ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
|
|
- Δάμαλις Ζέρβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
2 . Αγωγή (). ΑΓΩΓΗ. Γενική εξίσωση ενέργειας για την αγωγή.. Εξίσωση αγωγής ερμότητας σε επίπεδο τοίχωμα.. Εξίσωση αγωγής ερμότητας σε κύινδρο μεγάου μήκους..3 Εξίσωση αγωγής ερμότητας σε σφαίρα..4 Εξισώσεις μονοδιάστατης αγωγής (ανακεφααίωση). Οριακέςκαιαρχικέςσυνήκεςγιατιςεξισώσειςαγωγής.3 Μονοδιάστατη αγωγή σε μόνιμη κατάσταση χωρίς παραγωγή ερμότητας.3. Επίπεδο τοίχωμα.3. Κυινδρικό τοίχωμα.3.3 Σφαιρικό τοίχωμα.4 Μεταβαόμενη αγωγιμότητα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
3 . Αγωγή (). Γενική εξίσωση ενέργειας για την αγωγή Η ροή ερμότητας έχει κατεύυνση, είναι δη. διανυσματικό μέγεος q & Η ερμοκρασία είναι βαμωτό μέγεος Η κίση της ερμοκρασίας (μεταβοή στο χώρο) είναι διάνυσμα n d dn n : κατεύυνση μεταβοής της ερμοκρασίας και κατεύυνση της ροής ερμότητας Το σύνοο των σημείων που έχουν την ίδια ερμοκρασία καορίζουν μία ισοερμοκρασιακή επιφάνεια Η ροή ερμότητας και η κίση της ερμοκρασίας είναι διανύσματα κάετα στις ισοερμοκρασιακές επιφάνειες Νόμος Fuie q & n Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -3 n A n d dn
4 . Αγωγή (). Γενική εξίσωση ενέργειας για την αγωγή Σε σύστημα ορογώνιων συντεταγμένων (καρτεσιανό σύστημα) Γενικό ισοζύγιο ενέργειας για αγωγή στον όγκο εέγχου y y z z ρc p t Θερμότητα που εξέρχεται από τον όγκο εέγχου -ερμότητα που εισέρχεται Ρυμός παραγωγής ερμότητας στο εσωτερικό του όγκου εέγχου Ρυμός μεταβοής ενεργειακού περιεχομένου στον όγκο εέγχου Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -4
5 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -5. Γενική εξίσωση ενέργειας για την αγωγή Γενικό ισοζύγιο ενέργειας για αγωγή στον όγκο εέγχου Σε σύστημα ορογώνιων συντεταγμένων (καρτεσιανό σύστημα) t C q z q y q q p z y ρ & & & & t C q z z y y p z y ρ & Για σταερό και α/(ρc p ) t q z y α &. Αγωγή ()
6 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -6. Γενική εξίσωση ενέργειας για την αγωγή Σε σύστημα ορογώνιων συντεταγμένων (καρτεσιανό σύστημα) t q z y α & Ειδικές περιπτώσεις Εξίσωση Fuie t z y α Εξίσωση Pissn 0 q z y & Εξίσωση Laplace 0 z y. Αγωγή ()
7 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -7. Γενική εξίσωση ενέργειας για την αγωγή Τεεστής Laplace σε ορογώνιες, κυινδρικές και σφαιρικές συντεταγμένες t q z y α & t q α & z y z φ sin sin sin φ ψ ψ ψ ψ ψ. Αγωγή ()
8 . Αγωγή ().. Εξίσωσηαγωγήςερμότηταςσεεπίπεδοτοίχωμα (Μονοδιάστατη αγωγή σε ορογωνικές συντεταγμένες) Μονοδιάστατη αγωγή Μεταβητή αγωγιμότητα ρc p t Μονοδιάστατη αγωγή Σταερή αγωγιμότητα α t 0 0 Πουδιάστατη αγωγή Σταερή αγωγιμότητα y z α t Μονοδιάστατη αγωγή Σταερή αγωγιμότητα Χωρίς παραγωγή ερμότητας Μόνιμη κατάσταση α d 0 d t Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -8
9 . Αγωγή ().. Εξίσωσηαγωγήςερμότηταςσεκύινδρομεγάου μήκους (Μονοδιάστατη αγωγή σε κυινδρικές συντεταγμένες) Μονοδιάστατη αγωγή Μεταβητή αγωγιμότητα ρc p t Μονοδιάστατη αγωγή Σταερή αγωγιμότητα α t Πουδιάστατη αγωγή Σταερή αγωγιμότητα α t φ z Μονοδιάστατη αγωγή Σταερή αγωγιμότητα Χωρίς παραγωγή ερμότητας Μόνιμη κατάσταση d d 0 0 d 0 d α t Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -9
10 . Αγωγή ()..3 Εξίσωσηαγωγήςερμότηταςσεσφαίρα (Μονοδιάστατη αγωγή σε σφαιρικές συντεταγμένες) Μονοδιάστατη αγωγή Μεταβητή αγωγιμότητα ρc p t Μονοδιάστατη αγωγή Σταερή αγωγιμότητα α t Πουδιάστατη αγωγή Σταερή αγωγιμότητα... α t ψ... φ Μονοδιάστατη αγωγή Σταερή αγωγιμότητα Χωρίς παραγωγή ερμότητας Μόνιμη κατάσταση 0 0 α t d d d 0 d Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -0
11 . Αγωγή () Μονοδιάστατη αγωγή Σταερή αγωγιμότητα Χωρίς παραγωγή ερμότητας Μόνιμη κατάσταση..4 Εξισώσεις μονοδιάστατης αγωγής (ανακεφααίωση) Επίπεδο τοίχωμα Κύινδρος Σφαίρα ρc p t ρc p t ρc p t α t α t α t α t α t α t d d 0 d d d 0 d d d d 0 d Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
12 .. Οριακέςκαιαρχικέςσυνήκεςγιατιςεξισώσειςαγωγής Η επίυση μιας εξίσωσης αγωγής έχει σαν αντικείμενο: (α) τον υποογισμό της χωρικής κατανομής της ερμοκρασίας (β) το υποογισμό των μεταβοών της χωρικής κατανομής συναρτήσει του χρόνου (στην περίπτωση μη μόνιμης κατάστασης) Για την επίυση πρέπει να ορισούν οι κατάηες οριακές και αρχικές συνήκες. Οριακές συνήκες: αφορούν την κατανομή στο χώρο Αρχικές συνήκες: αφορούν τις χρονικές μεταβοές Οι εξισώσεις αγωγής είναι: ης τάξηςωςπροςτονχώρο χρειάζονται οριακές συνήκες για κάε διάσταση οι οριακές συνήκες μπορεί να περιαμβάνουν (α) συγκεκριμένες τιμές της ερμοκρασίας, (β) τιμές της ης παραγώγου της ης τάξηςωςπροςτονχρόνο. Αγωγή () χρειάζεται αρχική συνήκη, π.χ. η κατανομή της ερμοκρασίας (,y,z) σε t 0 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
13 . Αγωγή (). Οριακέςκαιαρχικέςσυνήκεςγιατιςεξισώσειςαγωγής Οι οριακές συνήκες που συναντάμε συνήως αφορούν: (α) καορισμένη ερμοκρασία (β) καορισμένη ροή ερμότητας (γ) καορισμένες συνήκες συναγωγής και ακτινοβοίας Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -3
14 . Αγωγή ().3 Μονοδιάστατη αγωγή σε μόνιμη κατάσταση, χωρίς παραγωγή ερμότητας.3. Επίπεδο τοίχωμα Διαφορική εξίσωση: d 0 d d c d c c Οριακές συνήκες: α) 0, β) L, L c και c Ρυμός ροής ερμότητας (νόμος Fuie): & d d L q Οοκηρωμένη εξίσωση: L ή L Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -4
15 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη ροής ερμότητας Δεδομένα: Πυμένας κατσαρόας: D0cm, L0.3cm Υικό: αουμίνιο 37 W/(m C) Ηεκτρική μονάδα έρμανσης: 800W Το 90% της ερμότητας που παράγεται από το στοιχείο έρμανσης μεταφέρεται στην κατσαρόα. Κατά τη μόνιμη ειτουργία, η ερμοκρασία της εσωτερικής επιφάνειας του πυμένα είναι 0 C. Ζητούνται: Η ερμοκρασία στην εξωτερική επιφάνεια του πυμένα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -5
16 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη ροής ερμότητας Λύση: d 0 d d c d c c D0cm, L0.3cm 37 W/(m C) Ισχύς 800 W (90% στην κατσαρόα) Οριακές συνήκες: α) L, 0 C β) W 70 W 0.70 kw q &.9kW / m A πd / 4 π(0.m) / 4 d d.9kw / m d d 0.37kW /(m C) d 96.6 d C / m Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -6
17 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη ροής ερμότητας Λύση: d 0 d d c d c c D0cm, L0.3cm 37 W/(m C) Ισχύς 800 W (90% στην κατσαρόα) Οριακές συνήκες: α) L0.003m, 0 C d β) 96.6 C/ m d c d d 96.6 C/ m c cl 0( C) 96.6( C/ m) 0.003(m) 0.9 C 0 c 0.9 C Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -7
18 . Αγωγή ().3. Επίπεδο τοίχωμα. Οριακή συνήκη συναγωγής ή ακτινοβοίας Αγωγή ερμότητας στην επιφάνεια προς μία διεύυνση Συναγωγή ερμότητας στην επιφάνεια προς την ίδια διεύυνση Αγωγή ερμότητας στην επιφάνεια προς μία διεύυνση Αντααγή ακτινοβοίας στην επιφάνεια προς την ίδια διεύυνση Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -8
19 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη συναγωγής Δεδομένα: Ηεκτρικό σίδερο με αντίσταση έρμανσης ισχύος 00W Πάκα βάσης: Α300cm, L0.5 cm, 5 W/(m C) Η εσωτερική επιφάνεια της πάκας ερμαίνεται ομοιόμορφα με τις ηεκτρικές αντιστάσεις του σίδερου Από την εξωτερική επιφάνεια της πάκας αποβάεται ερμότητα προς το περιβάον με συναγωγή Συντεεστής συναγωγής, h80 W/(m C) Θερμοκρασία περιβάοντος, π 0 C Η απώεια ερμότητας όγω ακτινοβοίας εωρείται αμεητέα. Ζητούνται: Οι ερμοκρασίες στην εσωτερική και εξωτερική επιφάνεια της πάκας Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -9
20 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη συναγωγής Λύση: d d 0 c d d c c Οριακές συνήκες: d α) 0, 00W q A d β) L, d h[ ( L) π ] d 00W q 40000W / m A 0.03m 00 W d Α300cm 40000W / m, L0.5 cm 667 C/ m 5 W/(m C) d 5W /(m C) c h80 W/(m C), 40000W / m ( ) π 0 β) L 0 C C π h 80W /(m C) L 667 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -0 ( ) 50 C C/ m
21 . Αγωγή ().3. Επίπεδο τοίχωμα. Παράδειγμα. Οριακή συνήκη συναγωγής Λύση: d d 0 c c c d d Οριακές συνήκες: d α) 0, 00W q A d d β) L, h[ ( L) π ] d 00 W Α300cm, L0.5 cm 5 W/(m C) h80 W/(m C), π 0 C c c 667 C/ m ( L) 50 C (L) c L 50( C) 667( C / m) 0.005(m) c 533 C ( 0) c 533 C ( L) 50 C Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
22 . Αγωγή ().3. Κυινδρικό τοίχωμα Ψυχρό ρευστό Διαφορική εξίσωση: d d d 0 d d c d c ln c Οριακές συνήκες: Θερμό ρευστό α), c β), ln( ) και c c ln Οοκηρωμένη εξίσωση: ( ln( ) ln( ) ) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -
23 . Αγωγή ().3. Κυινδρικό τοίχωμα Ψυχρό ρευστό Θερμό ρευστό ( ln( ) ln( ) ) Μόνιμη κατάσταση Χωρίς παραγωγή ερμότητας Ρυμός ροής ερμότητας (νόμος Fuie): Στο κυινδρικό τοίχωμα ο ρυμός ροής ερμότητας υποογίζεται ευκοότερα εάν εωρήσουμε το ισοζύγιο ενέργειας στον κατάηο στοιχειώδη όγκο. Θεωρούμε κυινδρικό δακτύιο με : εσωτερική ακτίνα, εξωτερική ακτίνα Δ μήκος L d Δ ή 0 d & q d Α d d Lπ d d Lπd L π ln( ) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -3
24 .3. Κυινδρικό τοίχωμα Αντιστοίχηση εξισώσεων ρυμού ροής ερμότητας: (α) σε επίπεδο και (β) σε κυινδρικό τοίχωμα & Α L q πl ln( ) πl ln( ) A A ln(a A ) A lm Α lm μέση ογαριμική τιμή των επιφανειών Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -4
25 . Αγωγή ().3. Κυινδρικό τοίχωμα Παράδειγμα.3 Απώεια ερμότητας διαμέσου κυινδρικού σωήνα Δεδομένα: Σωήνας μήκους L0 m, εσωτερικής ακτίνας 6cm και εξωτερικής ακτίνας 8cm χρησιμοποιείται για μεταφορά υδρατμών. Η ερμική αγωγιμότητα του σωήνα είναι 0 W/(m C) Η εσωτερική επιφάνεια διατηρείται σε μέση ερμοκρασία 50 C και η εξωτερική σε 60 ο C Ζητούνται: Η γενική σχέση για την κατανομή της ερμοκρασίας στο εσωτερικό του σωήνα Ο ρυμός απώειας ερμότητας από τους υδρατμούς διαμέσου του σωήνα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -5
26 . Αγωγή ().3. Κυινδρικό τοίχωμα Παράδειγμα.3 Απώεια ερμότητας διαμέσου κυινδρικού σωήνα Λύση: d d d 0 d Οριακές συνήκες: α) 0.06m 50 C β) 0.08m 60 C d c d c ln c L0 m, 6cm, 8cm 0 W/(m C) 50 C, 60 ο C c ln( ) 90 ln(0.08/ 0.06) c c ln ( ln( ) ln( ) ) 3.8 C 50( C) 3.8( C) ln( ) Εξίσωση κατανομής ερμοκρασίας στο τοίχωμα του σωήνα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -6
27 . Αγωγή ().3. Κυινδρικό τοίχωμα Παράδειγμα.3 Απώεια ερμότητας διαμέσου κυινδρικού σωήνα Λύση: d d d 0 d Οριακές συνήκες: d c d c ln c L0 m, 6cm, 8cm 0 W/(m C) 50 C, 60 ο C σταερή π L α) 0.06m 50 C β) 0.08m 60 C Ρυμός απώειας ερμότητας π 0(W /(m 0m L 50( C) 3.8( C) ln( ) π ln( 90( C) C)) ln(.33) ) Κατανομή ερμοκρασίας kw Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -7
28 . Αγωγή ().3.3 Σφαιρικό τοίχωμα Διαφορική εξίσωση: d d d 0 d d d c c c Οριακές συνήκες: c α), ( ) ( ) β), c ( ) και Οοκηρωμένη εξίσωση: Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -8
29 .3.3 Σφαιρικό τοίχωμα Ρυμός ροής ερμότητας (νόμος Fuie): Θεωρούμε σφαιρικό δακτύιο με : εσωτερική ακτίνα, εξωτερική ακτίνα Δ d Δ ή 0 d d d Α 4π σταερό d d d 4πd 4π ( ). Αγωγή () Ισοζύγιο ενέργειας (μόνιμη κατάσταση, χωρίς παραγωγή ερμότητας): Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -9
30 . Αγωγή ().3.3 Σφαιρικό τοίχωμα Αντιστοίχηση εξισώσεων ρυμού ροής ερμότητας: (α) σε επίπεδο και (β) κυινδρικό και (γ) σε σφαιρικό τοίχωμα & Α L q A lm A gm μέση ογαριμική τιμή των επιφανειών A lm A A ln(a A ) μέση γεωμετρική τιμή των επιφανειών A gm 4π 4π 4π Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -30
31 . Αγωγή ().4 Μεταβαόμενη αγωγιμότητα Κατά κανόνα ο συντεεστής ερμικής αγωγιμότητας μεταβάεται με την ερμοκρασία. Όταν οι μεταβοές είναι σχετικά μικρές αγνοούνται. Όταν πρέπει να ηφεί υπόψη η μεταβοή του με την ερμοκρασία, χρησιμοποιούνται συνήως εμπειρικές σχέσεις που αντιστοιχούν σε πουώνυμα α ήβ βαμού: 0( α) ή ( α ) 0 β Για μονοδιάστατη αγωγή, μόνιμη κατάσταση, χωρίς ενέργειας το πρόβημα αντιμετωπίζεται εύκοα παραγωγή Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -3
32 . Αγωγή ().4 Μεταβαόμενη αγωγιμότητα Παράδειγμα: Αγωγή σε επίπεδο τοίχωμα με μεταβαόμενη αγωγιμότητα Με τις υποέσεις: (α) μονοδιάστατη αγωγή, (β) μόνιμη κατάσταση, (γ) χωρίς παραγωγή ενέργειας, ισχύει: d q A d d d A Εάν q καιαείναισταεράκαι 0( α) Ισοδύναμη σχέση: m A A 0 m & α d προκύπτει: 0 α Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -3
33 350 C. Αγωγή ().4 Μεταβαόμενη αγωγιμότητα Παράδειγμα: Αγωγή σε επίπεδο τοίχωμα με μεταβαόμενη αγωγιμότητα 0 (α) 50 C Δεδομένα: Μπρούτζινη πάκα ύψους Ηm, πάτους W0.7m και πάχους L0. m Η μία πευρά διατηρείται σε σταερή ερμοκρασία 350 C και η άη σε 50 C Η ερμική αγωγιμότητα της πάκας στο συγκεκριμένο ερμοκρασιακό διάστημα μεταβάεται γραμμικά σύμφωνα με τη σχέση: 0 (α) όπου 0 48 W/(m C) και α C -. Ζητούνται: Ο ρυμός αγωγής ερμότητας δια μέσου της πάκας. Υποέσεις: μόνιμη και μονοδιάστατη μεταφορά ερμότητας, αμεητέες επιδράσεις των άκρων. Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -33
34 350 C 0 (α) 50 C. Αγωγή ().4 Μεταβαόμενη αγωγιμότητα Παράδειγμα: Αγωγή σε επίπεδο τοίχωμα με μεταβαόμενη αγωγιμότητα Λύση: m m A 48(W /(m m 56.8W /(m C) m d 0 α 4 (350 50)( C) ( C ) C) Δεδομένα: Ηm, W0.7m, L0. m 350 C και 50 C 0 (α) 0 48 W/(m ο C) α C - m A W 56.8( ) (0.7.0)(m m C 5930 W C ) ( ) 0. m Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας -34
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα η : Αγωγή Μονοδιάστατη αγωγή Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns.
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καηγήτρια Ε.Μ.Π. Ενότητα 4 η : Μονοδιάστατη αγωγή με σύγχρονη παραγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕνότητα 6 η : Μεταβατική αγωγή Θερμότητας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 6 η : Μεταβατική αγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται
Διαβάστε περισσότεραηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογου ρ. Μηχανοόγος Μηχανικός ΤΕΙ Σερρών Τµήµα Μηχανοογίας Αγωγή Μόνιµη κατάσταση Κεφάαιο 3 ΤΕΙ Σερρών Τµήµα Μηχανοογίας Το επίπεδο τοίχωµα Τοιχοποιία σπιτιών (τοίχοι, παράθυρα, στέγες) Τοιχώµατα
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ (3) Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
Διαβάστε περισσότεραΗ κατανόηση και ο χειρισµός ποσοτικών ή µορφολογικών αλλαγών, εντός του πεδίου βαρύτητας, µπορούν να αντιµετωπιστούν συνδυάζοντας έννοιες
Τοµέας Τοπογραίας, Εργ. Ανώτερης Γεωδαισίας Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) ιδάσκοντες ηµήτρης εηκαράογου 7ο εξάµηνο, Ακαδ. Έτος 08 8-99 Οι µετρήσεις των µεγεών που συνδέονται
Διαβάστε περισσότεραΧειμερινό εξάμηνο 2007 1
ΜΜΚ 3 Μεταφορά Θερμότητας Μεταβατική Αγωγή Θερμότητας: ιαγράμματα Hesle και Αναλυτικές Λύσεις ΜΜΚ 3 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 3 Μεταφορά Θερμότητας Μεταβατική
Διαβάστε περισσότεραΠτερύγια. Φύση και Σκοπός Ύπαρξης των Πτερυγίων
Πτερύγια ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής Διάλεξη 5 ΜΜK 31 Μεταφορά Θερμότητας Κεφάλαιο 3 1 Φύση και Σκοπός Ύπαρξης των Πτερυγίων Επιφάνειες οι οποίες αποκαλούνται
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 3 η : Αγωγή Σύνθετα τοιχώματα Άθροιση αντιστάσεων Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΣΚΗΣΕΙΣ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 1a-1
Διαβάστε περισσότεραΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK
ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK To 1900 o Plank εισήγαγε την υπόθεση ότι το φως εκπέμπεται από την ύη με τη μορφή κβάντων ενέργειας hν. Το 190 ο Einstein επέκτεινε αυτή την ιδέα προτείνοντας
Διαβάστε περισσότεραR 1. e 2r V = Gauss E + 1 R 2
: Γραμμική πυκνότητα φορτίου βρίσκεται στον άξονα αγώγιμου κυινδρικού φοιού εσωτερικής ακτίνας και εξωτερικής α) Να υποογιστεί η επαγόμενη πυκνότητα φορτίου στις δύο όψεις του φοιού, αν το συνοικό του
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις
Διανύσματα ΦΥΣ 131 - Διάλ. 2 1 q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις q Διανύσματα περιγράφουν μέτρο αλλά και κατεύυνση q Αντίετα, βαμωτά μεγέη περιγράφονται μόνο από το μέτρο
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ6) Διδάσκων: Δρ. Χρήστος Τάντος, Εαρινό εξάμηνο 7- ΕΡΓΑΣΙΑ #: Θερμική ακτινοβοία Ημερομηνία ανάρτησης εργασίας στην ιστοσείδα του μαθήματος: -- Ημερομηνία παράδοσης εργασίας:
Διαβάστε περισσότεραΣεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας
Διαβάστε περισσότεραΑπόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)
Διαβάστε περισσότεραTO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Ι ΑΣΚΟΥΣΑ Νυµφοδώρα Παπασιώπη Αν. Καθηγήτρια papasiop@metal.ntua.gr Φαινόµενα Μεταφοράς
Διαβάστε περισσότεραΔιαφορική ανάλυση ροής
Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΔΙΔΑΣΚΟΥΣΑ Νυμφοδώρα Παπασιώπη Λέκτορας papasiop&metal.ntua.gr Φαινόμενα Μεταφοράς
Διαβάστε περισσότερα(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι
Διαβάστε περισσότεραΦαινόμενα Μεταφοράς Μάζας θερμότητας
Φαινόμενα Μεταφοράς Μάζας θερμότητας 2 η Διάλεξη Μηχανισμοί μετάδοσης θερμότητας Εμμανουήλ Σουλιώτης Τμήμα Μηχανικών Περιβάλλοντος Πανεπιστήμιο Δυτικής Μακεδονίας Ακαδημαϊκό Έτος 2018-2019 Μαθησιακοί στόχοι
Διαβάστε περισσότεραΣύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ
Διαβάστε περισσότεραΔιανύσματα. ! Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις. ! Διανύσματα περιγράφουν μέτρο αλλά και κατεύθυνση
Επισκόπιση Θα µελετήσουµε την κίνηση σωµάτων και πώς οι αλληλεπιδράσεις τους µε άλλα σώµατα επηρεάζουν τη κίνηση αυτή Η µελέτη αυτή στηρίζεται σε µετρηµένο αριµό εµελιωδών αρχών που συσχετίζουν αιτία και
Διαβάστε περισσότεραΠαράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y
y Διανύσματα R y V y ĵ î R V î ( 1,0 ) ĵ ( 0,1) R + V (R + V )î + (R y + V y ) ĵ R + V H κατεύυνση του διανύσματος (( R + V ) 2 + ( R y + V y ) 2 ) R + V ϕ rc(tnϕ) rc Ανάλογες σχέσεις ισχύουν και για 3
Διαβάστε περισσότεραΠαραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ
ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση
Διαβάστε περισσότεραΜια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε.
Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. ) Ένα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκείται πάνω του μια οριζόντια σταερή δύναμη F, όπως στο σχήμα. i) Σε ποια διεύυνση α κινηεί το σώμα;
Διαβάστε περισσότεραΑσκηση 1: Να διατυπώσετε το πρόβλημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίλυση του φυσικού μοντέλου που φαίνεται στο σχήμα: y Λ 2
Ασκήσεις Κεφααίου 5 Ασκηση : Να διατυπώσετε το πρόβημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίυση του φυσικού μοντέου που φαίνεται στο σχήμα: y K κυματιστήρας b b 4 M M 4 b 3 3 K κάτοψη
Διαβάστε περισσότεραπαραγωγή θερμότητας T=T1
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων στην Αγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στα μαθήματα αμέσως μετά το Πάσχα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος, πρέπει να προσπαθήσετε
Διαβάστε περισσότεραΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.
Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fck Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 1 η : Μεταφορά θερμότητας Βασικές Αρχές Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Coons. Για εκπαιδευτικό
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 8 η : Εναλλάκτες θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative mmns.
Διαβάστε περισσότεραηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
Μετάδοση Θερµότητας ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ΤΕΙ Σερρών Μετάδοση Θερµότητας 1 Εισαγωγή στη Μετάδοση Θερµότητας Κεφάλαιο 1 ΤΕΙ Σερρών Μετάδοση Θερµότητας Ορισµός Μετάδοση θερµότητας: «Μεταφορά
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 12.Μεταφορά Θερμότητας σε Ρευστά Χωρίς Αλλαγή Φάσης Συχνές Εφαρμογές Το θερμό ρεύμα εξόδου ενός αντιδραστήρα, όπου λαμβάνει χώρα
Διαβάστε περισσότεραΠανελλαδικές εξετάσεις 2015 Ενδεικτικές απαντήσεις στο µάθηµα «Φυσική κατεύθυνσης ΓΕΛ»
Θέµα Α Α. α Α. β Α3. α Α. δ Α5. Λ, Σ, Σ, Λ, Σ Θέµα Β Πανεαδικές εξετάσεις 05 Ενδεικτικές απαντήσεις στο µάηµα «Φυσική κατεύυνσης ΓΕΛ» Β. Σωστή απάντηση η iii. A Μ, l m (+) uu wρ uu w Αφού η ράβδος, µάζας
Διαβάστε περισσότερα6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ
6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)
Διαβάστε περισσότεραγ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος.
ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΚΥΜΑΤΑ Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε στο φύο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα
Διαβάστε περισσότεραΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Συναγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 1: Εισαγωγή στη Μετάδοση Θερμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
Διαβάστε περισσότεραΑνάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L
Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει
Διαβάστε περισσότεραΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ
ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ Η έννοια της ερμοκρασίας Τι είναι ερμοκρασία; η ερμοκρασία αποτελεί ένα μέτρο του πόσο ερμό ή ψυχρό είναι ένα σώμα Υποκειμενική παρατήρηση: Ένα σώμα Α είναι ερμότερο ή ψυχρότερο
Διαβάστε περισσότεραΗΜΥ 681 Εκτίμηση κατάστασης II (AC Εκτίμηση κατάστασης)
ΗΜΥ 68 Εκτίμηση κατάστασης II AC Εκτίμηση κατάστασης Δρ Ηλίας Κυριακίδης Αναπληρωτής Καηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Ηλίας Κυριακίδης
Διαβάστε περισσότεραΣφαιρικές συντεταγμένες (r, θ, φ).
T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ
Διαβάστε περισσότεραΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΣΥΝΑΓΩΓΗ Νυμφοδώρα Παπασιώπη Φαιόμεα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
Διαβάστε περισσότεραιανοµή θερµοκρασίας και βαθµός απόδοσης πτερυγίων ψύξης
ιανοµή θερµοκρασίας και βαθµός απόδοσης πτερυγίων ψύξης 9. Λεκτική Περιγραφή του φυσικού προβλήµατος Για την αποδοτικότερη ψύξη επιφανειών και γενικότερα για την αύξηση του ρυθµού συναλλαγής θερµότητας
Διαβάστε περισσότεραΧειμερινό εξάμηνο
Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από
Διαβάστε περισσότεραΕργαστήριο Μετάδοσης Θερμότητας
ΑΣΚΗΣΗ ΕΝΑΛΛΑΚΤΩΝ ΘΕΡΜΟΤΗΤΑΣ ΣΚΟΠΟΣ Ο υπολογισμός του μεταφερόμενου ποσού θερμότητας σε εναλλάκτη ομόκεντρων σωλήνων, ο συνολικός θερμικός βαθμός απόδοσης, οι θερμοκρασιακές αποδόσεις των δύο ρευμάτων
Διαβάστε περισσότερα2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Σκοπός της άσκησης
Διαβάστε περισσότεραΚαμπυλόγραμμα Συστήματα Συντεγμένων
Καμπυλόγραμμα Συστήματα Συντεγμένων Προσδιορίστε την αναπαράσταση των τελεστών και σε ένα καμπυλόγραμμο σύστημα συντεταγμένων. Εξειδικεύστε τα αποτέλεσματά σας στις περιπτώσεις : (α) πολικών συντεταγμένων
Διαβάστε περισσότεραΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής
Διαβάστε περισσότερα1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς
Διονύσης Μητρόπουος Άνοδος κάθοδος κυιόμενου αρχικά σώματος σε κεκιμένο επίπεδο, με ή χωρίς οίσθηση ΕΚΦΩΝΗΣΗ Ένα «στρογγυό» σώμα έχει μάζα m, ακτίνα R και ροπή αδράνειας Ι cm m R². Οι τιμές του είναι ⅖
Διαβάστε περισσότεραL 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
Διαβάστε περισσότεραΣύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 Θερμοδυναμική και Μετάδοση Θερμότητας 1 1.2
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.
Διαβάστε περισσότεραΜόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας
Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας ΜΜΚ 3 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜΚ 3 Μεταφορά Θερμότητας Κεφάλαιο 3 Μεθοδολογία για
Διαβάστε περισσότερα1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ
ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ Σκοπός της άσκησης Η κατανόηση της χρήσης της εξίσωσης Fourier
Διαβάστε περισσότεραΜακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ΑΠΑΝΤΗΣΕΙΣ Επιµέεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ευτέρα, Μαΐου 3 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της
Διαβάστε περισσότεραfysikoblog.blogspot.com
fysoblog.blogspot.com Πανεπιστήμιο Αηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙ: Αλλαγή Συστήματος Συντεταγμένων Στις σημειώσεις αυτές δίνομε την αναπαράσταση των τελεστών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότερα6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής
Διαβάστε περισσότεραKάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Κτενιαδάκης Μιχάλης, Eκδόσεις Zήτη, Ιούνιος 2010, Θεσσαλονίκη
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Με το συγγραφέα επικοινωνείτε: e-mail: mkten@staff.teicrete.gr ISBN 978-960-456-4-5 Copyright: Κτενιαάκης Μιχάης, Eκόσεις Zήτη, Ιούνιος 00, Θεσσαονίκη
Διαβάστε περισσότεραΤΕΙ ΚΑΒΑΛΑΣ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ
ΤΕΙ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ ΤΕΧΝ. ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ Φ.Α. Τ.Ε. & ΜΗΧ/ΓΩΝ ΜΗΧ/ΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΑΣΚΗΣΕΙΣ - ΠΡΑΞΗΣ Καθηγήτρια, Ε. ΑΠΟΣΤΟΛΙΔΟΥ 2017-2018 Άσκηση 1
Διαβάστε περισσότεραΓενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 007 Φυσική Γ υκείου θετικής - τεχνοογικής κατεύθυνσης Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπα το γράµµα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 0.Μεταφορά Θερμότητας σε Ρευστά Εναλλάκτης Κελύφους-Αυλών E 2 Β 2 Ατμός F C K Εξαέρωση Β Θερμό Υγρό J E D 2 Α D H Ψυχρό Υγρό Eικόνα
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους
Διαβάστε περισσότεραΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Θ. ΠΑΝΙ ΗΣ ΠΑΤΡΑ 00 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:
Διαβάστε περισσότεραΟ ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο
Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ Το εσωτερικό γινόµενο Σε πολλές πρακτικές καταστάσεις, η τιµή µιας ποσότητας εξαρτάται από τις τιµές δύο ή περισσότερων άλλων ποσοτήτων. Για παράδειγµα η συνάρτηση V = π r h υπολογίζει
Διαβάστε περισσότεραΑ3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή β.
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΜΑÏΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτεείς προτάσεις Α-Α4 να γράψετε
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραz a R 3 (με R 3 > R 3 ); 2R P O a
: Θέμα o από εξέταση της 9/9/: Κύβος από διηεκτρικό υικό κατααμβάνει τον όγκο x, y, z και φέρει μόνιμη πόωση P k r kxˆx + yŷ + zẑ). α) Βρείτε τα χωρικά και επιφανειακά δέσμια φορτία. β) Ποια η συνοική
Διαβάστε περισσότεραT p =. (1) p = m q. (2)
Υπενύμιση: Συχνά δεν εμφανίζονται όλες οι μεταβλητές μιάς συνάρτησης, πχ. F(,t) = F() = F(t) = F. Έντονη γραφή υποδεικνύει άνυσμα, π.χ. F αντιστοιχεί σε τρείς συνιστώσες, {F x, F y, F z }, στον τρισδιάστατο
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΓεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34
Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα
Διαβάστε περισσότεραΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1
ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ 3 ΘΕΡΜΟΤΗΤΑ, Q ( W h ) ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Μεταφορά ενέργειας με: Θερμική αγωγή ή Θερμική μεταβίβαση ή με συναγωγιμότητα (μεταφορά θερμότητας στην επιφάνεια επαφής
Διαβάστε περισσότεραΑΣΚΗΣΗ m 5.13 ΛΥΣΗ. Α. (Γυμνός αγωγός) ΤΕΙ ΚΡΗΤΗΣ Τμήμα Μηχανολογίας ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Καθηγητής : Μιχ. Κτενιαδάκης - Σπουδαστής : Ζάνη Γιώργος
ΑΣΚΗΣΗ 5.3 ( ) Αεραγωγός από γαλβανισμένη λαμαρίνα αμελητέου πάχους, έχει διάμετρο 40 και μήκος 30. Στον αεραγωγό εισέρχεται θερμός αέρας, παροχής 3600 3 / σε θερμοκρασία 50 C. Ο συντελεστής συναγωγής
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΜΕ ΑΡΜΟΝΙΚΟΥΣ ΤΑΛΑΝΤΩΤΕΣ
ΑΣΚΗΣΕΙΣ ΜΕ ΑΡΜΟΝΙΚΟΥΣ ΤΑΛΑΝΤΩΤΕΣ ΑΣΚΗΣΗ 1: Ένα αντικείμενο με μάζα m=500 g είναι προσαρμοσμένο μεταξύ δυο αβαρών ελατηρίων των οποίων τα φυσικά μήκη είναι L 0 και των οποίων οι σταερές είναι k 1 =10,
Διαβάστε περισσότερα1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 8 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Διαβάστε περισσότεραΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak
1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)
Διαβάστε περισσότερα-.................4...5. -..6. ANAΛΥΣΗ ΣΕ ΤΡΙΧΟΕΙ ΕΣ ΙΞΩ ΟΜΕΤΡΟ Για Νευτωνικά ρευστά ο τύπος Hagen-Poiseuille (δηλ. η προηγούµενη εξίσωση για την πτώση πίεσης για n) 8 4 P µ L Q R π µπορεί να χρησιµοποιηεί
Διαβάστε περισσότεραΠεριεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2
Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση
Διαβάστε περισσότεραΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Αγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραr 2 P + C. + sin(4θ ) 8 sin(2θ ) ( ) V (r, θ) = 1 (r ) l P P 1 (x) = x, P 2 (x) = 1 2 (3x2 1), P 3 (x) = 1 2 (5x3 3x) V=0 V=0
: α Πρόβημα 36 από Griffiths: Μια σφαίρα ακτίνας με κέντρο στην αρχή των αξόνων φέρει πυκνότητα φορτίου ρr θ k r sin θ όπου k είναι μία σταθερά και r r θ είναι οι γνωστές σφαιρικές συντεταγμένες Βρείτε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Μιχάλης Ταρουδάκης. Καθηγητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΚΟΥΣΤΙΚΗΣ ΙΑ ΟΣΗΣ ΣΤΗ ΘΑΛΑΣΣΑ Μιχάης Ταρουδάκης Καθηγητής Ηράκειο Μαθηµατική Μοντεοποίηση Ακουστικής ιάδοσης στη Θάασσα Μαθηµατική Μοντεοποίηση
Διαβάστε περισσότεραΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Ν. Τράκας, Ι. Ράπτης 2/4/2018
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 7-8 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Ν. Τράκας Ι. Ράπτης /4/8 Παράδοση των 3 4 5 μέχρι /4/8 [Σε χειρόγραφη μορφή στο μάθημα ή σε μορφή ενιαίου αρχείου PDF στις
Διαβάστε περισσότερα2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά
2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα
Διαβάστε περισσότεραΤυπολόγιο 1ου Κεφαλαίου. Συχνότητα. N f t Θεμελιώδης εξίσωση της κυματικής. c λ f Ο Ρ Ο Σ Η Μ Ο. Ενέργεια φωτονίου. E h f h λ
Τυποόιο ου Κεφααίου Συχνότητα Φυσική της B Λυκείου Γενικής Παιδείας N f t Θεμειώδης εξίσωση της κυματικής f Ενέρεια φωτονίου E h f h Οική ενέρεια φωτεινής δέσμης (Ν φωτονίων) Eo N Eφ Ν h f Ν h Ανάκαση
Διαβάστε περισσότερα