MUDELLENNUKI TASAKAAL JA PÜSIVUS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MUDELLENNUKI TASAKAAL JA PÜSIVUS"

Transcript

1 MUDELLENNUKI TASAKAAL JA PÜSIVUS Mudellennuki tasakaaluks normaallennus nimetatakse tema niisugust olukorda, kus mudellennukile mõjuvad jõud ei põhjusta tema asendi muutusi (ei pööra mudellennukit). Nagu igal esemel, on ka mudellennukil raskuskese (RK), s.o. punkt, kus mudeli kõikide osade raskustungid on tasakaalus ning kuhu on rakendatud kogu mudellennuki raskusjõud. Mudellennuki tasakaaluks on vajalik, et tõstekese ja raskuskese asuksid kohastikku või vähemalt oleks säilitatud momentide võrdsus. Raskuskeset võib leida mudellennuki balansseerimise teel. Tõstekeskme leidmiseks kasutatakse valemit: cm e = b, kus c m e tõstekeskme kaugus tiiva kõõlu esiservast (m), c m tiiva profiili momendi koefitsent, c y tõstejõu koefitsent b tiiba kõõl (m). Nii raskuskeskme kui ka tõstekeskme asukoht mdääratakse ära tiiva kõõlu suhtes. Ristkülikukujulisel tiival on raskuskeskme ja tõstekeskme määramine hõlpus, sest kõõlud on kogu tiiva ulatuses ühepikkused. Trapetsikujulisel tiival määratakse raskuskeset ja tõstekeset keskmise momentide kõõlu suhtes. Raskuskeskme tegelikku kaugust keskmise momentide kõõlu esiservast kõõlu pikkuse protsentides nimetatakse tsentreeringuks.

2 Ninaraskel mudelil asub raskuskese eespool tõstekeset, sellest ka nimetus eesmine tsentreering. Tagumine tsentreering tähendab, et raskuskese asub tagapool tõstekeset ning mudel on sabaraske. Et kinniste tiibadega mudellennukeil on tõste- ja raskuskeskme mitteühtimisel tülikas nihutada tiibu raskuskeskme suhtes, siis tavaliselt nihutatakse raskuskeset trimmraskuste abil tõstekeskme kohale ning seepärast määrab tõstekeskme asukoht ka raskuskeskme vajaliku asukoha. Mudellennukil, millel on sümmeetrilise profiiliga stabilisaator, mis normaallennus tõstejõudu ei arenda, peab olema tsentreening 25-30%, tõstva stabilisaatoriga mudellennukil 40-70%. Mudellennuki kõik pöörlevad liikumised toimuvad ümber raskuskeskme kahes püstja ühes rõhttasapinnas. Raskuskeset läbivad mudellennuki pöörlemisteljed x, y ja z.

3 Mudellennuki püsivuseks nimetatakse mudeli omadust iseseisvalt taastada normaallennu asendit (tasakaalu). Ümber pikitelje x võib mudellennuk kalduda paremale või vasakule küljele; püsivust selle telje suhtes nimetatakse kaldpüsivuseks. Püsttelje y ümber võib mudellennuk muuta lennusuunda; püsivust y- telje suhtes nimetatakse suunapüsivuseks. Põiktelje z ümber võib mudellennuk pöörduda üles või alla ning püsivust selle telje suhtes nimetatakse pikipüsivuseks. Mudellennuki lennupüsivus saavutatakse sabapindade ning tiiva V-kuju, noolekuju ja väände abil. Nendele, mudellennuki lennupüsivust andvatele vahenditele peab osutama erilist tähelepanu, sest vähimgi eksimus nende osade ehitamisel või parandamisel võib põhjustada avarii. Kõige olulisemateks püsivuse saavutamise vahenditeks on mudellennuki sabaosa rõht- ja püstpinnad - stabilisaator ja kiil. Stabilisaator annab mudelile pikipüsivuse. Kui mudellennuk viiakse mõne õhuvoolu poolt välja normaallennuasendist, näiteks suunatakse ninaga üles, siis liigub tõstetud ninaga mudel inertsi mõjul mõni aeg endises suunas. Stabilisaator, mis normaallennus lendas 0º-Iise kohtumisnurgaga ega arendanud tõstejõudu, saab nüüd positiivse kohtumisnurga ning arendab tõstejõudu, mis tõstab mudellennuki saba üles ning viib mudeli endisesse sendisse. Kui langev õhuvoolus viib mudeli nina alla, avaldub stabilisaato r i mõju vastupidiselt. Kiil annab mudellennukile suunapüsivuse. Kui mudeli nina kaldub lennusuunast kõrvale, näiteks paremale, lendab mudellennuk küljega triivides endises suunas. Seega antakse le kohtumisnurk, mille tõttu tekib jõud, mis lükkab mudeli saba samuti paremale, kuni mudel lendab jällegi endises suunas. Suunapüsivust aitab suurendada veel mudeli kere külgpind. Liiga suur kiil on mudellennukile ohtlik, sest selle mõjul läheb mudel hõlpsasti sügavasse spiraali, kust ta enam ei välju ning avarii on vältimatu. Purimudellennukitel on pindala umbes 8-12% ja mootoriga mudellennukeil 12-15% liiva pindalast. Kiilu pindala suurus sõltub oluliselt ka tiiva V-kujust. Tiiva noolekuju suurendab mudellennuki piki- ja suunapiisivust. Kui noolekujulise tiivaga mudellennuk kaldub suunast kõrvale, siis tekib tema etteliikunud tiivapoolel suurem rindtakistus kui tahaliikunud tiivapoolel. See soodustab mudeli kiiremat tagasipöördumist endisesse suunda. Mudellennuki kaldpüsivuse tagab libisemine. Kui mudellennuk kaldub ühele tiivapoolele, siis hakkab ta libisema selle tiivapoole suunas. Õhuvoolus allalangenud tiivapoole ümber on tugevam kui ülestõusnud tiivapoolel ning selle tõttu tõstejõud

4 allalangenud tiivapoolel suureneb ja ülestõusnud tiivapoolel kahaneb. Tekkinud nähtuse mõjul mudel tasakaalustub. Mudellennuki kaldpüsivust suurendab tiiva V-kuju. V-kujuliste tiibadega mudellennukil toimub tasakaalustumine efektiivsemalt kui sirgete tiibadega mudelil, sest V-kujulise tiiva allalangenud poole kohtumisnurk suureneb ning ülestõusnud poolel väheneb. Tiibade vääne suurendab mudeli piki- ja kaldpüsivust. Tiiva vääne võib olla geomeetriline või aerodünaamiline. Tiiva geomeetriliseks väändeks nimetatakse tiiva seadenurga muutumist. Tavaliselt vähendatakse seadenurka 2-5º võrra tiiva otste poole. Aerodünaamiliseks väändeks nimetatakse tiiva profiili kuju muutumist. Tiiva vääne valitakse selline, et õhuvooluse rebenemine ülekriitilise kohtumisnurga puhul algaks tiiva keskelt varem kui otstest, ning seega säiluks mudeli piki- ja kaldpüsivus. Sageli kasutatakse geomeetrilist ja aerodünaamilist väänet koos, eriti tiibmudellennukitel.

5 Propellerireaktsiooni mõju vähendamiseks kallutatakse mudellennuki propelleri telge. Kaldenurga suund ja suurus oleneb mudellennuki tüübist, propelleri pöörlemise suunast ja propellerireaktsiooni suurusest. Ülatiivalistel mudellennukitel kallutatakse propelleri telge 1-5º allapoole, alatiivalistel ülespoole. Kõikidel vabaltlendavatel mudellennukitel (peale taimermudellennuki) kallutatakse propelleri telge pöörlemise suunas kõrvale 1-2º, aga ringkiirusmudelitel kuni 10º. Taimermudellennukitel tasakaalustab propellerireaktsiooni, püloon, mis propelleri õhujoa mõjul arendab aerodünaamilist vastujõudu. Peale selle võimaldavad püloonile asetatud tiib ja propelleri joas asuv tõstev stabilisaator tõusta taimermudelnnukil 50-60º nurgaga ja minna ilma kabreerimata üle liuglennule. See on seletatav sellega, et samal ajal, kui propelleri tõmbe puudumisel vähenevad mudeli lennukiirus ja tõstejõud, mõjub propelleri õhujuga pärast mootori seismajäämist veel mõni hetk stabilisaatorile ja tekitab seal saba üles suunava tõstejõu. Et viia stabilisaatorit välja tiiva poolt alla suunatud õhuvoolusest, mis kahjustab lennupüsivust, tõstetakse purimudellennukite stabilisaator sageli peale, s. o. välja tiiva õhuvoolusest.

6 Lennupüsivuse seisukohalt liigitatakse kõik tiivaprofiilid kolme gruppi. I grupi profiilid arendavad juba väiksemate kiiruste juures küllaldast tõstejõudu, kuid kohtumisnurga muutumisel liigub nende profiilide tõstekese suurtes piirides ning püsivuse suhtes ebasoodsalt. Kohtumisnurga suurenemisel liigub tõstekese ettepoole ja püüab veelgi tõsta mudeli nina. Et tasakaalustada tõstekeskme nihkumist, peavad selliste profiilidega mudellennukite stabilisaatorid olema suured - vähemalt 25-30% tiiva pindalast. II grupi profiilid on vdiksemate kohtumisnurkade juures (0-10º) tõstekeskmekindlad. Tõstekese asub tiiva kõõlu esiotsast umbes 25-30% kaugusel. Vajaliku tõstejõu arendamiseks nõuavad need profiilid suuremat kiirust kui I grupi omad. II grupi profiile kasutatakse peamiselt stabiliseerivate pindade ja kiirusmudelite tiibade profiilidena. III grupi profiilidel liigub tõstekese püsivust suurendavalt, s. t. kui mudeli nina tõuseb, siis liigub tõstekese tiiva tagaserva poole ja püüab tõsta ka saba. Neid profiile kasutatakse tiibmudellennukitel.

7 Mudellennuki suunapüsivus sõltub mudeli pindala ja tiiva V-kuju omavahelisest suhtest. Väikese puhul peab olema ka väike V-kuju. Liiga suur V-kuju põhjustab tuigerdava lennu, nn. hollandi sammu. Projekteerimisel määratakse mudeli püsivust piki- ja suunapüsivuse koefitsendi järgi. SS L AH =, kus Pikipüsivuse koefitsent St b S S _ stabilisaatori pindala (m 2 ), L stabilisaatori tõstekeskme kaugus mudeli raskuskeskmest (m), S t Tiiva pindala (m 2 ), B tiiva keskmiste momentide kõõl (m). Eesmise tsentreeringu puhul A H = 0,6-0,9; normaalse tsentreeringu puhul A H = 1,0,-1,3; ja tagumise tsentreeringu puhul A H = 1,4-1,5. Kui tagumine tsentreering ületab 75%, siis on väga raske muuta mudeli lendu püsivaks. Suunapüsivuse koefitsent A B = B L l S S, tiiva tiiva tiiva λtiiva Btiiva = 0,109 ( λ λtiiva + 2 tiiva külgsuhe) l tiiva = tiiva ulatus (m) S tiiva = tiiva pindala (m 2 ) λ B = 0,109 λ + 2 (λ külgsuhe) L = õla pikkus mudeli raskuskeskmest kuni rakenduspunktini S = pinala (m 2 ) Mudellennuki suunapüsivus sõltub mudeli pindala ja tiiva V-kuju omavahelistest suhetest. Liiga suur V-kuju põhjustab tuigerdava nn, hollandi sammu. kus

8 Püsivaks lennuks vajaliku pindala leitakse suunapüsivuse koefitsendi A abil, valemi järgi: S = A B B tiiva l L tiiva S tiiva Näide: Tiiva kõõl b = 0,2 m Tiiva V-kuju Ψ =8º Tiiva pindala S t = 0,4 m 2 λ tiiva = 10 l tiiva = 2 m λ valime = 2 L = 0,8 Lähtudes V-kujust, leiame graafikult,

9 et A = 0,026, 10 = 0,0908 B tiiva = 0, = 0,0545 B = 0, Ak Bt lt St 0,026 0, ,4 2 S = = = 0,0433 m Siis Bk Lk 0,0545 0,8. Propelleri ja teliku segava mõju tõttu suurendatakse mootoriga mudellennuki pindala 20-80% võrra. Purimudellennukitel on oluline, et stabilisaator ei varjaks, sest see mõjub stardil halvasti suunapüsivusele.

AERDÜNAAMIKA ÕHUTAKISTUS

AERDÜNAAMIKA ÕHUTAKISTUS AERDÜNAAMIKA ÕHUTAKISTUS Liikuv õhk, tuul, avaldab igale ettejuhtuvale kehale survet. Samasugune surve tekib ka siis, kui keha liigub ja õhk püsib paigal. Tekkinud survet nimetatakse selle keha õhutakistuseks.

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

MÕISTEID PROPELLERITEOORIAST

MÕISTEID PROPELLERITEOORIAST MÕISTEID PROPELLERITEOORIAST Kummi- ja kolbmootoriga mudellennukitel muudab jõuallika energia tõmbejõuks jõurakendaja, milleks on tavaliselt propeller. Horisontaallennul peab propelleri poolt arendatav

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Staatika ja kinemaatika

Staatika ja kinemaatika Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.

Διαβάστε περισσότερα

Füüsika täiendusõpe YFR0080

Füüsika täiendusõpe YFR0080 Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus Majandus- ja kommunikatsiooniministri 13.06.2011. a määruse nr 42 Mootorsõiduki ja selle haagise tehnonõuded ning nõuded varustusele lisa 1 NÕUDED ALATES 1. JAANUARIST 1997. A LIIKLUSREGISTRISSE KANTUD

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED

Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm. TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus Majandus- ja kommunikatsiooniministri 13.06.2011. a määruse nr 42 Mootorsõiduki ja selle haagise tehnonõuded ning nõuded varustusele lisa 2 NÕUDED ENNE 1. JAANUARI 1997. A LIIKLUSREGISTRISSE KANTUD NING

Διαβάστε περισσότερα

Füüsika. Mehaanika alused. Absoluutselt elastne tsentraalpõrge

Füüsika. Mehaanika alused. Absoluutselt elastne tsentraalpõrge 9.09.017 Füüsika Mehaanika alused Absoluutselt elastne tsentraalpõrge Põrkeks nimetatakse keha liikumisoleku järsku muutust kokkupuutel teise kehaga. Kui seejuures ei teki jääkdeformatsioone, nimetatakse

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Tehniline Mehaanika. I. Staatika II. Tugevusõpetus III. Kinemaatika IV. Dünaamika V. Masinaelemendid /aparaatide detailid/ I STAATIKA

Tehniline Mehaanika. I. Staatika II. Tugevusõpetus III. Kinemaatika IV. Dünaamika V. Masinaelemendid /aparaatide detailid/ I STAATIKA Tehniline Mehaanika I. Staatika II. Tugevusõpetus III. Kinemaatika IV. Dünaamika V. Masinaelemendid /aparaatide detailid/ I STTIK 1.1. Põhimõisted Staatika on jäikade kehade tasakaaluõpetus. Ta uurib tingimus,

Διαβάστε περισσότερα

Ecophon Square 43 LED

Ecophon Square 43 LED Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

AEGLASE SÕIDUKI LIIKLUSOHUTUSEST

AEGLASE SÕIDUKI LIIKLUSOHUTUSEST 133 AEGLASE SÕIDUKI LIIKLUSOHUTUSEST Eesti Maaülikool Sissejuhatus Liiklusohutuse teooriast on teada, et liiklusvoolu kiirusest erineva kiirusega sõitvad sõidukid (juhid) satuvad liiklusõnnetustesse sagedamini

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

E-kursuse "Torujupist raketini: sissejuhatus tehnoloogiateadustesse" materjalid

E-kursuse Torujupist raketini: sissejuhatus tehnoloogiateadustesse materjalid Viljar Valder (Tartu Ülikool), Jüri Pilm, 2013 E-kursuse "Torujupist raketini: sissejuhatus tehnoloogiateadustesse" materjalid Aine maht 2 EAP Viljar Valder (Tartu Ülikool), Jüri Pilm, 2013 Sissejuhatus

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

1.2 Elektrodünaamiline jõud

1.2 Elektrodünaamiline jõud . Elektrodüniline jõud.. Jõud rööpsete juhtide vhel Elektriprti võib läbid k lühisvool, is on sdu või isegi tuhndeid kordi suure prdi niivoolust. Voolu toiel tekib voolujuhtivte osde vhel ehniline jõud,

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)

LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 26. füüsika lahtine võistlus 28. november 2015. a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

4. KEHADE VASTASTIKMÕJUD. JÕUD

4. KEHADE VASTASTIKMÕJUD. JÕUD 4. KEHADE VASTASTIKMÕJUD. JÕUD Arvatavasti oled sa oma elus kogenud, et kõik mõjud on vastastikused. Teiste sõnadega: igale mõjule on olemas vastumõju. Ega füüsikaski teisiti ole. Füüsikas on kehade vastastikuse

Διαβάστε περισσότερα

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]

Διαβάστε περισσότερα

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk TARTU ÜLIKOOL Teaduskool Magnetism Koostanud Urmo Visk Tartu 2007 Sisukord Voolude vastastikune mõju...2 Magnetinduktsioon...3 Ampere'i seadus...6 Lorentzi valem...9 Tsirkulatsiooniteoreem...13 Elektromagnetiline

Διαβάστε περισσότερα

Koormus 14,4k. Joon

Koormus 14,4k. Joon + U toide + 15V U be T T 1 2 I=I juht I koorm 1mA I juht Koormus 14,4k I juht 1mA a b Joon. 3.2.9 on ette antud transistori T 1 kollektorvooluga. Selle transistori baasi-emitterpinge seadistub vastavalt

Διαβάστε περισσότερα

p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos

p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos LABO RATOO RNE TÖÖ 3 Keemiline tasakaal ja reaktsioonikiirus Keemilised rotsessid võib jagada öörduvateks ja öördumatuteks. Pöördumatud rotsessid kulgevad ühes suunas raktiliselt lõuni. Selliste rotsesside

Διαβάστε περισσότερα

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

REAALAINETE KESKUS JAAK SÄRAK

REAALAINETE KESKUS JAAK SÄRAK REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline). Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397 Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus

Διαβάστε περισσότερα

Kandvad profiilplekid

Kandvad profiilplekid Kandvad profiilplekid Koosanud voliaud ehiusinsener, professor Kalju Looris ja ehnikalisensiaa Indrek Tärno C 301 Pärnu 2003 SISUKORD 1. RANNILA KANDVATE PROFIILPLEKKIDE ÜLDANDMED... 3 2. DIMENSIOONIMINE

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

5.4. Sagedusjuhtimisega ajamid

5.4. Sagedusjuhtimisega ajamid 5.4. Sagedusjuhtimisega ajamid Asünkroon- ja sünkroonmootori kiiruse reguleerimine on tekitanud palju probleeme Sobivate lahenduste otsingud on kestsid peaaegu terve sajandi. Vaatamata tuntud tõsiasjale,

Διαβάστε περισσότερα

Hüdrosilindrid. Hüdrosilindrite tähtsamateks kasutus valdkondadeks on koormuste tõstmine ja langetamine, lukustus ja nihutus.

Hüdrosilindrid. Hüdrosilindrite tähtsamateks kasutus valdkondadeks on koormuste tõstmine ja langetamine, lukustus ja nihutus. 6 Hüdrosilinder ja hüdromootor on hüdrosüsteemis asendamatud komponendid, millede abil muudetakse hüdroenergia mehaaniliseks energiaks. Nagu hüdro-mootor, nii on ka hüdrosilinder ühendavaks lüliks hüdrosüsteemi

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.

Διαβάστε περισσότερα

6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS.

6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS. 6 LÜHISED ELEKTRIVÕRKUDES. ELEKTRIVARUSTUSE TÖÖKINDLUS. 6.1 Põhimõisted ja määratlused Elektrivõrgu talitlusviisi määravad: 1) liinide ja juhtide koormusvool, ) voolu sagedus 3) pinge võrku lülitatud elektritarvititel

Διαβάστε περισσότερα

Põhivara aines Füüsika ja tehnika

Põhivara aines Füüsika ja tehnika Põhivara aines Füüsika ja tehnika Maailmapilt on maailmavaateliste teadmiste süsteem, mille abil inimene tunnetab ümbritsevat maailma ja suhestab end sellega. Kui inimindiviid kasutab iseenda kohta mõistet

Διαβάστε περισσότερα

Materjalide omadused. kujutatud joonisel Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega,

Materjalide omadused. kujutatud joonisel Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega, Peatükk 7 Materjalide omadused 1 Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega, mis sageli lõpevad katsekeha purunemisega, näiteks tõmbekatse, väändekatse või löökkatse.

Διαβάστε περισσότερα

VFR navigatsioon I (Mõisted ja elemendid I)

VFR navigatsioon I (Mõisted ja elemendid I) VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min

Διαβάστε περισσότερα

Põhivara aines LOFY Füüsika ja tehnika

Põhivara aines LOFY Füüsika ja tehnika Põhivara aines LOFY.01.121 Füüsika ja tehnika Maailm on keskkond, mis jääb väljapoole inimese mina-tunnetuse piire. Loodus (lad natura) on inimest ümbritsev ja inimesest sõltumatult eksisteeriv keskkond.

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON

Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON Elektromagnetism VIII OSA ELEKTROMAGNETILINE INDUKTSIOON Elektri- ja magnetvälja ei saa vaadelda teineteisest lahus, sest vooluga juhtme ümber on alati magnetväli. Kui elektriliselt laetud keha vaatleja

Διαβάστε περισσότερα

6. ATMOSFÄÄRI JA MERE VERTIKAALNE TASAKAAL 6.1. Atmosfääri vertikaalne tasakaal

6. ATMOSFÄÄRI JA MERE VERTIKAALNE TASAKAAL 6.1. Atmosfääri vertikaalne tasakaal 9-03-04, 2:6, \\Cumulus\NEDAA\Meri-atm_NEDAA\A-mf-6_Vert_tasak.doc 6. AMOSFÄÄRI JA MERE VERIKAALNE ASAKAAL 6.. Atmosfääri vertikaalne tasakaal Mingi objekt või süsteem võib olla kolmes erinevas tasakaaluolekus:

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

V.Jaaniso. Pinnasemehaanika. inseneridele

V.Jaaniso. Pinnasemehaanika. inseneridele V.Jaaniso Pinnasemehaanika inseneridele 1 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

3. IMPULSS, TÖÖ, ENERGIA

3. IMPULSS, TÖÖ, ENERGIA KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse

Διαβάστε περισσότερα

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,

Διαβάστε περισσότερα