Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu"

Transcript

1 Forme normale pentru schemele de relaţie prof. dr. ing. Mircea Petrescu Folosirea formelor normale conduce la eliminarea multora din problemele de redondanţe şi anomalii enunţate anterior. Fie o schemă R; un atribut A din R este prim, dacă A face parte din orice cheie pentru R. Altfel A este neprim. Exemplu. În schema R=OSC sunt prime toate atributele, deoarece fiind date dependenţele OS C şi C O, sunt chei atât OS cât şi SC. Pe de altă parte, în schema ABCD cu dependenţele AB C, B D şi BC A, singurele chei sunt AB şi BC, deci A, B, C sunt prime, iar D neprim. Prima formă normală (FN1) În prima formă normală, domeniul fiecărui atribut este construit din valori indivizibile. Cu alte cuvinte, în FN1 domeniile atributelor nu conţin mulţimi de valori sau tupluri, luate din domenii mai elementare. În general, pentru noi o relaţie este echivalentă cu FN1, prin definiţie. A doua formă normală (FN2) Se defineşte mai jos. A treia formă normală (FN3) O schemă de relaţie R este în FN3 dacă nu există o cheie X pentru R, o mulţime de atribute Y R şi un atribut neprim A în R, dar A X, A Y, astfel încât: a) X Y să fie respectată în R; b) Y A să fie respectată în R, dar c) Y X să nu fie respectată în R. Dacă Y este o submulţime a lui X şi ca urmare a condiţiei c), Y este o submulţime proprie a lui X, spunem că R are o dependenţă parţială. Dacă Y nu este o submulţime a lui X, atunci R admite o dependenţă tranzitivă. Spunem că R este în FN2 atunci când R satisface condiţiile de mai sus ori de câte ori Y X, dar nu în mod necesar altfel. Exemplu: schema de relaţie R=FDAP, cu dependenţele FA P şi F D nu respectă FN3 (de asemenea nu respectă FN2). Într-adevăr, fie X=FA, Y=F. Atributul D (adresa!) este neprim, deoarece singura cheie este FA. Atunci X Y şi Y D sunt dependenţele valabile, pe când Y X (adică F FA) nu este valabilă. Vom observa că în acest caz, X Y şi Y D nu numai că funcţionează în R, ci ele sunt dependenţe date. În general, însă, este suficient ca X Y şi Y D să decurgă dintr-o mulţime dată de dependenţe, chiar dacă ele sunt date ca atare. Un alt exemplu: schema de relaţie R=OSC este în FN3, condiţiile corespunzătoare acestei forme fiind îndeplinite de la sine. Exemplu de schemă de relaţie în FN2, dar nu în FN3: R=MARS, unde M=magazin, A=articol, R=nr. raion, S=şef de raion. Presupunem că funcţionează următoarele dependenţe funcţionale: MA R (fiecare articol în fiecare magazin este vândut de cel mult un raion) MR S (fiecare raion în fiecare magazin are un şef) 1

2 Schema de relaţie are o singură cheie: MA. Dacă notăm X=MA şi Y=MR, iar A=S, atunci regulile care definesc FN3 nu sunt îndeplinite. Remarcăm totuşi că nu există dependenţe parţiale deoarece nicio submulţime proprie a cheii MA nu determină funcţional atributele M sau S. Necesitatea FN3 Aşa cum am spus, prin FN3 se evită multe din probleme legate de redondanţă şi de anomaliile de actualizare. Să adâncim această idee. Putem, astfel, presupune că dependenţele funcţionale X Y nu reprezintă numai o restricţie de integritate asupra relaţiilor, ci reprezintă, în acelaşi timp, o legătură (asociere) pe care BD are intenţia să o memoreze. Cu alte cuvinte, dacă cu atributele din X este asociată o mulţime de valori, considerăm important să ştim ce valoare pentru fiecare atribut din Y este asociată cu această asignare de valori pentru atributele din X. Dacă avem o dependenţă parţială Y A, X fiind o cheie iar Y o submulţime proprie a lui X, atunci în fiecare tuplu folosit pentru a asocia o valoare X (din mulţimea asociată cu X) cu valori pentru alte atribute în afară de A şi de atributele din X, trebuie să apară aceeaşi asociere între X şi A. Această situaţie este uşor evidenţiată în schema FDAP, în care F D este o dependenţă parţială, iar adresa furnizorului trebuie să fie repetată odată pentru fiecare articol livrat de furnizor. Evident că FN3 elimină această posibilitate, precum şi redondanţele respective şi anomaliile de actualizare. În caz că există o dependenţă tranzitivă X Y A, atunci nu putem asocia o valoare Y cu o valoare X, dacă nu există o valoare A asociată cu valoarea Y. Această situaţie conduce la anomalii de inserare şi de eliminare, acolo unde nu putem insera o asociere X-la-Y fără o asociere Y-la-A, iar dacă eliminăm valoarea A asociată cu o valoare Y dată, vom pierde urma unei asocieri X-la-Y. De exemplu, în schema MARS, cu dependenţele MA R şi MR S, nu putem înregistra un raion oarecare, dacă acel raion nu are şef. Forma normală Boyce-Codd (FNBC) Fie schema de relaţie R, cu mulţimea de dependenţe F. Dacă ori de câte ori X A este valabilă în R iar A X, mulţimea de atribute X conţine o cheie pentru R, spunem că R este în FNBC. Cu alte cuvinte, singurele dependenţe netriviale sunt acelea în care o cheie determină funcţional unul sau mai multe alte atribute. Exemplu: schema R=OSC, cu dependenţele OS C şi C O nu este în FNBC, deşi este în FN3; cauza pentru care R nu este în FNBC: C O este valabilă (dependenţă dată!), dar C nu este cheie pentru schema OSC. Notă. Am văzut că o schemă în FN3 poate să nu fie în FNBC. Pe de altă parte, orice schemă de relaţie în FNBC este exprimată şi în FN3. Avantajul aducerii unei scheme în FNBC este, desigur, cel al evitării pericolului redondanţelor şi a anomaliilor de inserare şi de eliminare. În exemplul imediat anterior se vede cum nu putem înregistra un oraş căruia îi corespunde un anumit cod. Aşadar, FNBC elimină unele anomalii care nu pot fi combătute prin FN3. Teoremă. Dacă o schemă de relaţie R cu mulţimea de dependenţe F este în FNBC, atunci este şi în FN3. Fără demonstraţie. Descompunerea cu joncţiune fără pierderi în FNBC Se poate arăta că orice schemă de relaţie are o descompunere cu joncţiune fără pierderi în FNBC; de asemenea, orice schemă admite o descompunere în FN3, descompunere care are o joncţiune fără pierderi şi păstrează dependenţele. 2

3 Pe de altă parte, nu orice descompunere a unei scheme de relaţie în FNBC păstrează dependenţele. De exemplu, schema R=OSC nu este în FNBC deoarece este valabilă dependenţa C O; dacă însă OSC este descompusă în orice mod, astfel încât OSC să nu fie una din schemele care fac parte din descompunere, atunci OS C nu este implicată de dependenţele proiectate. Algoritm de descompunere cu joncţiune fără pierderi în FNBC Intrare: schema R, mulţimea F. Ieşire: o descompunere a schemei R cu joncţiune fără pierderi, astfel încât fiecare schemă de relaţie din descompunere este în FNBC în raport cu proiecţia mulţimii F pe acea schemă. Metoda: se construieşte în mod iterativ o descompunere ρ pentru R. În orice moment al procesului iterativ, ρ va avea o joncţiune fără pierderi faţă de F. La început, ρ este format numai din R. Dacă S este o schemă de relaţie din ρ, iar S nu este în FNBC, fie X A o dependenţă valabilă în S, astfel încât X nu include o cheie pentru S, iar A X. Atunci, trebuie să existe un atribut oarecare din S, care A şi care X, deoarece altfel X va include o cheie pentru S. În continuare, S se înlocuieşte în ρ prin S 1 şi S 2, unde S 1 constă din A şi din atributele lui X, iar S 2 din toate atributele din S, în afară de A. Potrivit unei teoreme anterioare, descompunerea schemei S în S 1 şi S 2 admite o joncţiune fără pierderi în raport cu mulţimea de dependenţe proiectată pe S, deoarece S 1 S 2 =X, iar X (S 1 -S 2 )=A. Se mai poate arăta, de asemenea, că dacă o descompunere ρ admite o joncţiune fără pierderi, atunci va avea aceeaşi proprietate şi dacă o schemă S din ρ va fi înlocuită cu S 1 şi S 2. Deoarece S 1 şi S 2 au fiecare mai puţine atribute decât S, se va ajunge la un moment dat în o situaţie în care fiecare schemă de relaţie din ρ va fi în FNBC. În această fază finală ρ va poseda în continuare o joncţiune fără pierderi, deoarece a avut această proprietate în etapa iniţială, când a fost constituită numai din R, iar proprietatea s-a păstrat în fiecare etapă a aplicării algoritmului. CPOLSN cheie=os C P, OL C, PO L, CS N, OS L CSN cheie=cs CS N CPOLS C P, OL C, PO L, OS L CP cheie=c C P COLS CO L, OL C, OS L COL chei=co,ol CO L OL C COS OS C 3

4 Exemplu: fie schema de relaţie CPOLSN, unde C=cursul (numerorat, codificat), P=profesorul, O=ora, L=locul (sala), S=studentul, N=nota obţinută. De asemenea, admitem următoarele dependenţe funcţionale: C P (fiecare curs un profesor), OL C (doar un curs se poate ţine în o sală la o oră dată), OP L (un profesor poate fi numai în o sală la o oră dată), CS N (fiecare student obţine o notă la fiecare curs), OS L (fiecare student se poate găsi numai în o sală la o oră dată). Singura cheie acceptată de schema relaţiei este OS. Aşa cum se va arăta, descompunerea schemei va conduce la următorul rezultat, reprezentat printr-un arbore. În efectuarea descompunerii schemei de relaţie CPOLSN în FNBC (forma normală Boyce-Codd), putem începe cu examinarea dependenţei CS N, care nu îndeplineşte condiţia din definiţia FNBC, deoarece CS nu conţine o cheie. Potrivit algoritmului de descompunere, secţionăm CPOLSN în CSN şi CPOLS. Apoi, pentru realizarea descompunerilor care urmează, trebuie să calculăm închiderea F + şi să o proiectăm pe CSN şi CPOLS. Calculul închiderii F + şi al proiecţiilor este însă, în general, un consumator important de timp, deoarece #F + poate fi ~exp(#f), unde # este cardinalul unei mulţimi. Chiar şi în cazul relativ simplu tratat, F + va conţine, fireşte, toate dependenţele triviale care rezultă prin reflexivitate, precum şi dependenţele netriviale ca CO L, OS C, OL P, în afară de dependenţele din F! După ce se calculează F +, se selectează acele dependenţe care includ numai C, S, N. Aceasta va fi, de fapt, mulţimea dependenţelor F proiectate pe CSN; mulţimea va avea o acoperire minimală care constă numai din CS N; toate celelalte dependenţe din mulţime decurg din aceasta prin axiomele lui Armstrong. De asemenea, proiectăm F + pe CPOLS. Mulţimea proiectată are o acoperire minimală formată din dependenţele: C P, OL C, PO L, OS L, iar schema CPOLS acceptă o singură cheie: OS. Faptul că schema CSN este în FNBC se verifică uşor. În continuare, se procedează la descompunerea schemei CPOLS, în subschemele CP şi COLS, pornind de la dependenţa C P. În subschema CP, pentru dependenţele proiectate, avem o singură acoperire minimală: C P. În subschema COLS, acoperirile minimale sunt CO L, OS L, OL C, iar singura cheie a subschemei este OS. Mai remarcăm că dependenţa CO L este necesară în o acoperire pentru COLS, deşi în CPOLS a decurs din C P şi PO L. Subschema CP este în FNBC; în continuare, descompunerea subschemei COLS în COL şi COS, folosind dependenţa CO L, ne conduce la rezultatul dorit pentru schema bazei de date. Descompunerea finală a schemei R=CPOLSN, în FNBC, este dată de ρ=(csn, CP, COL, CNS). Remarcăm că am ajuns la o structură bună de BD, deoarece din cele patru scheme de relaţie din ρ ne dau, printre altele: a) notele studenţilor la diferite cursuri, b) profesorul pentru fiecare curs, c) orele la care au loc cursurile şi locurile (sălile de clasă) pentru fiecare oră, d) orarul cursurilor şi orelor pentru fiecare student. Observăm, însă, că nu orice descompunere produce o schemă de BD care să se potrivească aşa de bine cu ideile noastre despre modul în care trebuie tabulată informaţia în BD. De exemplu, dacă în ultima fază a procesului de descompunere am fi folosit nu dependenţa CO L, ci OL C, am fi ajuns la schema OLS în loc de COS; subschema OLS reprezintă sala de clasă în care un student poate fi găsit la o oră dată, nu anul (sau grupa) din care face parte (reprezentate prin COS). Este evident că COS conţine o informaţie mai fundamentală decât OLS. O altă problemă: descompunerea efectuată nu păstrează dependenţa PO L. Cu alte cuvinte, proiecţia mulţimii de dependenţe F pe descompunerea ρ=(csn, CP, COL, COS), proiecţie care 4

5 poate fi reprezentată prin acoperirea CS N, OL C, C P, OS C, CO L, care a fost determinată luând acoperirile minimale în fiecare din frunzele arborelui de descompunere, nu implică dependenţa PO L. Ca exemplu, observăm că următoarea valoare curentă (relaţie) a schemei CPOLSN: C P O L S N c 1 p o l 1 s 1 n 1 c 2 p o l 2 s 2 n 2 nu satisface dependenţa PO L, deşi proiecţiile sale pe ρ satisfac toate dependenţele proiectate. Notă. S-a arătat (Beeri şi Bernstein, 1979) că problema verificării apartenenţei unei relaţii la FNBC este NP-completă. Prin urmare, este greu de presupus că se poate găsi un algoritm de descompunere în FNBC care să fie executat într-un interval de timp mai scurt decât un interval exponenţial. Descompunerea în FN3 cu păstrarea dependenţelor Algoritm de descompunere: Intrare: schema de relaţie R şi mulţimea de dependenţe funţionale F (presupunem că F este o acoperire minimală, fără pierderea generalităţii). Ieşire: o descompunere care conservă dependenţele, astfel încât fiecare schemă de relaţie este în FN3 în raport cu proiecţia mulţimii F pe acea schemă. Metoda: dacă în R sunt atribute care nu fac parte din nici o dependenţă din F, nici în părţile stângi, nici în părţile drepte, atunci un astfel de atribut poate forma, în principiu, el singur, o schemă de relaţie şi îl vom elimina din R. Dacă una din dependenţele din F conţine toate atributele din R, atunci se extrage chiar R ca ieşire. Altfel, descompunerea ρ căutată va consta din schemele de tip XA pentru fiecare dependenţă X A din F. Dacă însă X A 1, X A 2,..., X A n sunt dependenţele din F, putem folosi schema XA 1 A 2...A n în loc de XA i pentru 1 i n; această substituţie este de obicei preferabilă. Exemplu. Dependenţele C P, OL C, PO L, CS N, OS L, care ţin de schema de relaţie anterioară R=CPOLSN, au acoperirea minimală C P, OL C, PO L, CS N, OS L (chiar F!). Algoritmul dat mai sus ne va conduce la descompunerea: ρ=(cp, COL, OLP, CNS, OLS), care păstrează dependenţele şi este în FN3. Descompunerea unei scheme de relaţie în FN3, cu păstrarea dependenţelor şi cu joncţiune fără pierderi Fie R o schemă de relaţie şi fie ρ o descompunere în FN3, obţinută aplicând algoritmul anterior. De asemenea, fie X o cheie a schemei R. Se poate atunci arăta că τ=ρ {X} este o descompunere a schemei R, în care toate subschemele de relaţie sunt în FN3, iar descompunerea păstrează dependenţele şi are o joncţiune fără pierderi. Exemplu. În exemplul anterior, s-a găsit o descompunere ρ a schemei R=CPOLSN, care are subschemele în FN3. Cheia schemei R este OS, care însă face parte din OLS, iar OLS ρ; ca urmare, OS este eliminată, iar τ=ρ=(cp, COL, OLP, CNS, OLS). Se poate verifica faptul că schemele din τ conservă dependenţele, iar descompunerea admite joncţiune fără pierderi. 5

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Modelul entitate-asociere extins prof. dr. ing. Mircea Petrescu

Modelul entitate-asociere extins prof. dr. ing. Mircea Petrescu Modelul entitate-asociere extins prof. dr. ing. Mircea Petrescu Introducere Modelarea conceptuală este procesul în care se elaborează o descriere semantică a unui sistem (de exemplu, o organizaţie, o întreprindere,

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Proiectarea algoritmilor: Programare dinamică

Proiectarea algoritmilor: Programare dinamică Proiectarea algoritmilor: Programare dinamică Dorel Lucanu Faculty of Computer Science Alexandru Ioan Cuza University, Iaşi, Romania dlucanu@info.uaic.ro PA 2014/2015 D. Lucanu (FII - UAIC) Programare

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Platformă de e learning și curriculă e content pentru învățământul superior tehnic

Platformă de e learning și curriculă e content pentru învățământul superior tehnic Platformă de e learning și curriculă e content pentru învățământul superior tehnic Proiectarea Logică 24. Echivalenta starilor STARILE ECHIVALENTE DIN CIRCUITELE SECVENTIALE Realizarea unui circuit secvenţial

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q Prelegerea 11 Securitatea sistemului RSA Vom trece în revistă câteva modalităţi de atac ale sistemelor de criptare RSA. Ca o primă observaţie, RSA nu rezistă la un atac de tipul meet-in-the middle, strategia

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamiltoniene decembrie 2016 Grafuri Noţiuni fundamentale D.p.d.v. matematic, un graf este o structură G = (V, E) formată din o mulţime de noduri

Διαβάστε περισσότερα

Curs 4. RPA (2017) Curs 4 1 / 45

Curs 4. RPA (2017) Curs 4 1 / 45 Reţele Petri şi Aplicaţii Curs 4 RPA (2017) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

CU PRIVIRE LA CONDIŢIA DE DERIVABILITATE ÎN REDUCŢIE *

CU PRIVIRE LA CONDIŢIA DE DERIVABILITATE ÎN REDUCŢIE * CU PRIVIRE LA CONDIŢIA DE DERIVABILITATE ÎN REDUCŢIE * Balzer, Moulines şi Sneed oferă într-un proiect recent 1 o discuţie extinsă a celor mai importante relaţii interteoretice globale. Printre ele, reducţia

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

Metode de demonstraţie pentru teorema de completitutine - studiu comparativ -

Metode de demonstraţie pentru teorema de completitutine - studiu comparativ - Metode de demonstraţie pentru teorema de completitutine - studiu comparativ - Denisa Diaconescu 1 1 Introducere Teorema de completitudine a lui Gödel pentru logica de ordinul I este unul dintre cele mai

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare.

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. Metode de sortare Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. 1. Sortare prin selecţie directă Sortarea prin selecţia minimului

Διαβάστε περισσότερα

Curs 6 Relatii de cointegrare

Curs 6 Relatii de cointegrare Curs 6 Relatii de cointegrare Intuitie: Doua serii de timp sunt in relatie de cointegrare daca nu sunt neaparat corelate, dar o combinatie liniara a lor este de medie si varianta constante: mai devreme

Διαβάστε περισσότερα

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri.

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri 17 decembrie 2016 Cuprinsul acestui curs Cuplaje Cuplaj perfect, maxim, maximal Cale

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA

Prelegerea 10. Sistemul de criptare RSA Descrierea sistemului RSA Prelegerea 10 Sistemul de criptare RSA 10.1 Descrierea sistemului RSA Sistemul de criptare RSA (Rivest - Shamir - Adlema este în acest moment cel mai cunoscut şi uzitat sistem cu cheie publică 1. Aceasta

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI,

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, Ariadna Lucia Pletea Liliana Popa TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, IAŞI 999 Cuprins Introducere 5 Câmp de probabilitate 7. Câmp finit de evenimente...........................

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα