιχύι [1]: = = zy = 0 (1) Οι υνιτώς της παραµόρφωης γ, γ zy ξαφανίζονται νώ η δίνται από την χέη ( ) v = v + 1 Η χέη τάων - παραµορφώων γίνται (2)

5 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 5 v E 1 0 = v v v γ (3) Επίπδη Παραµορφωιακή Κατάταη Αντίθτα από την πίπδη ντατική κατάταη, η πίπδη παραµορφωιακή κατάταη χαρακτηρίζται από την πολύ µγαλύτρη z-διάταη του ώµατος χέη µ τις x,y διατάις του. Επίης, η φόρτιη λαµβάνι χώρα µόνο κάθτα προς τα πιµήκη τοιχία του ώµατος και δν µταβάλλται ηµαντικά κατά το µήκος του. Εάν πιπλέον θωρηθί ότι η µτακίνηη w του ώµατος κατά την z-διύθυνη ίναι µηδέν κάθ γκάρια διατοµή, προκύπτι [1]: = γ = γ = 0 (4) Οπότ η υνιτώα της τάης δίνται από τη χέη ( ) = v + Η χέη τάων - παραµορφώων γίνται (5) v v E 1 0 = v 1 v 0 ( 1+ v)( 1 2v) 1 2v 0 0 γ 2 (6) 4. ΑΡΧΗ ΤΩΝ ΥΝΑΤΩΝ ΕΡΓΩΝ Θώρηµα που κφράζι την ιορροπία του ώµατος 1. Προκύπτι µτά από αλγβρικές πράξις από τις ξιώις ιορροπίας του ώµατος. Λέι: Το δυνατό έργο των ξωτρικών δυνάµων ίναι ίο µ το δυνατό έργο των ωτρικών δυνάµων. Τα δυνατά έργα δν ίναι πραγµατικά έργα. Το δυνατό έργο των ξωτρικών δυνάµων δε ίναι το γινόµνο των πραγµατικών δυνάµων πί δυνατές (δηλαδή, φαντατικές) µτατοπίις που έβονται τις υνθήκς τήριξης. Έτι, οι δυνατές µτατοπίις µηδνίζονται τις τηρίξις (Σχ.1(β)). 1 Ιορροπία νός κόκκου διαφορική ξίωη ιορροπίας. Ιορροπία ξωτρικών φορτίων ωτρικών τάων υνοριακές υνθήκς

6 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 6 p(x) (Β) (α) (β) Σχ. 1: (α) Φορέας που φορτίζται το τµήµα από το φορτίο p(x). (β) : ύνορο µτά από κινηµατικά αποδκτή µτατόπιη Το τοιχιώδς έργο των ωτρικών δυνάµων ίναι ίο µ το γινόµνο των πραγµατικών τάων πί τις δυνατές παραµορφώις 2 και πί τον τοιχιώδη όγκο d τον οποίο νργούν. Άρα, όλο το δυνατό έργο των ωτρικών δυνάµων δu ίναι το ολοκλήρωµα του δw όλο τον όγκο του ώµατος δu= δw d Επιβάλλουµ τώρα τον φορέα µια κινηµατικά αποδκτή µταβολή των µτατοπίων u(x), το πδίο αυτό που ίναι απολύτως φαντατικό, έβται τη υνέχια του φορέα καθώς και τις υνθήκς τήριξης. Τέλος, θωρούµ ότι αυτή η µτατόπιη δu(x) δν προκαλί µταβολή των τάων. Η δu(x) που λέγται δυνατή µτατόπιη, προκαλί τις δυνατές παραµορφώις (δ ). p i δ i δw u du i u i δ (α) (β) Στο Σχ.2(α) φαίνται χηµατικά το διάγραµµα των p i και u i καθώς και η δυνατή µτατόπιη δu i. To γραµµοκιαµένο τµήµα, που έχι µβαδό δu i παριτάνι το δυνατό έργο δe i που παράγι η p i κατά τη δυνατή µτατόπιη δu i. Είναι αφές ότι, το υνολικό δυνατό έργο δe θα ίναι 2 Οι δυνατές παραµορφώις προκύπτουν από τις δυνατές µτατοπίις µ παραγώγιη.

