«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»"

Transcript

1 1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 Η εργασία αυτή αποτελείται από δύο µέρη. Στο πρώτο µέρος ορίζεται η έννοια των θετικών πραγµατικών αριθµών µε αφορµή µία κυκλικότητα που παρατηρείται στην προσέγγιση της παραπάνω έννοιας στο σχολικό βιβλίο της Άλγεβρας της Α Λυκείου. Στο δεύτερο περιγράφεται η αξιωµατική θεµελίωση του διατεταγµένου σώµατος των πραγµατικών αριθµών και εξηγείται γιατί το σώµα των µιγαδικών δεν είναι διατεταγµένο. Τέλος, στο παράρτηµα αποδεικνύεται ότι το αξίωµα της πληρότητας δεν ισχύει στο σύνολο των ρητών αριθµών. Εισαγωγή Στο σχολικό βιβλίο της άλγεβρας της Α Λυκείου η παράγραφος που αναφέρεται στην έννοια της διάταξης στο σύνολο των πραγµατικών αριθµών αρχίζει ως εξής: «Έννοια της διάταξης Οι έννοιες «µεγαλύτερος από», «µικρότερος από», που είναι γνωστές από το Γυµνάσιο, ορίστηκαν ως εξής: ΟΡΙΣΜΟΣ Ένας αριθµός α λέµε ότι είναι µεγαλύτερος από έναν αριθµό β, και γράφουµε α > β, όταν η διαφορά α β είναι θετικός αριθµός. Στην περίπτωση αυτή λέµε επίσης ότι ο β είναι µικρότερος του α και γράφουµε β < α. Από τον παραπάνω ορισµό προκύπτει αµέσως ότι: Κάθε θετικός αριθµός είναι µεγαλύτερος από το µηδέν. Κάθε αρνητικός αριθµός είναι µικρότερος από το µηδέν. Έτσι ο αρχικός ορισµός γράφεται ισοδύναµα: α > β α β > 0.» Σχολιάζοντας το παραπάνω κείµενο αναφέρω τα εξής: Η έννοια της διάταξης στο γυµνάσιο, που επικαλούνται οι συγγραφείς του συγκεκριµένου βιβλίου, δίνεται διαισθητικά και εµπειρικά και όχι µε αυστηρό τρόπο όπως ταιριάζει στο λύκειο. Οι µαθητές της Α Λυκείου γνωρίζουν ότι κάθε έννοια που χρησιµοποιείται για τον ορισµό µιας καινούριας έννοιας, αν δεν είναι πρωταρχική, πρέπει να έχει ορισθεί νωρίτερα. Όµως, στον παραπάνω ορισµό βλέπουν ότι για τον ορισµό

2 2 της έννοιας του «µεγαλύτερου από», στο σύνολο των πραγµατικών αριθµών χρησιµοποιείται η έννοια των θετικών πραγµατικών αριθµών χωρίς να έχει ο- ρισθεί νωρίτερα! Ακόµη, τι νόηµα έχει η φράση: «Από τον παραπάνω ορισµό προκύπτει αµέσως ότι κάθε θετικός αριθµός είναι µεγαλύτερος από το µηδέν», χωρίς να έχει ορισθεί η έννοια των θετικών πραγ- µατικών αριθµών; Αν µας ρωτήσει ένας µαθητής ποιος αριθµός λέγεται θετικός, τι θα απαντήσου- µε; Αυτός που είναι µεγαλύτερος του µηδενός; Σύµφωνα µε ποιον ορισµό της έννοιας του «µεγαλύτερου από» προσδιορίζεται ότι ένας αριθµός είναι µεγαλύτερος από το µηδέν, αφού τώρα ορίζεται η έννοια αυτή στο σύνολο των πραγµατικών αριθµών; Μήπως τελικά δηµιουργείται ένας κύκλος, ο οποίος είναι ορατός περισσότερο στην ισοδυναµία α > β α β > 0, την οποία οι συγγραφείς τη θεωρούν ι- σοδύναµη του ορισµού; Θα είχε νόηµα µια προσέγγιση σαν την παραπάνω, αν η έννοια των θετικών πραγµατικών αριθµών ήταν πρωταρχική ή αν είχε ορισθεί νωρίτερα. Το ερώτηµα που τίθεται τώρα είναι: Μπορεί να θεωρηθεί η έννοια των θετικών πραγµατικών αριθµών ως πρωταρχική; Η απάντηση είναι πως όχι, διότι, όπως θα δούµε παρακάτω, µπορεί να ορισθεί. Η έννοια των θετικών πραγµατικών αριθµών και η σχέση της διάταξης στο IR Αρχικά θα ορίσουµε την έννοια των θετικών πραγµατικών αριθµών σε έξι βή- µατα ξεκινώντας από το σύνολο των φυσικών αριθµών και στη συνέχεια θα ορίσουµε την έννοια του «µεγαλύτερου από» στο σύνολο των πραγµατικών α- ριθµών. Βήµα 1 ο : (Ορισµός της έννοιας του «µεγαλύτερου από» στο σύνολο Ν των φυσικών αριθµών) ΟΡΙΣΜΟΣ 1 Ένας φυσικός αριθµός α λέµε ότι είναι µεγαλύτερος από ένα φυσικό αριθµό β και γράφουµε α > β, όταν υπάρχει ένας φυσικός αριθµός τ 0 τέτοιος ώστε να ισχύει α = β + τ. Βήµα 2 ο : (Ορισµός της έννοιας των θετικών ακεραίων αριθµών) Στο σύνολο ΝxΝ ορίζουµε τη σχέση σ ως εξής: (κ, λ)σ(µ, ν) εάν κ + ν = λ + µ. Αποδεικνύεται ότι η σχέση σ είναι σχέση ισοδυναµίας στο σύνολο ΝxΝ, οπότε διαµερίζει το ΝxΝ σε κλάσεις ισοδυναµίας. Κάθε κλάση ισοδυναµίας ορίζει

3 3 έναν ακέραιο αριθµό. Με αυτόν τον τρόπο µπορούµε να ορίσουµε αυστηρά το σύνολο Ζ των ακεραίων αριθµών. εν θα επεκταθούµε στον ορισµό των πράξεων στο σύνολο Ζ, οι οποίες ορίζονται µε ανάλογο τρόπο. Θα δώσουµε µόνο την έννοια του θετικών ακεραίων. Έχουµε λοιπόν τον επόµενο ορισµό: ΟΡΙΣΜΟΣ 2 Ένας ακέραιος αριθµός α λέµε ότι είναι µεγαλύτερος του µηδενός και γράφουµε α > 0, όταν ισχύει η σχέση κ > λ, όπου (κ, λ) είναι ένας αντιπρόσωπος της κλάσης του α. Κάθε ακέραιος αριθµός α > 0 λέγεται θετικός ακέραιος α- ριθµός. Αποδεικνύεται ότι η παραπάνω έννοια ορίζεται καλά µε την έννοια ότι δεν ε- ξαρτάται από τον αντιπρόσωπο που παίρνουµε για την κλάση του α. Επίσης, σηµειώνεται ότι η σχέση κ > λ ορίσθηκε στο προηγούµενο βήµα, αφού οι α- ριθµοί κ και λ είναι φυσικοί. Βήµα 3 ο : (Ορισµός της έννοιας του «µεγαλύτερου από» στο σύνολο των ακεραίων αριθµών) Τώρα µπορούµε να ορίσουµε την έννοια του «µεγαλύτερου από» στο σύνολο των ακεραίων αριθµών. Έτσι έχουµε τον επόµενο ορισµό: ΟΡΙΣΜΟΣ 3 Ένας ακέραιος αριθµός α λέµε ότι είναι µεγαλύτερος από έναν ακέραιο α- ριθµό β και γράφουµε α > β, όταν η διαφορά α β είναι θετικός ακέραιος α- ριθµός, δηλαδή όταν ισχύει η σχέση α β > 0. Σηµειώνεται ότι η σχέση α β > 0 ορίσθηκε στο προηγούµενο βήµα. Βήµα 4 ο : (Ορισµός της έννοιας των θετικών ρητών αριθµών) Στο σύνολο ΖxΖ* ορίζουµε τη σχέση σ ως εξής: (κ, λ)σ(µ, ν) εάν κν = λµ. Αποδεικνύεται ότι η σ είναι σχέση ισοδυναµίας στο σύνολο ΖxΖ*, οπότε δια- µερίζει το ΖxΖ* σε κλάσεις ισοδυναµίας. Κάθε κλάση ορίζει έναν ρητό αριθµό. Με αυτόν τον τρόπο µπορούµε να ορίσουµε αυστηρά το σύνολο Q των ρητών αριθµών. Και εδώ δεν θα επεκταθούµε στον ορισµό των πράξεων στο Q, οι οποίες ορίζονται µε ανάλογο τρόπο. Θα δώσουµε µόνο την έννοια του θετικών ρητών αριθµών. Έχουµε λοιπόν: ΟΡΙΣΜΟΣ 4 Ένας ρητός αριθµός α λέµε ότι είναι µεγαλύτερος του µηδενός και γράφουµε α > 0, όταν ισχύει η σχέση κλ > 0, όπου (κ, λ) είναι ένας αντιπρόσωπος της κλάσης του α. Κάθε ρητός αριθµός α > 0 λέγεται θετικός ρητός αριθµός.

4 4 Αποδεικνύεται ότι η παραπάνω έννοια ορίζεται καλά µε την έννοια ότι δεν ε- ξαρτάται από τον αντιπρόσωπο που παίρνουµε για την κλάση του α. Επίσης, σηµειώνεται ότι η σχέση κλ > 0 έχει ορισθεί στο 2 ο βήµα, αφού οι αριθµοί κ και λ είναι ακέραιοι. Βήµα 5 ο : (Ορισµός της έννοιας του «µεγαλύτερου από» στο σύνολο των ρητών αριθµών) Θα ορίσουµε τώρα την έννοια του «µεγαλύτερου από» στο σύνολο των ρητών αριθµών. Έχουµε λοιπόν τον επόµενο ορισµό: ΟΡΙΣΜΟΣ 5 Ένας ρητός αριθµός α λέµε ότι είναι µεγαλύτερος από έναν ρητό αριθµό β και γράφουµε α > β, όταν η διαφορά α β είναι θετικός ρητός αριθµός, δηλαδή ισχύει η σχέση α β > 0. Σηµειώνεται ότι η σχέση α β > 0 ορίσθηκε στο προηγούµενο βήµα. Βήµα 6 ο : (Ορισµός της έννοιας των θετικών πραγµατικών αριθµών) Θεωρούµε ότι το σύνολο των πραγµατικών αριθµών έχει θεµελιωθεί µε τη βοήθεια ακολουθιών Cauchy ρητών αριθµών. ηλαδή κάθε πραγµατικός αριθ- µός ορίζεται ως µία κλάση ακολουθιών Cauchy ρητών αριθµών. Έτσι έχουµε τον παρακάτω ορισµό: ΟΡΙΣΜΟΣ 6 Έστω α ένας πραγµατικός αριθµός και ( a ν ) * ένας αντιπρόσωπος της ν IN κλάσης του α. Θα λέµε ότι ο α είναι µεγαλύτερος του µηδενός και θα γράφουµε α > 0, όταν υπάρχει θετικός ρητός αριθµός ε (ε > 0) και φυσικός α- ριθµός ν o ώστε να ισχύει a ν > ε για κάθε ν > ν o. Ένας πραγµατικός αριθµός µεγαλύτερος του µηδενός λέγεται θετικός πραγµατικός αριθµός. Αποδεικνύεται ότι η παραπάνω έννοια ορίζεται καλά µε την έννοια ότι δεν ε- ξαρτάται από τον αντιπρόσωπο που παίρνουµε για την κλάση του α. Επίσης, σηµειώνεται ότι η σχέση a ν > ε ορίζεται στο προηγούµενο βήµα, αφού οι α- ριθµοί a ν και ε είναι ρητοί και η σχέση ν > ν o ορίζεται στο πρώτο βήµα. Βήµα 7 ο : (Ορισµός της έννοιας του «µεγαλύτερου από» στο σύνολο των πραγ- µατικών αριθµών) Τώρα ορίζουµε την έννοια του «µεγαλύτερου από» στο σύνολο των πραγµατικών αριθµών ως εξής: ΟΡΙΣΜΟΣ 7 Ένας πραγµατικός αριθµός α λέµε ότι είναι µεγαλύτερος από έναν πραγµατικό αριθµό β και γράφουµε α > β, όταν η διαφορά α β είναι θετικός πραγµατικός αριθµός, δηλαδή όταν ισχύει η σχέση α β > 0.

5 5 Σηµειώνεται ότι η σχέση α β > 0 ορίσθηκε στο προηγούµενο βήµα. Στη συνέχεια ορίζεται η σχέση της διάταξης στο σύνολο των πραγµατικών αριθµών και αποδεικνύονται οι ιδιότητές της. Αξιωµατική θεµελίωση του διατεταγµένου σώµατος των πραγµατικών αριθµών Συνήθως σε βιβλία Ανάλυσης δεν ακολουθείται η παραπάνω αναλυτική και µεγάλη σε έκταση διαδικασία, αλλά προτιµάται ένας αξιωµατικός τρόπος θεµελίωσης του διατεταγµένου σώµατος των πραγµατικών αριθµών, όπως π.χ. αυτός που παρουσιάζεται παρακάτω. εχόµαστε ότι στο IR ορίζονται δύο εσωτερικές πράξεις, η πρόσθεση (+) και ο πολλαπλασιασµός ( ), για τις οποίες ισχύουν τα παρακάτω αξιώµατα: Α. Αξιώµατα της πρόσθεσης 1. x + y = y + x, x, y IR 2. (x + y) + z = x + ( y + z), x, y, z IR 3. Υπάρχει µοναδικό ουδέτερο στοιχείο, το µηδέν (0), δηλαδή ισχύει: x + 0 = 0 + x = x, x IR 4. Για κάθε x IR υπάρχει µοναδικό αντίθετο στοιχείο x IR, για το οποίο ισχύει: x + x = x + x = 0. (Για το αντίθετο στοιχείο κάθε x IR χρησιµοποιείται ο συµβολισµός - x ). Β. Αξιώµατα του πολλαπλασιασµού 5. x y = y x, x, y IR 6. (x y) z = x ( y z), x, y, z IR 7. Υπάρχει µοναδικό ουδέτερο στοιχείο, το ένα (1), δηλαδή ισχύει: x 1= 1 x = x, x IR 8. Για κάθε πραγµατικό αριθµό x 0 υπάρχει µοναδικό αντίστροφο στοιχείο x IR, για το οποίο ισχύει: x x = x x = 1. (Για το αντίστροφο στοιχείο κάθε πραγµατικού x 0 χρησιµοποιείται ο συµβολισµός 1 x ). Γ. Αξίωµα που συνδέει τις δύο πράξεις 9. (x + y) z = x z + y z, x, y, z IR. Οι πράξεις της αφαίρεσης (-) και της διαίρεσης (:) στο IR ορίζονται ως εξής: x - y = x + (- y), x, y IR και x : y = x 1, x, y IR µε y 0. y

6 6 Μπορούµε να ορίσουµε στο IR την έννοια του «µεγαλύτερου από» και στη συνέχεια τη σχέση της διάταξης και να αποδείξουµε όλες τις ιδιότητές της στηριζόµενοι στα παρακάτω αξιώµατα.. Αξιώµατα για τη διάταξη εχόµαστε ότι υπάρχει ένα υποσύνολο IR + του IR για το οποίο ισχύουν τα αξιώµατα: 10. Για κάθε x, y IR + ισχύει x + y IR + (το IR + είναι κλειστό ως προς την πρόσθεση). 11. Για κάθε x, y IR + ισχύει x y IR + (το IR + είναι κλειστό ως προς τον πολλαπλασιασµό). 12. Για κάθε x IR ισχύει: ή x IR + ή -x IR + ή x = 0. Τους πραγµατικούς αριθµούς που ανήκουν στο IR + τους καλούµε θετικούς πραγµατικούς αριθµούς, ενώ τους πραγµατικούς αριθµούς που είναι διάφοροι του 0 και δεν ανήκουν στο IR + τους καλούµε αρνητικούς πραγµατικούς αριθ- µούς. Το σύνολο όλων των αρνητικών πραγµατικών αριθµών το συµβολίζουµε µε το σύµβολο IR. Παρατηρούµε ότι τα σύνολα IR +, {0} και IR διαµερίζουν το IR. Τώρα είµαστε σε θέση να ορίσουµε την έννοια του «µεγαλύτερου από» στο σύνολο των πραγµατικών αριθµών. Έχουµε λοιπόν τον παρακάτω ορισµό: ΟΡΙΣΜΟΣ Λέµε ότι ένας πραγµατικός αριθµός α είναι µεγαλύτερος από έναν πραγµατικό αριθµό β και γράφουµε α > β, όταν η διαφορά α-β ανήκει στο IR +, δηλαδή όταν η διαφορά α β είναι θετικός πραγµατικός αριθµός. Από τον παραπάνω ορισµό προκύπτει άµεσα η ισοδυναµία: α > 0 α IR + (α θετικός) και από αυτήν την ισοδυναµία και τον ίδιο ορισµό προκύπτει η ισοδυναµία: α > β α β > 0, όπου α, β IR, η οποία δεν µπορεί να θεωρηθεί ισοδύναµη του ορισµού, όπως διαβάζουµε στο σχολικό βιβλίο. Ακόµη, παρατηρούµε ότι όλα τα παραπάνω αξιώµατα ικανοποιούνται και στο σύνολο Q των ρητών αριθµών, το οποίο είναι ένα διατεταγµένο σώµα. Όµως, όπως γνωρίζουµε, δεν είναι πλήρες. Γι αυτό για το σύνολο των πραγµατικών αριθµών για την διάταξη δεχόµαστε επιπλέον το παρακάτω αξίωµα που είναι γνωστό ως αξίωµα πληρότητας του IR, το οποίο δεν ισχύει στο σύνολο των ρητών αριθµών, όπως αποδεικνύεται στο παράρτηµα. Με το αξίωµα αυτό το σύνολο των πραγµατικών αριθµών καθίσταται ένα πλήρως διατεταγµένο σώµα (αποδεικνύεται ότι κάθε πλήρως διατεταγµένο σώµα είναι ισόµορφο του IR).

7 7 Ε. Αξίωµα πληρότητας 13. Κάθε άνω φραγµένο υποσύνολο του συνόλου IR των πραγµατικών αριθ- µών έχει ελάχιστο άνω φράγµα στο IR. Το ελάχιστο άνω φράγµα ενός άνω φραγµένου υποσυνόλου Α του IR το λέµε supremum του Α και γράφουµε supα. Στο σηµείο αυτό αξίζει να δούµε γιατί το σώµα C των µιγαδικών αριθµών δεν είναι διατεταγµένο. Προς τούτο πρέπει πρώτα να αποδείξουµε την παρακάτω πρόταση. Πρόταση: Αν Χ είναι ένα διατεταγµένο σώµα (ικανοποιούνται τα παραπάνω αξιώµατα 1-12), τότε: α. Για κάθε x Χ µε x 0 ισχύει x 2 Χ + και β. 1 Χ +. Απόδειξη (κανόνας των προ- α. Έστω x Χ µε x 0. Αν x Χ +, τότε από το αξίωµα 11 προκύπτει ότι x 2 Χ +. Αν x Χ +, τότε -x Χ + και (-x) 2 Χ +. Όµως (-x) 2 = x 2 σήµων). Άρα για κάθε x Χ µε x 0 ισχύει x 2 Χ +. β. Αν 1 Χ + τότε -1 Χ + (αξίωµα 12). Έτσι για κάθε x Χ + θα ισχύει (-1)x Χ + (αξίωµα 11). Όµως (-1)x = -x (κανόνας των προσήµων). ηλαδή και -x Χ + (άτοπο). Άρα 1 Χ +. Έστω τώρα ότι το σώµα C των µιγαδικών αριθµών είναι διατεταγµένο. Σύµφωνα µε την παραπάνω πρόταση έχουµε i 2 C +. Αλλά i 2 = -1 C + (άτοπο). Άρα το σώµα C των µιγαδικών αριθµών δεν είναι διατεταγµένο. Επίλογος-πρόταση Κλείνοντας τίθεται το ερώτηµα: µε ποιον από τους δύο τρόπους θα µπορούσε να διδαχθεί η σχέση της διάταξης στην Α Λυκείου; Αφού ο σκοπός της διδασκαλίας της Άλγεβρας στο λύκειο δεν είναι η θεµελίωση του διατεταγµένου σώµατος των πραγµατικών αριθµών µε αυστηρό τρόπο, αλλά η καλλιέργεια της ορθολογικής, αναλυτικής, διαισθητικής και συνθετικής σκέψης των µαθητών θα µπορούσαµε να µείνουµε στην διαισθητική και εµπειρική προσέγγιση της σχέσης της διάταξης που έγινε στο γυµνάσιο και να αποφευχθεί έτσι ένας αυστηρός ορισµός, όπως άλλωστε γίνεται και µε τις πράξεις. Αν όµως πρέπει οπωσδήποτε να χρησιµοποιηθεί ένας τρόπος, ώστε να υπάρξει η διαφοροποίηση από το γυµνάσιο, εγώ προσωπικά κλίνω υπέρ του αξιωµατικού.

8 8 Σε κάθε περίπτωση όµως πρέπει οπωσδήποτε να αναφερθεί η ισοδυναµία: α > β α β > 0, η οποία είναι χρήσιµη για την επίλυση πολλών ασκήσεων. ΠΑΡΑΡΤΗΜΑ Εδώ θα αποδείξουµε µε τη βοήθεια ενός αντιπαραδείγµατος ότι δεν ισχύει γενικά το αξίωµα της πληρότητας στο σύνολο των ρητών αριθµών. Έστω λοιπόν το σύνολο: 2 { / 0 ή 2} A= x Q x< x. Παρατηρούµε ότι το Α είναι άνω φραγµένο. Θα αποδείξουµε ότι δεν έχει ελάχιστο άνω φράγµα (supremum) στο σύνολο των ρητών αριθµών. Έστω ότι το παραπάνω σύνολο Α έχει supremum στο σύνολο των ρητών αριθ- µών και έστω supα = b όπου b Q. Για τον αριθµό b διακρίνουµε τις περιπτώσεις: b 2 = 2, b 2 > 2 και b 2 < 2. Εξετάζοντας κάθε περίπτωση χωριστά έχουµε: 1 η περίπτωση: Αν b 2 = 2, τότε είναι b = 2. Όµως, ο αριθµός 2, όπως αποδεικνύεται, δεν είναι ρητός. 2 η περίπτωση: Αν b 2 2 b 2 > 2, τότε θεωρώντας τον ρητό αριθµό ε = (προφανώς b 0), αποδεικνύεται εύκολα ότι ο ρητός αριθµός b ε είναι επίσης άνω 2b φράγµα του Α, που είναι άτοπο αφού b ε < b. 3 η περίπτωση: Αν b b < 2, τότε θεωρώντας τον ρητό αριθµό ε = (θα ι- 2b+ 1 σχύει 1 < b, γιατί 1 Α), αποδεικνύεται εύκολα ότι για τον ρητό b + ε ισχύει (b + ε) 2 < 2, δηλαδή b + ε Α, που είναι άτοπο, διότι b < b + ε και ο αριθ- µός b είναι άνω φράγµα του Α. Άρα το υποσύνολο Α του Q, ενώ είναι άνω φραγµένο, δεν έχει ελάχιστο άνω φράγµα στο σύνολο των ρητών αριθµών.

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.» 1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Η εργασία αυτή γράφτηκε µε αφορµή την κυκλικότητα που παρατηρείται στο σχολικό

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ;

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ; 1 Ισοδύναµες εξισώσεις και η έννοια του «κοντά» ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-thedrpuls.gr Εισαγωγή Στην εργασία αυτή αναλύονται και αναπτύσσονται οι έννοιες που

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί. Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {,, 3,...} Το σύνολο των ακεραίων Z = {... 3,,, 0,,, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

1 Πολλαπλασιασµός ρητών αριθµών ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Πολλοί µαθητές της Α Γυµνασίου δυσκολεύονται να κατανοήσουν τους αλγορίθµους των

Διαβάστε περισσότερα

των θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ.

των θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ. Παραγοντοποίηση του τριωνύµου αx + βx + γ (α ) ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-theodoropoulos.gr Πρόλογος Η παραγοντοποίηση ενός πολυωνύµου είναι µία από τις πιο βασικές

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Η ασάφεια και τα Ασαφή Σύνολα ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Η έννοια του ασαφούς συνόλου εισήχθη από τον Zadeh το 1965 και δηµιούργησε πραγµατική

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

Τρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Αλγεβρα. Ενότητα: Πολυώνυµα πολλών µεταβλητών - ο αλγόριθµος της διαίρεσης. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Αλγεβρα. Ενότητα: Πολυώνυµα πολλών µεταβλητών - ο αλγόριθµος της διαίρεσης. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Πολυώνυµα πολλών µεταβλητών - ο αλγόριθµος της διαίρεσης Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. Πανεπιστηµιο Αιγαιου Τµηµα Μαθηµατικων 8 200 Καρλοβασι Σαµος Καρλόβασι 09/02/2012 Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. 1. Απαντήστε µε α(αλήθεια)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

Ανάλυση Ι και Εφαρµογές

Ανάλυση Ι και Εφαρµογές Ανάλυση Ι και Εφαρµογές Σηµειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τµήµα Φυσικής Πανεπιστήµιο Αθηνών Αθήνα 206 Περιεχόµενα Το σύνολο των πραγµατικών αριθµών. Φυσικοί, ακέραιοι και ϱητοί αριθµοί.......................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Α Σ Κ Η Σ Ε Ι Σ Π Ι Θ Α Ν Ο Τ Η Τ Ω Ν ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ0 e-mail@p-theodoropoulos.gr Πρόλογος Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηµατικών µε πολλά

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

1.1 Η Έννοια του Διανύσματος

1.1 Η Έννοια του Διανύσματος ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος ΜΘΗΣΙΚΟΙ ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να κατανοήσει τις έννοιες : διάνυσµα, µηδενικό διάνυσµα, φορέας-διεύθυνση, κατεύθυνση - φορά, µέτρο διανύσµατος, ϖαραλληλία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Η παιδαγωγική διάσταση των πολλών τρόπων επίλυσης ενός προβλήµατος ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Μία χαρακτηριστική ιδιότητα των Μαθηµατικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 υϊκοι Χωροι και Χωροι Πηλικα Στο παρόν Κεφάλαιο ϑα µελετήσουµε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Κεφάλαιο 0 Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Στο παρόν εισαγωγικό Κεφάλαιο, υπενθυµίζουµε, κατά κύριο λόγο χωρίς αποδείξεις, ϐασικές γνώσεις από : τη στοιχειώδη ϑεωρία συνόλων και απεικονίσεων,

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μετασχηµατισµός Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μετασχηµατισµός Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μετασχηµατισµός Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα