ТЕСТ ИЗ ФИЗИКЕ (3 сата)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ТЕСТ ИЗ ФИЗИКЕ (3 сата)"

Transcript

1 Електријада 003 Будва ТЕСТ ИЗ ФИЗИКЕ (3 сата) Заокружује се само један од понуђених одговора. Сваки тачан и адекватно образложен одговор бодује се са по 5 поена. ЗАДАЦИ. Положај материјалне тачке (МТ), која се креће дуж x- осе, одређен је у току времена законом x( t) At Bt, где су A 4 m / s и B m / s а време t је изражено у секундама. У временском интервалу од t 0 s до t 4 s МТ је прешла пут: а) 0 m, b) m, c) 4 m, d) 8 m, e) m. 4 dx dx A S v( t) dt, v( t) A Bt, v( t) A Bt za t s dt dt B 0 S ( A Bt) dt + ( A + Bt) dt 8 m. 0 4 dx A v( t) A + Bt za t s dt B

2 . Хомогени диск тежине Q 60 N је својим горњим крајем закачен канапом и 0 постављен на храпаву стрму раван нагибног угла 30. У стању статичке равнотеже канап је паралелан са постољем стрме равни. Сила затезања T у канапу је: а) 6 N, b) N, c) 8 N, d) 4 N, e) N. T Силе које делуји на диск су: а) Тежина диска која делује у центру масе диска, б) Сила Т којом канап делује на диск, ц) Нормална сила реакције подлоге управна на стрму раван и д) Сила трења којом храпава стрма раван делује на диск. Силе под ц) и д) делују у тачки додира диска са стрмом равни. Резултујући момент сила око осе управне на раван цртежа која пролази кроз тачку додира диска и стрме равни је Qsin QR sin T ( R + R cos) T 6 N. + cos

3 3. Дрвени блок је бачен уз стрму раван нагибног угла почетном брзином тако да се заустави на стрмој равни после времена t. Потом блок клизи наниже и дође назад до подножја за време t. Коефицијент трења између блока и стрме равни је µ / 3. Ако је количник времена пењања и времена спуштања t / t µ, нагибни угао стрме равни је: а) π / 6, b) π / 4, c) arctg(/), d) arctg(5/), e) arctg(4/5). Тело се пење са успорењем a g(sin + µ cos) и за време t at ) пређе пут S v0t ( v ( t ) v0 at 0 t v0 / a a t. () Исти пут S пређе тело при спуштању низ стрму раван са убрзањем a g(sin µ cos ) за време t. Из () и () следи a t S. () t ( ) t µ a a g(sin µ cos) g(sin + µ cos) tg µ tg + µ + µ 5 tg µ. µ

4 4. Чамац масе M 50kg мирује на непокретној води. Када човек, масе m 75kg пређе са крме на прамац чамца пут дужине L 3m чамац ће се померити за: а) 0.5 m, b) m, c).5 m, d) m, e).5 m. Човек на крми и чамац чине систем чија је брзина центра масе једнака нули. Када се човек крећа према прамцу ова брзина се не мења. Због тога се положај центра масе система човек-чамац не мења. Ако се x оса постави дуж чамца са почетком на крми где се у почетку налази човек Координата центра масе система човек на крми-чамац је m 0 + ML / L X CM. m + M 3 Када човек пређе са крме на прамац чамац се помери за растојање d у супротном смеру. Координате крме и прамцау су тада d и L d, респективно. Координата центра масе система човек на прамцу-чамац је m ( L d) + M ( L / d) L L X CM X CM d m. m + M 3 3

5 5. Једнакостранични троугао, странице a m, направљен је од танке хомогене жице. Маса троугла је m 3 kg. Момент инерције овог троугла око осе која пролази кроз једну од страница троугла је: а) 0.05 kgm, b) 0. kgm, c) 0.3 kgm, d) 0.4 kgm, e) 0.5 kgm. x x r a 60 0 O m Нека је подужна маса жице ρ. Поставимо x осу дуж једне од две странице које се 3a обрћу око обртне осе која пролази кроз трћу страницу. Уочимо елементарну масу dm ρdx која је за x удаљена од координатног почетка и за r од осе ротације. Момент инерције те елементарне масе је di 0 3 r dm ( xsin 60 ) ρ dx ρx dx. 4 Момент инерције целе странице троугла е a 3 3ρ ρa I di x dx а тражени момент инерције је a 0 ma, ma I 6 I 0. 5 kgm.

6 6. Две хомогене концентричне сферне љуске, истих густина и врло малих дебљина а различитих полупречника R и R, делују на материјалну тачку (МТ) када се она нађе на растојању r 5R / и r 3R / од центра љуски. Количник интензитета сила F r ) / F( ) којима ове љуске делују на МТ је : ( r а) 9/4, b) 6/7, c) 9/5, d) 5/6, e) 9/7. Нека је површинска густина љуски ρ. Тада су масе љуски ρ π и M 4π (R) 4M M 4 R ρ. Гравитационо поље унутар љуске једнако је нули а ван љуске једнако је пољу које ствара маса љуске када се постави у центру љуске. Због тога је F( r γm 4γM 3R / ), r 9R F( r γ ( M + M 0γM 5R / ), r 5R ) F( r ) F( r ) 9. 5

7 7. Основна учестаност осциловања затегнуте жице дужине L 7cm и масе 3 m.9 0 kg је f 0 0 Hz. Интензитет силе којом је жица затегнута је: а) 4.45 N, b) N, c) 3.55 N, d) 7.55 N, e).55 N. Брзина простирања таласа по затегнутој жици је v T F λ µ f, где је m µ подужна маса жице. L Одавде следи F µλ f. Основни тон код затегнуте жице добија се када је λ L, те је F 4µ L f N.

8 8. Амплитуда простог хармонијског осциловања које настаје слагањем осцилација истог правца задатих изразима x t) x cos(5π t + / ) и x t) x cos(5π t + / 6), где су x0 m и x0 3m, је: ( 0 π а) 5 m, b) 3 m, c) 9 m, d) 3 m, e) 9 m. ( 0 π x R ( t) x ( t) + x ( t) x0 sin(5π t) + x0 cos( π / 6) cos(5πt ) x0 sin( π / 6) sin(5π ) t 3 3 x0 sin(5π t) + x0 cos(5πt ), одакле следи 9 3 / x R 0 ( x0 + x0 ) 9 m. 4 4

9 9. Танки хомогени штап једним крајем везан за зглоб (Z) постављен изнад воде може се обртати око њега. Доњи крај штапа потопљен је у води при чему је остварено 3 равнотежно стање када је половина штапа косо потопљена у води ( ρ 000 kg / m ). Густина штапа је : a) 550 kg/m 3, b) 600 kg/m 3, c) 650 kg/m 3, d) 700 kg/m 3, e) 750 kg/m 3. Z ρ На штап делују три силе: а) Тежина штапа у центру масе штапа, б) сила потиска у центру масе потопљеног дела штапа и ц) сила којом зглоб делује на штап. Резултујући момент око осе која је управна на раван цртежа и пролази кроз зглоб Z је једнак нули. Ако је тежина штапа Q ρg, дужина штапа L, угао између површи воде и штапа и сила потиска ρg F P S ρ g,тада је L S 3L cos ρ g cos. 4 S Сила у зглобу не производи момент јер пролази кроз осу. Из претходне једначине следи 3 kg ρ ρ m S

10 0. У отворени врло широк цилиндрични суд усуте су једнаке масе воде и уља које се не мешају. Укупна висина стуба обе течности је H m. Густине воде и уља су 3 3 ρ 000kg / m и ρ U 750kg / m, респективно. На дну суда се налази отвор малог попречног пресека. Брзина истицања воде на дну суда, је: ( g 0m / s ) а).4 m/s, b) 3.4 m/s, c) 4.4 m/s, d) 5.4 m/ s, e) 6.4 m/s. ρ U h U ρ h Нека су h U и h висине стуба уља и воде, респективно. Тада је према услову задатка H h U + h и ρ U hu ρ h. () Применом Бернулијеве једначине ма струјну линију у води у тачкама непосредно испод граничне површи са уљем и на излазу оз отвора добија се Из () и () следи v ist ρ pa 0 + ρ gh + pa + ρ gh U U. () v ist ρu h g U + ρ h ρ ρ h g ρ 4gh 4gH ρu + ρ, v ist 4.4 m / s.

11 . Двоатомски идеални гас се изобарски загрева од стања до стања и при томе се гасу доводи количина топлоте Q 8 kj. Механички рад који гас изврши при овом ширњеу је: а) 4 kj, b) 8 kj, c) 6 kj, d) 8 kj, e) 0 kj. Према првом принципу термодинамике за изобарско загревање од стања до стања је ППППпема првом принципу термодинамике Q U +, () где су A Q n C T U C n C T n C T Q, и m P, m m P CP κ Заменом у () добија се 7 κ. 5 A ( ) Q 8kJ. κ

12 . Ако је унутрашња енергија моноатомског идеалног гаса једнакa средњој кинетичкој енергији транслаторног термичког кретања, унутрашња енергија гаса, који се у 3 3 запремини.5 0 m налази под притиском p kpa, је: а) 35 Ј, b) 40 Ј, c) 45 Ј, d) 50 Ј, e) 55 Ј. Унутрашња енергија гаса је j j 3 U nm EKSR nm RT p p 45 J.

13 3. Идеална расхладна машина ради по Карноовом циклусу. У току ширења гаса притисак се смањи три пута а запремина се удвостручи. Ако у току једног циклуса машина утроши механички рад A 00 J, са хладног извора топлоте одведе се у том циклусу количина топлоте: а) 33 Ј, b) 66 Ј, c) 00 Ј, d) 00 Ј, e) 300 Ј. Коефицијент термичког искоришћења топлотне машине која ради по Карноовом циклусу је TH pminmax η C. T p 3 T Коефицијент хлађења идеалне расхладне машине је max min k H η C. Одведена количина топлоте са хладнијег извора је Q k H A 00 J.

14 8 4. Растојање змеђу Сунца и Земље је R SZ.5 0 km, а полупречник Сунца је R S 7 0 km. Ако Сунце зрачи као апсолутно црно тело ( σ W /( m K )) са температуром на површи T S 5800 K, соларна константа на површи Земље ( тј. снага по јединици површи на Земљи која долази са Сунца када се занемари апсорпција енергије на путу од Сунца до Земље) је приближно једнака: а).4 W/m, b) 3.6 W/m, c).4 kw/m, d).4 kw/m, e) 3.6 kw/m. Снага коју зрачи Сунце је P S σt πr. S4 4 S Та се снага, када зрачење са Сунца дође до површи Земље, равномерно распореди по површини π R те је површинска густина снаге на Земљи (соларна константа) једнака 4 SZ P R kw. 4πR m S 4 S σt ( ). 4 S SZ RSZ

15 5. Две геометријски идентичне призме направљене су од различитих стакала чији су индекси преламања n и n. Призме су прилепљене једна уз другу. Зрак пада нормално на бочну страну прве призме и после проласка кроз ове две призме изађе као зрак под углом β у односу на првобитни правац упада. Ако су углови и β мали ( sin и sin β β ) разлика индекса преламања n n n приближно је једнака: β β а), b), c), β + β + β d), e). β β n β n Зрак улази у прву призму, упада под углом на граничну површ између две призме и прелама се под углом γ. Према закону преламања, за мале углове, је n nγ. () Овај зрак се простире кроз другу призму и прелама се у ваздух као зрак под углом β. Упадни угао на бочну површ друге призме је δ, па је закон преламања Како је γ + δ, из () и () следи n δ β. () β n n ( + δ ) n ( + ) n + β, n β n n.

16 6. Танко сабирно, сферно симетрично, сочиво индекса преламања n. 5 и полупречника кривине R 3m са једне стране је посребрено. Жижна даљина система сочиво-огледало је: а) 0.5 m, b) 0.50 m, c) 0.50 m, d) 0.75 m, e).00 m. Оптичке моћи сочива и огледала су D S ( n ) и f R S D O, респективно. f R O Оптичка моћ система сочива и огледала је пролази кроз сочиво, те је D SIS DS + D f SIS O, јер светлост два пута f D + D R 4 SIS S O 0.75 m.

17 7. Када танкер испусти керозин у море по површи мора формира се танки филм керозина дебљине d 350nm који плива по води. Индекс преламања керозина је n K. а морске воде n. 3. Посматрач из хеликоптера, који лебди изнад мрље, уочава да се најјаче рефлектовала компонента беле светлости таласне дужине: а) 400 nm, b) 40 nm, c) 500 nm, d) 600 nm, e) 650 nm. Зрак који нормално пада на границу ваздух.керозин делимично се одбија као први рефлектовани зрак ка посматрачу у хеликоптеру а делимично настави пут у керозину где се одбија од границе керозин-вода као други рефлектовани зрак и после проласка кроз крозин иде ка посметрачу у хеликоптеру. Разлика оптичких дужина пута између другог и првог рефлектованог зрака је n K d. Ако је ова разлика оптичких дужина пута једнака целом броју z таласних дужина светлости у вакууму тј. n K d zλ, z,,... тада ће се пpви и други рефлектовани зраци појачавати. Одатле следи λ n K d z z 9 m. За z и z 3 најјаче рефлектоване компоненте нису из видљиве светлости. Најјаче рефлектована компонента видљиве светлости добија се се за z, тј. λ 40 nm.

18 8. Светлосни извор емитује светлост у којој су изразито изражене спектралне компоненте таласне дужине λ nm и λ 3 / 4 λ. Светлост из овог извора 0 нормално пада на дифракциону решетку. Уочено је да су се под углом θ 4 поклопили максимуми различитог реда монохроматских компонената таласних дужина λ и λ. Минимална константа дифракционе решетке (растојање између центара два суседна прореза), која омогућује овакав исход експеримента је : а) 3 µ m, b) 5 µ m, c) 7 µ m, d) 9 µ m, e) µ m. Максимуми различитог реда ће се појавити под углом θ када су испуњени услови a sinθ zλ, sinθ zλ a, где је a константа решетке. Из ових релација следи λ λ z z 3 4. Минимална вредност константе решетке се добија за најмање целобројне вредности z и z за које је задовољена претходна релација, а то су z 3 и z 4, те је zλ a 5 µ m. sinθ

19 9. Када се фотокатода у вакуумској фотодиоди осветли светлошћу таласне дужине λ 400nm из фотокатоде излећу фотоелектрони. Ако се у простору између фотокатоде и аноде укључи управно на површ фотокатоде хомогено електрично поље, интензитета E 0 / cm, емитовани фотоелектрони могу се максимално удаљити од фотокатоде за d mm. Максимална вредност таласне дужине светлости са којом се може изазвати фотоефект из фотокатоде је ( e.6 0 C, h Js, c 3 0 m / s ): а) 450 nm, b) 490 nm, c) 550 nm, d) 590 nm, e) 650 nm. Из Einstein-ове релације hc λ hc Ai + Ek max + eed λ g 590 nm. λ eed g λ hc

20 4 0. Радиоактивни изотоп 84 X после N распада и распада прелази у изотоп 79 Y, при чему је : N β бета минус ( β ) а) N 3, N β, b) N 3, N β, c) N, N β, d) N, N 4, e) N 4, N 3. β β Из закона о одржању масе следи: 4 + 4N + 0 N N 3. β Из закона о одржању наелектрисња следи: N + ( ) N N. β β

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013.

МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013. МИЋО М МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 1 ПРАКТИКУМ ФИЗИКА 7 Збирка задатака и експерименталних вежби из физике

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

Геометријска оптика. Основни закони геометријске оптике Конструкција лика код огледала Конструкција лика код сочива Људско око

Геометријска оптика. Основни закони геометријске оптике Конструкција лика код огледала Конструкција лика код сочива Људско око Геометријска оптика Основни закони геометријске оптике Конструкција лика код огледала Конструкција лика код сочива Људско око Три могућа ефекта када светлост наиђе на неку средину Апсорпција Рефлексија

Διαβάστε περισσότερα

Координатни системи у физици и ОЕТ-у

Координатни системи у физици и ОЕТ-у Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН- 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

П Р Е Д Г О В О Р. У Београду, септембра године Аутор

П Р Е Д Г О В О Р. У Београду, септембра године Аутор Садржај ПРЕДГОВОР 4 ПИТАЊА И ЗАДАЦИ 5 ОСЦИЛАТОРНО И ТАЛАСНО КРЕТАЊЕ 6 Питања 6 Одговори 7 Задаци 8 СВЕТЛОСНЕ ПОЈАВЕ 6 Питања 6 Одговори 7 Задаци 8 ЕЛЕКТРИЧНО ПОЉЕ 6 Питања 6 Одговори 7 Задаци 9 ЕЛЕКТРИЧНА

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

РАДИЈАЦИОНА ФИЗИКА Рачунски задаци из Радијационе физике

РАДИЈАЦИОНА ФИЗИКА Рачунски задаци из Радијационе физике Природно математички факултет Владимир Марковић РАДИЈАЦИОНА ФИЗИКА Рачунски задаци из Радијационе физике Боров модел атома Боров модел атома представља атом са малим позитивно наелектрисаним језгром око

Διαβάστε περισσότερα

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 0/0. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група СЕНТА.0.0.. Играчи билијара су познати по извођењу специфичних удараца

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Eлектричне силе и електрична поља

Eлектричне силе и електрична поља Eлектричне силе и електрична поља 1 Особине наелектрисања Постоје две врсте наелектрисања Позитивна и негативна Наелектрисања супротног знака се привлаче, а различитог знака се одбијају Основни носиоц

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

4.4. Тежиште и ортоцентар троугла

4.4. Тежиште и ортоцентар троугла 50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

5. Земанов ефекат (нормални и аномални)

5. Земанов ефекат (нормални и аномални) 5.1 Теоријски увод 5. Земанов ефекат (нормални и аномални) Фарадеј је још 1862. године испитивао да ли се спектар обојених пламенова мења у присуству магнетног поља, али безуспешно. Тек је 1885, Фиевез

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

и атмосферски притисак

и атмосферски притисак II РАЗРЕД 5. ДРЖАВНО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ Друштво Физичара Србије Министарство просвете, науке и технолошког развоја Републике Србије ЗАДАЦИ бозонска категорија БЕОГРАД 3-4.04.03.. Машина за испуцавање

Διαβάστε περισσότερα

4. Зрачење у атмосфери и физиолошки процеси у биљкама (2)

4. Зрачење у атмосфери и физиолошки процеси у биљкама (2) 4.1 4. Зрачење у атмосфери и физиолошки процеси у биљкама (2) 4.1 Основни појмови o зрачењу 4.2 Начини преношења енергије у природи Провођење (кондукција) пренос топлоте кроз чврста тела Конвекција (мешање)

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Осми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ЕЛЕКТРИЧНО

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

3.5. Пливање и тоњење тела

3.5. Пливање и тоњење тела Физика 7. разред 3.5. Пливање и тоњење тела Из искуства знамо да нека тела, кад их потопимо у воду и пустимо - потону ( камен, ексер, кликер,новчић... ), док друга испливају ( оловка, лопта, запушач од

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н)

Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н) Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н) Теоријски увод Дифракција представља појаву привидног скретања таласа са првобитног правца простирања, савијања,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Стања материје. Чврсто Течно Гас Плазма

Стања материје. Чврсто Течно Гас Плазма Флуиди 1 Стања материје Чврсто Течно Гас Плазма 2 Чврсто тело Има дефинисану запремину Има дефинисан облик Молекули се налазе на специфичним локацијама интерагују електричним силама Вибрирају око положаја

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

1. Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н)

1. Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н) 1. Спектрална анализа помоћу дифракционе решетке (Hg, H, He) и одређивање Ридбергове константе (Н) 1.1 Теоријски увод Дифракција представља појаву привидног скретања таласа са првобитног правца простирања,

Διαβάστε περισσότερα

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2.

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2. ШКОЛСКА /4. ГОДИНЕ. ЗАДАЦИ -.5.4. Задатак : Несташни миш ( поена) Идеалан котур занемарљиве масе је преко идеалног динамометра окачен о плафон. Преко котура је пребачена идеална нит, на чијим крајевима

Διαβάστε περισσότερα

ТАЛАСИ. Таласи таласно кретање на води-не преноси се вода већ се деформација преноси. Таласи. Да би могао да постоји механички талас мора да постоје

ТАЛАСИ. Таласи таласно кретање на води-не преноси се вода већ се деформација преноси. Таласи. Да би могао да постоји механички талас мора да постоје ТАЛАСИ Понедељак, 19. децембар, 2011. Основне величине потребне за описивање таласног кретања Трансверзални и лонгитудинални таласи Суперпозиција и интерференција Стојећи таласи. Избијања Енергија таласа.

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2016/2017. ГОДИНЕ

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2016/2017. ГОДИНЕ II РАЗРЕД ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА Друштв физичара Србије Министарств прсвете и науке Републике Србије ЗАДАЦИ ферминска категрија ДРЖАВНИ НИВО 25.03.2017. 1. У пчетнј тачки крдинатнг система

Διαβάστε περισσότερα

Задатак 1: Муње из ведре главе (10 поена)

Задатак 1: Муње из ведре главе (10 поена) ЗАДАЦИ Задатак 1: Муње из ведре главе (10 поена) У овом задатку ћемо разматрати кружење наелектрисања у атмосфери укључуjући муње праћене грмљавином. Jоносфера jе горњи слоj атмосфере коjи jе услед космичког

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I 9/ . ГУСТИНА ТЕЧНОСТИ Апсолутна густина ( ρ ) је маса јединице запремине на одређеној 4 температури и притску (јединица у СИ систему за апсолутну

Διαβάστε περισσότερα

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево)

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево) ОДРЕЂИВАЊЕ ПАРАМЕТАРА КРИСТАЛНЕ РЕШЕТКЕ МЕТОДОМ КРИСТАЛНОГ ПРАХА, ДЕБАЈ ШЕРЕРОВ МЕТОД ТЕОРИЈСКИ УВОД У параметре кристалне решетке убрајају се дужине ивица кристалне ћелије: a, b и c и дужина међураванског

Διαβάστε περισσότερα

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ 3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,

Διαβάστε περισσότερα

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ ЧЕВИЈЕВА ТЕОРЕМА И ПОСЛЕДИЦЕ Мастер рад Кандидат: Рајка Милетић Ментор: проф др Неда Бокан Београд, 00 САДРЖАЈ Увод 3 I ЧЕВИЈЕВА ТЕОРЕМА 4 I Доказ Чевијеве теореме

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе ФИЗИКА 9. Понедељак, 1. октобар, 9. Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања 5 поена (са више

Διαβάστε περισσότερα

ВИЗУAЛИЗАЦИЈА СТРУЈАЊА ОКО МОДЕЛА КЛАСИЧНОГ ОСНОСИМЕТРИЧНОГ ПРОЈЕКТИЛА

ВИЗУAЛИЗАЦИЈА СТРУЈАЊА ОКО МОДЕЛА КЛАСИЧНОГ ОСНОСИМЕТРИЧНОГ ПРОЈЕКТИЛА ВИЗУAЛИЗАЦИЈА СТРУЈАЊА ОКО МОДЕЛА КЛАСИЧНОГ ОСНОСИМЕТРИЧНОГ ПРОЈЕКТИЛА Дамир Јерковић, Војна академија, Београд Славица Ристић, Институт Гоша, Београд Душан Регодић, Универзитет Сингидунум, Београд Марија

Διαβάστε περισσότερα

Сунчев систем. Кеплерови закони

Сунчев систем. Кеплерови закони Сунчев систем Кеплерови закони На слици је приказан хипотетички сунчев систем. Садржи једну планету (Земљу нпр.) која се креће око Сунца и једина сила која се ту појављује је гравитационо привлачење. Узимајући

Διαβάστε περισσότερα

Механички таласи и звук у настави физике

Механички таласи и звук у настави физике Универзитет у Новом Саду Природно математички факултет Департман за физику Механички таласи и звук у настави физике дипломски рад Студент: Емилија Јоцић 271/12 Ментор: др Соња Скубан Јул, 2016. Садржај

Διαβάστε περισσότερα

Рачунање времена и координатни системи у метеорској астрономији

Рачунање времена и координатни системи у метеорској астрономији Рачунање времена и координатни системи у метеорској астрономији Време у астрономији За размишљање 1. Нека сви часовници на Земљи показују тачно време. Колико пута ће бар 1 часовник показати 13.01 5. августа

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

ДЕФИНИЦИЈА УГЛА МЕРЕЊЕ ХОРИЗОНТАЛНИХ ПРАВАЦА И ВЕРТИКАЛНИХ УГЛОВА - ТЕОДОЛИТ ХОРИЗОНТАЛНИ УГАО НА ТЕРЕНУ

ДЕФИНИЦИЈА УГЛА МЕРЕЊЕ ХОРИЗОНТАЛНИХ ПРАВАЦА И ВЕРТИКАЛНИХ УГЛОВА - ТЕОДОЛИТ ХОРИЗОНТАЛНИ УГАО НА ТЕРЕНУ ДЕФИНИЦИЈА УГЛА МЕРЕЊЕ ХОРИЗОНТАЛНИХ ПРАВАЦА И ВЕРТИКАЛНИХ УГЛОВА - ТЕОДОЛИТ Угао је део равни ограничен двема полуправама које се секу у једној тачки. Угао је нагиб два зрака који се секу у једној тачки.

Διαβάστε περισσότερα

МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ

МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ Универзитет у Новом Саду Природно-математички факултет Департман за физику МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ - Мастер рад - Ментор: Проф. Маја

Διαβάστε περισσότερα

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ Б Крстајић Збирка задатака из Електромагнетике - (007/008) ЕЛЕКТРОСТАТИЧКО ПОЉЕ Примјер Израчунати силу на тачкасто наелектрисање = 0µ C од тачкастог наелектрисања = 300µ C ако су координате тачака и одређене

Διαβάστε περισσότερα

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2 I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на

Διαβάστε περισσότερα

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања ЈЕДИНИЦЕ: А) Изразите следеће изведене јединице преко основних јединица SI система, при чему ћете користити релације које су наведене:. њутн F N F a. паскал

Διαβάστε περισσότερα

Експерименти са дифракцијом светлости и њихов значај за наставу физике

Експерименти са дифракцијом светлости и њихов значај за наставу физике УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ Драгиша М. Николић Експерименти са дифракцијом светлости и њихов значај за наставу физике - докторска дисертација - Ниш, 013. године

Διαβάστε περισσότερα

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ Универзитет у Новом Саду Природно математички факултет Департман за физику РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ МАСТЕР РАД ментор: кандитат: Др Маја Стојановић Адријана Сарић

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ.

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 1/13. ГОДИНЕ. Општа група Основне школе Друштво Физичара Србије Министарство просвете, науке и технолошког развоја Републике Србије ЗАДАЦИ Српска физичка

Διαβάστε περισσότερα