7 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 7 δe = pδud (1) Το δυνατό έργο δe ξχωρίζι από το πραγµατικό E γιατί το πρώτο δν υπάρχι φυικά αλλά ίναι ένα φαντατικό µαθηµατικό ύρηµα. Το Σχ.2(β) παρουιάζι υµβολικά το διάγραµµα των - καθώς και τη δυνατή παραµόρφωη δ. Το γραµµοκιαµένο τµήµα, που έχι µβαδόν δ παριτάνι την δυνατή πυκνότητα παραµορφωιακής νέργιας δw, οπότ δu = δwd = δ d (2) παριτάνι την δυνατή νέργια παραµόρφωης. Και η δυνατή νέργια παραµόρφωης δν υπάρχι φυικά αλλά ίναι ένα µαθηµατικό ύρηµα. Το δυνατό έργο δe πρέπι να ίναι ίο µ την δυνατή νέργια παραµόρφωης δe = δ U, δ d = pδu d (3) Η χέη αυτή παριτάνι την αρχή των δυνατών έργων όταν το ώµα πιβάλλονται δυνατές µτατοπίις. Για να αποδίξουµ τη χέη βαιθήκαµ το γγονός ότι ο φορέας βρίκται ιορροπία. Αποδικνύται όµως και το αντίτροφο, ότι δηλαδή, όταν ιχύι η αρχή των δυνατών έργων ο φορέας ιορροπί. (Για πιο πολλές λπτοµέρις πρβλ. 25.4). Έτι, µπορούµ να διατυπώουµ ως ξής την αρχή των δυνατών έργων: Αρχή των δυνατών έργων Η αναγκαία και ικανή υνθήκη ώτ ένας φορέας να βρίκται ιορροπία, ίναι το έργο που κτλούν τα ξωτρικά φορτία αν πιβληθί το φορέα ένα πδίο δυνατών µτατοπίων, κινηµατικά παραδκτών, να ιούται µ τη δυνατή παραµορφωιακή νέργια Η αρχή των δυνατών έργων έχι πολύ µγάλη ηµαία, δδοµένου ότι ιχύι για οποιοδήποτ νόµο υµπριφοράς του υλικού της κατακυής. Η αρχή των δυνατών έργων δν αποτλί µία πρόθτη χέη της θωρίας των παραµορφωίµων ωµάτων αλλά την ολοκληρωµατική έκφραη των ξιώων ιορροπίας. ιαφέρι από τις ξιώις ιορροπίας το γγονός ότι, αυτές κφράζουν την ιορροπία κάθ ηµίο ξχωριτά του ώµατος, νώ η αρχή των δυνατών έργων ολόκληρο το ώµα. Αυτήν την διαφορά µπορούµ να την κµταλλυτούµ και να αναπτύξουµ µθόδους υπολογιτικές πολύ πιο απλές απ ότι αν χρηιµοποιήουµ τις κλαικές ξιώις ιορροπίας. Έτι, µ τη βοήθια της αρχής των δυνατών έργων αναπτύχθηκ η µητρωϊκή ανάλυη των κατακυών για τον υπολογιµό οποιαδήποτ κατακυής. Σηµιώνουµ πάντως ότι, η µέθοδος των ππραµένων τοιχίων µπορί να προκύψι και από το θώρηµα του λάχιτου της δυναµικής νέργιας.

8 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 8 ΑΝΑΛΥΤΙΚΗ ΑΠΟ ΕΙΞΗ ΤΗΣ ΑΡΧΗΣ ΤΩΝ ΥΝΑΤΩΝ ΕΡΓΩΝ (*) 1. ΣΤΑΤΙΚΑ ΠΑΡΑ ΕΚΤΑ ΣΥΣΤΗΜΑΤΑ ΤΑΣΕΩΝ ΚΑΙ ΚΙΝΗΜΑΤΙΚΑ ΠΑΡΑ ΕΚΤΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Θα ξτάουµ το ίδιο πρόβληµα οριακής τιµής που πριγράφηκ την προηγούµνη παράγραφο µ την διαφορά όµως ότι όλα τα µγέθη (ξωτρικές δυνάµις, µτατοπίις, τάις, παραµορφώις), ίναι ανξάρτητα του χρόνου t. Ονοµάζουµ τατικά παραδκτό ένα πδίο τάων που ικανοποιί: 1. Τις υνθήκς ιορροπίας κάθ ηµίο του ώµατος + F =0 (4) i 1. Τις πιφανιακές υνθήκς το τµήµα της πιφάνιας του ώµατος t n = 0 (5) i Ονοµάζουµ κινηµατικά παραδκτό ένα πδίο µτατοπίων u(x), δύο φορές παραγωγίιµο, που οι παραµορφώις προκύπτουν από την ακόλουθη χέη µτατοπίων - παραµορφώων 1 u u i = + 2 i (6) νώ το τµήµα της πιφάνιας u του ώµατος ικανοποιούνται οι υνοριακές υνθήκς () () u x g x = 0, x (7) i i u Εξυπακούται ότι τότ θα ικανοποιούνται και οι υνθήκς υµβιβατού των παραµορφώων. Από τη τατικά παραδκτή κατανοµή τάων ( ) προκύπτι µ τη βοήθια των κατατατικών ξιώων ένα πδίο παραµορφώων. Αν το πδίο αυτό των παραµορφώων ίναι κινηµατικά παραδκτό, τότ το πδίο αποτλί την πραγµατική λύη του προβλήµατος. Αντίτροφα, από ένα κινηµατικά παραδκτό πδίο µτατοπίων u προκύπτουν οι παραµορφώις και τη υνέχια οι τάις. Αν το πδίο αυτό των τάων ίναι τατικά παραδκτό, το πδίο u αποτλί την πραγµατική λύη του προβλήµατος. Το κινηµατικά παραδκτό πδίο ίναι ντλώς αυθαίρτο. Ο µόνος πριοριµός ίναι να µην πιβάλλουµ µτακίνηη που να παραβιάζι το ύνδµο (π.χ. µια κύλιη να πιβάλλουµ µτακίνηη κάθτη το πίπδο κύλιης κ.ο.κ.). (*) Αυτή απυθύνται όους θα ήθλαν να δουν την απόδιξη της προηγούµνης παραγράφου. Οι υπόλοιποι «µπορούν να την παραλίψουν χωρίς καµία απώλια».

9 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 9 2. ΑΝΑΛΥΤΙΚΗ ΑΠΟ ΕΙΞΗ ΤΗΣ ΣΧΕΣΗΣ Θα ξτάουµ το γνικό πρόβληµα οριακής τιµής που πριγράφηκ την προηγούµνη παράγραφο. Έτω, u i, το πδίο των πραγµατικών τάων µτατοπίων και παραµορφώων αντίτοιχα 3. Θωρούµ τώρα ένα πδίο κινηµατικά παραδκτών µτατοπίων δu i που όµως πάνω το u ικανοποιούν τις οµογνίς οριακές υνθήκς δu i ( x) = 0, x (8) u Μτατοπίις αυτού του ίδους λέγονται δυνατές µτατοπίις. (Θα δούµ, πιο κάτω, ότι οι δu i (x) µπορούν να θωρηθούν αν µταβολές (variations) του πραγµατικού πδίου των µτατοπίων). Ας υποθέουµ ότι πιβάλλουµ το ώµα Β, χωρίς να µταβληθούν τα πδία, u, και τα πδία των φορτίων F i και t i να κτλέι τις µτατοπίις δu i και φυικά να υποτί τις παραµορφώις δ. Όπως κάναµ για το απόλυτα τρό, θα πολλαπλαιάουµ τις χέις ιορροπίας (4) και (5) µ δu. Στη υνέχια, θα πάρουµ το άθροιµα των ολοκληρωµάτων τους πάνω τον όγκο του ώµατος και πάνω την πιφάνια αντίτοιχα: + Fi δuid + ( ti n) δui d = 0 (9) Επιδή ιχύι η (8) µπορούµ να αφαιρέουµ από την προηγούµνη χέη το ολοκλήρωµα πάνω την u της ποότητας n u i οπότ, λαµβάνοντας υπόψη ότι u =, βρίκουµ i i i i i i δu d + n δu d + F δu d + t n δu d = 0 (10) Χρηιµοποιώντας το θώρηµα Green - Gauss το δύτρο όρο της (10) βρίκουµ δ δ δ ui ui ui Fiδu ( ti δui ) i d d d + d + d = 0 (11) Αν πάρουµ υπόψη τη υµµτρία του τανυτή των τάων, θα έχουµ (πρβλ. (265.8)) δ u i 1 δ ui = + 2 δ u i δu δu i = i δ = (12) 3 Στην πραγµατικότητα δν ίναι απαραίτητο το πδίο των τάων να ίναι πραγµατικό, αλλά µόνο τατικά παραδκτό.

10 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 10 Οπότ, η χέη (11) λόγω και της (12) γράφται i i i i δ d = F δu d + t δu d + n δu d (13) u i Το δύτρο µέλος παριτάνι το δυνατό έργο δe των δυνάµων t i και F i δηλαδή το έργο που παράγται όταν οι δυνάµις F i και t i παραµένουν ταθρές και µταβληθί κατά δu η µτατόπιη u i. Στο Σχ.3(α) δίχνουµ νδικτικά το δάγραµµα των δυνάµων F i και ηµιώνουµ το δυνατό έργο F i δu i. Το πρώτο µέλος παριτάνι τη δυνατή παραµορφωτική νέργια δu δu = δwd, δw = δ (14) όπου δw η πυκνότητα δυνατής παραµορφωτική νέργιας. Όπως βλέπουµ και από το Σχ.3(β), η δw ίναι η αύξηη της πυκνότητας νέργιας παραµόρφωης όταν η διατηρηθί ταθρή και µταβληθί κατά η παραµόρφωη από τη θέη ιορροπίας. F i F i δu i δw= u i u i δu i δ (α) (β) Σχήµα 3 Αξίζι να ηµιώουµ ότι, η απιροτή µταβολή du i του πδίου των πραγµατικών µτατοπίων u i ίναι προφανώς, ένα κινηµατικά παραδκτό πδίο το οποίο ικανοποιί και την οµογνή υνθήκη (8) το όριο u. Έτι, αν πάρουµ αν δυνατό πδίο το πδίο των απιροτών µταβολών ( δ u i = du i δ = d ), και πριοριτούµ τα λατικά (γραµµικά µη-γραµµικά) υλικά, τότ η πυκνότητα της δυνατής νέργιας παραµόρφωης δw, λαµβάνοντας υπόψη και την (13) γράφται W δw = d = d = d W (15)

11 Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 11 δηλαδή η δw παριτάνι αυτήν την πρίπτωη, την απιροτή µταβολή dw της πυκνότητας της νέργιας παραµόρφωης W. Ακόµα, η δu παριτάνι την απιροτή µταβολή du της νέργιας παραµόρφωης U. Η χέη (13) κφράζι την αρχή των δυνατών έργων, όταν το ώµα πιβάλλονται δυνατές µτατοπίις. (Το δυνατό έργο των ωτρικών δυνάµων, δηλαδή η δυνατή νέργια, ίναι ίη µ το δυνατό έργο των ξωτρικών δυνάµων). Η διαδικαία που ακολουθήαµ απέδιξ ότι, όταν ιχύουν οι ξιώις ιορροπίας (14) και (15) τότ αναγκατικά θα ιχύι και η χέη (13). Άρα η αρχή των δυνατών έργων - (αρχή των δυνατών µτατοπίων) (13) και αντιτρέφοντας την πορία των πράξών µας καταλήγουµ τη χέη (19) που ικανοποιίται για αυθαίρτα δu i µόνον όταν οι παρνθέις ίναι ίς µ µηδέν, δηλαδή ικανοποιούνται οι υνθήκς ιορροπίας (14) και (15). Έτι, µπορούµ να διατυπώουµ ως ξής την αρχή των δυνατών έργων: Αρχή των δυνατών έργων Η αναγκαία και ικανή υνθήκη ώτ ένα παραµορφώιµο ώµα να βρίκται ιορροπία ίναι το έργο που κτλούν τα ξωτρικά φορτία αν πιβληθί το ώµα ένα πδίο δυνατών µτατοπίων, κινηµατικά παραδκτών, να ιούται µ τη δυνατή νέργια παραµόρφωης. Η αρχή των δυνατών έργων έχι πολύ µγάλη ηµαία δδµένου ότι, ιχύι για οποιοδήποτ νόµο υµπριφοράς του υλικού.

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

3.3 Η αρχή των Ήρωνος-Fermat

3.3 Η αρχή των Ήρωνος-Fermat Κφ. 3 Γνικές αρχές της κυματικής 3.3 Η αρχή των Ήρωνος-Fermat 3.3. H Ανάκλαη του φωτός, ο Ήρων ο Αλξανδρύς και η Αρχή του Ελαχίτου Δρόμου 3.3. Η διάθλαη του φωτός, ο Fermat και η Αρχή του Ελαχίτου Χρόνου

Διαβάστε περισσότερα

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας. . Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν

Διαβάστε περισσότερα

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

15. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

15. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η Μέθοδος των Ππραµένων Στοιχίων Σηµιώις 5. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στο κφάλαιο αυτό πριγράφται ν υντοµία η πίλυη προβληµάτων παραµορφώιµων ωµάτων µ λατο-πλατική υµπριφορά, µέω της

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 1 ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΣΗΜΕΙΩΣΕΙΣ ( Κυρίως επιλεγµένα και ελεύθερα µεταφραµένα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IV. ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ. Ειαγωγή Η θωρία πλαικόηας αχολίαι µ ην υµπριφορά ων µαλλικών υλικών, όαν οι παραµορφώις ίναι πλέον αρκά µγάλς και ο νόµος ου Hooke παύι να

Διαβάστε περισσότερα

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x)

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x) Διαδικαία προδιοριμού των καμπύων ύγκιης-αποτόνωης ( - ) και των καμπύων απόταης υνττή αποτόνωης ( x) Μ. Καββαδάς, Αναπ. Καηγητής ΕΜΠ. Δδομένα : (α) Γωμτρία: Ακτίνα ήραγγας : (κυκική ήραγγα) Σήραγγα μγάου

Διαβάστε περισσότερα

Σειρά Ασκήσεων στην Αντοχή των Υλικών

Σειρά Ασκήσεων στην Αντοχή των Υλικών Σιρά Ακήων ην Ανοχή ων Υλικών Άκηη η Σο ημίο Α μιας πίπδης μαλλικής πιφάνιας μ μέρο λαικόηας 00 GP και λόγο Pissn 0.5 μρήθηκαν οι πιμηκύνις ις καυθύνις, και μ η διάαξη ων πιμηκυνιομέρων ου χήμαος, ως 900,

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: εφελκυσμός. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: εφελκυσμός. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητς υνθέτων υλικών: φλκυμός Άλκης Παϊπέτης Τμήμα Επιτήμης & Τχνολογίας Υλικών ΑΝΑΚΟΙΝΩΣΗ Εκπόνηη διπλωματικών ργαιών την ΕΑΒ, Τανάγρα Αττικής. dispersion methodologies μ κοπό τη δημιουργία

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ

ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ 3. ΜΗΧΑΝΙΚΕΣ ΤΑΣΕΙΣ ΚΑΙ ΤΡΟΠΕΣ 3.. Η «Εντατική Κατάταη» ώματος Η ντατική κατάταη ένα ημίο M νός ώματος που υποβάλλται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

Δυο κρούσεις σε μια τραμπάλα

Δυο κρούσεις σε μια τραμπάλα Δ κρύσις σ μια τραμάλα μια τραμάλα μήκς και μάζας της ίας τ μέσ στηρίζται σ βάση ύψς αφήνμ να έσι στ ένα άκρ της αό ύψς άν αό τ έδαφς σφαιρίδι μάζας νώ στ άλλ άκρ της έχμ ττήσι σ ήκη σφαιρίδι μάζας. Να

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΕΠΝΛΗΠΤΙΚ ΦΥΛΛΙ ΕΠΙΜΕΛΕΙ ΣΙΛΗΣ ΥΕΡΙΝΣ ΕΠΙΜΕΛΕΙ: ΥΕΡΙΝΣ ΣΙΛΗΣ ΘΕΩΡΙ ΜΕΡΣ ο : ΛΕΡ ΚΕΦΛΙ ο ΦΥΣΙΚΙ ΡΙΘΜΙ. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; πάντηση ι

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ

ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ 59 Κφάαιο 3 ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ 3.1 Ειαγωγή Στο κφάαιο αυτό πριγράφται η ντατική κατάταη δομικά τοιχία όγω διάτμηης (διατμητικές τάις και παραμορφώις), δίνονται

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης 1 ΕΛΑΣΤΙΚΟΤΗΤΑ Οι οικονοµολόγοι νδιαφέρονται να µτρσουν ορισµένς µταβλητές για να µπορέσουν να κάνουν προβλέψις και για να κτιµσουν µ σχτικ ακρίβια τι αποτέλσµα θα έχι η µταβολ µιας µταβλητς πί µιας άλλης.

Διαβάστε περισσότερα

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΟΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ» ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΑΤΑΞΗΣ ΔΙΗΛΕΚΤΡΙΚΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις ίας : λαια ς ά φ τα κ κτρισµό ύµα ι χ έ Πρι τικός Ηλ τρικό ρ α κ Στ χές ηλ νητισµός ις ν γ Συ κτροµα λαντώσ α τ λ Η χανικές ουν η χ ρ Μ ά π αιο υ λ ά φ θ κ θωρίας ά κ ογής ς Σ α ι λ ί ι π σ χ ι ς ο κή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

( ) y ) άγνωστη συνάρτηση, f (, )

( ) y ) άγνωστη συνάρτηση, f (, ) 6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

Συμμετρία μορίων και θεωρία ομάδων

Συμμετρία μορίων και θεωρία ομάδων Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η

Διαβάστε περισσότερα

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ Τεχνική Μηχανική ΙΙ, Κεφ., 007 69. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ.1 Οριµοί Η µαθηµατική θεωρία των τάεων διατυπώθηκε από τον Louis Augustin Cauchy 1. Για την επεξήγηη της έννοιας της τάης θα θεωρήουµε εδώ

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν

Διαβάστε περισσότερα

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες. 32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων

Διαβάστε περισσότερα

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις ρ.χ. Στρουθόπουλος, e-mail: stch@teise.g ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13 Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πίνακας Σχημάτων 5 Πίνακας Πινάκων Πίνακας Συμβολιμών Συντομογραφιών Ειαγωγή Γενικότητες 5. Έννοιες από την μηχανική του υνεχούς μέου... 7.. Η χέη τάεων παραμορφώεων

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

όπου n είναι ο συνολικός αριθμός γραμμομορίων του συστήματος (που συμπεριλαμβάνει και τα τυχόν αδρανή συστατικά), Ή ακόμα και τη σύσταση κατά βάρος

όπου n είναι ο συνολικός αριθμός γραμμομορίων του συστήματος (που συμπεριλαμβάνει και τα τυχόν αδρανή συστατικά), Ή ακόμα και τη σύσταση κατά βάρος Κφάλαιο Στοιχιομτρία αντιδράσων. Σύσταση μιγμάτων αντιδρώντων Ας υποθέσουμ πως μια χημική αντίδραση συμβαίνι μέσα σ μια φάση. Η κατάσταση της κάθ φάσης καθορίζται από την πίση, τη θρμοκρασία Τ, και τη

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ 5. Ειαγωγικά Στα προηγούµενα κεφάλαια, αχοληθήκαµε µε τη µελέτη πεδίων που η δηµιουργία τους οφείλονταν την παρουία ακίνητων ηλεκτρικών φορτίων.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μλέτη της Μοντλοποίησης Γραµµών Μταφοράς σ Ολοκληρωµένα

Διαβάστε περισσότερα

ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ)

ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ) ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ (ΘΕΩΡΙΑ) Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778.

Διαβάστε περισσότερα

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ Επιλογή του τρόπου κρούης και απώλεια επαφής Οι δύο µικρές φαίρες και του χήµατος έχουν ίες µάζες και κινούνται το λείο οριζόντιο δάπεδο. Οι φαίρες υγκρούονται και η κρούη τους είναι κεντρική και πλατική.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Τηλεπικοινωνίες

ΚΕΦΑΛΑΙΟ 3. Τηλεπικοινωνίες ΚΕΦΑΛΑΙΟ 3 Τηπικοινωνίς Ηκτρικά σήματα Τα σήματα χαρακτηρίζονται από: 1. Την ισχύ τους ή την έντασή τους. Από το ρυθμό που ξίσσονται στον χρόνο. Σ παμογράφο μπορώ να μτρήσω στον κατακόρυφο άξονα την τάση

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Η ΔΥΝΑΜΙΚΗ ΤΗΣ ΟΜΑΔΑΣ ΝΙΚΟΛΑΟΣ ΡΕΛΛΟΣ

Η ΔΥΝΑΜΙΚΗ ΤΗΣ ΟΜΑΔΑΣ ΝΙΚΟΛΑΟΣ ΡΕΛΛΟΣ Η ΔΥΝΑΜΙΚΗ ΤΗΣ ΟΜΑΔΑΣ ΝΙΚΟΛΑΟΣ ΡΕΛΛΟΣ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγικά 2. Εννοιολογικές προσγγίσις της δυναμικής της ομάδας 3. Βασικοί παράγοντς προσδιορισμού της δυναμικής της ομάδας Σχηματισμός ή σύνθση των

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής.

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. η Εφαρμογή (Το επιτυχημένο service) Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. Νεαρός τενίτας που έχει ύψος h ν =,6m εκτελεί service και το μπαλάκι φεύγει από ύψος h =,4m πάνω από το κεφάλι του με

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Κεφάλαιο 1 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Ο προδιοριμός του φυικού εντατικού πεδίου έχει α κοπό να δώει αφενός μεν τη βαική γνώη για το πεδίο των τάεων, αφετέρου δε τη υγκεκριμένη γνώη των υνοριακών υνθηκών που

Διαβάστε περισσότερα

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ ΘΕΩΡΗΤΙΚΟΣ κι ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ρ. Α. Μγουλάς Νοέµριος 5 ) Ν υπολογιστί το ηλκτρικό πδίο που δηµιουργί µι τέλι γώγιµη κοίλη σφίρ

Διαβάστε περισσότερα

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

Αναλυτική Προσοµοίωση της Έντασης σε Υπόγειους Αγωγούς λόγω Επιφανειακών Εκρήξεων. Analytical Calculation of Blast-Induced Buried Pipeline Strains

Αναλυτική Προσοµοίωση της Έντασης σε Υπόγειους Αγωγούς λόγω Επιφανειακών Εκρήξεων. Analytical Calculation of Blast-Induced Buried Pipeline Strains Αναλυτική Προσοµοίωση της Έντασης σ Υπόγιους Αγωγούς λόγω Επιφανιακών Εκρήξων nalytical Calculation of Blast-Induced Buried Pipeline Strains ΚΟΥΡΕΤΖΗΣ, Γ.Π. ΜΠΟΥΚΟΒΑΛΑΣ, Γ.. ΓΑΝΤΕΣ, Χ.Ι. ρ. Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Χρήτος Α. Παπαδόπουλος ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Πάτρα 005 Μετωπικοί οδοντωτοί τροχοί Σελίδα - -. Ακήεις μετωπικών οδοντωτών τροχών... ΑΣΚΗΣΗ (Αντοχή ε κάμψη και

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 4 ου Μαθήματος

ΣΥΝΟΨΗ 4 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1 ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ. Η Μικροµηχανική Ερµηνεία του Τανυτή των Τάεων 3.. Η Αρχή των υνατών Έργων (Α..Ε.) τα κοκκώδη µέα 3.. Ο µικροµηχανικός οριµός της τάεως κατά Love 8. Οι Αναλλοίωτες του

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδειγµα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδειγµα Α.Τ.Ε.Ι ΠΑΤΡΩ & ΠΛΡΟΦΟΡΙΑΚΩ ΣΥΣΤΜΑΤΩ Μάθηµα Τέταρτο-Πέµπτο-Έκτο Πολλαπλό Γραµµικό Υπόδιγµα Στο παρόν µάθηµα δίνται µ κάποια απλά παραδίγµατα-ασκήσις θέµατα πάνω στην κτίµηση νός πολλαπλού γραµµικού υποδίγµατος.

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

3. ιατήρηση της ενέργειας

3. ιατήρηση της ενέργειας 3. ιατήρηση της ενέργειας Βιβλιογραφία C. Kittl, W. D. Knight, M.. Rudmn,. C. Hlmholz και. J. Moy, Μηχανική. (Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π., 1998). Κεφ. 5. M. R. Spigl, Θεωρητική Μηχανική. (Εκδόσεις

Διαβάστε περισσότερα

Κεφάλαιο 7 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

Κεφάλαιο 7 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Κφάλαιο 7 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σύνοψη Στο έβδομο τούτο κφάλαιο μλτώνται και αναλύονται τα ηλκτρικά κυκλώματα συνχούς ρύματος μ το νόμο του Ohm και τους κανόνς του Kirchhoff. Επίσης ξτάζται

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012 Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με

Διαβάστε περισσότερα

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής Κεφάαιο Αξιοπιτία μονάδων - υτημάτων το χρόνο Κατανομές χρόνων ζωής Στο προηγούμενο κεφάαιο εξετάαμε την αξιοπιτία μονάδων ή υτημάτων τατικά δηαδή υποθέταμε ότι η μεέτη γίνονταν πάντα ε κάποια υγκεκριμένη

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΣΤΗ ΛΗΨΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΣΤΗ ΛΗΨΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΑΣΟΕΕ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΣΤΗ ΛΗΨΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΦΘΙΝΟΠΩΡΙΝΟ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 20-2 Ι ΑΣΚΩΝ: ΠΡΟ ΡΟΜΟΣ ΠΡΟ ΡΟΜΙ

Διαβάστε περισσότερα

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου Ο νόμος του Apèr Ο νόμος του Apèr Bis μ μ Ji Επιφάνια Bi μ π r ( π s B s r μ Η κυκλοφορία του μαγνητικού πδίου κατά μηκός μιάς κλιστής διαδρομής ισούται μ μ Ι, όπου Ι ίναι το ολικό σταθρό (χρονικά αμτάβλητο

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α 3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα