ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE. ηελ νπνία ηζρύνπλ: ηζρύνπλ: παξαγωγίζηκε ζην (α,β) α μ β

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE. ηελ νπνία ηζρύνπλ: ηζρύνπλ: παξαγωγίζηκε ζην (α,β) α μ β"

Transcript

1 ΘΕΩΡΗΜΑ ROLLE Έζηω Έζηω ζπλάξηεζε ζπλάξηεζε f ζπλερήο f γηα γηα ηελ ηελ νπνία νπνία ηζρύνπλ: ηζρύνπλ: ςυνεόσ είλαη ζπλερήο ςτο [α,β] ζην [α,β] f(α)=f(β) παξαγωγίζηκε ζην (α,β) f(α)=f(β) Σόηε ππάξρεη έλα ηνπιάρηζηνλ μϵ(α,β) ηέηνην ώζηε f (μ)=0 ή δηαθνξεηηθά (μ,f(μ)) α μ β ε δηαθνξεηηθά εμίζωζε f (ρ)=0 έρεη κία ηνπιάρηζηνλ ξίδα ζην (α,β) Η γεωκεηξηθή εξκελεία ηνπ ζεωξήκαηνο ηνπ ROLLE είλαη όηη ππάξρεη ηνπιάρηζηνλ έλα ζεκείν (μ,f(μ)) ζην νπνίν ε εθαπηνκέλε ζηε γξαθηθή παξάζηαζε ηεο f είλαη παξάιιειε ζηνλ άμνλα ρ ρ. Απόδειξη ηος Θ. ROLLE Αν η f εύναι ςυνεόσ ςτο κλειςτό [α,β] τοτε υπϊρουν 1, 2 ϵ[α, β] ςτα οπούα η τιμό τησ f να γύνεται αντύςτοια μϋγιςτη και ελϊιςτη. (Θεώρημα μεγύςτησ και ελαύςτησ τιμόσ). Άρα θα ιςύει: f( 1 ) f() f( 2 ) και αν ϋνα τουλϊιςτον από τα 1, 2 ϵ(α, β)τότε από Θ. Fermat ϋουμε το ζητούμενο με το ξ να ιςούται η με το 1 η με το 2 Αν κανϋνα από τα 1, 2 δεν ανόκουν ςτο (α,β) τότε 1 = α, 2 = β και επομϋνωσ f(α) f() f(β) για κϊθε ϵ[α, β] και επειδη f(α) = f(β) θα ιςύει f(α) = f(β) = f() με ϵ[α, β] Άρα η f εύναι ςταθερό και επομϋνωσ f () = 0 για κϊθε ϵ(α, β) Michael Rolle ( ) Γάιινο Μαζεκαηηθόο κέινο ηεο Academie des Sciences. Αζρνιήζεθε θαηά θύξην ιόγν κε ηελ εύξεζε θαη ηνλ εληνπηζκό ηωλ πξαγκαηηθώλ ξηδώλ πνιπωλύκωλ, ππήξμε όκωο θαη πνιύ θαιόο γλώζηεο ηεο ζεωξίαο ηωλ αξηζκώλ. Πνιέκηνο ηωλ κεζόδωλ ηνπ απεηξνζηηθνύ ινγηζκνύ θαη ηδηαίηεξα ηωλ κεζόδωλ ηνπ De l Hospital θαη είρε ακθηζβεηήζεη κε ηδηαίηεξε νμύηεηα ηνλ επξηζθόκελν αθόκε ζηα ζπάξγαλα θιάδν ηεο καζεκαηηθήο αλάιπζεο. Σν ζεώξεκά ηνπ δηαηππώζεθε αξρηθά από ην Rolle, ζαλ ζεώξεκα πνπ αθνξνύζε πξαγκαηηθέο ξίδεο πνιπωλύκωλ, θαηέιεμε όκωο λα είλαη έλα από ηα πην βαζηθά ζεωξήκαηα ηνπ δηαθνξηθνύ ινγηζκνύ. ΠΑΡΑΣΗΡΗΕΙ 1. Σν ζεώξεκα βεβαηώλεη όηη ππάξρεη κία ξίδα ηεο εμίζωζεο f (ρ)=0 ζην (α,β). Δελ ελδηαθέξεηαη γηα ηνλ ηξόπν πνπ ζα βξνύκε έλα ηέηνην ζεκείν 2. Οη πξνππνζέζεηο ηνπ ζεωξήκαηνο ηνπ Rolle απνηεινύλ ηθαλή ζπλζήθε όρη όκωο αλαγθαία γηα λα ππάξρεη μϵ(α,β) ώζηε f (μ)=0 3. αλ πόξηζκα κπνξνύκε λα αλαθέξνπκε όηη κεηαμύ δύν ξηδώλ ηεο f(ρ)=0 ππάξρεη κία ξίδα ηεο f (ρ)=0 4. ε πεξίπηωζε πνπ ε f είλαη παξαγωγίζηκε ζην [α,β] ηόηε ζα είλαη ζπλερήο ζην [α,β] θαη επνκέλωο γηα ηελ εθαξκνγή ηνπ Θ. Rolle αξθεί λα γλωξίδνπκε όηη f(α)=f(β) 1

2 ΒΑΙΚΗ ΑΚΗΗ Αν μια ςυνϊρτηςη f εύναι παραγωγύςιμη ςε ϋνα διϊςτημα Δ και δεν εύναι «1-1» ςτο Δ τότε η εξύςωςη f ()=0 ϋει τουλϊιςτον μύα λύςη ςτο Δ. αν ςυνϋπεια του παραπϊνω ϋουμε ότι αν f () 0 για κϊθε Δ, τότε η f εύναι «1-1» Αφού η f δεν εύναι 1 1 ςτο Δ ςημαύνει ότι υπϊρουν 1, 2 Δ τϋτοια ώςτε με 1 2 f( 1 ) = f( 2 ) και ακόμη αφού εύναι παραγωγύςιμη ςτο Δ θα εύναι και παραγωγύςιμη και ςτο [ 1, 2 ] Δκαι επομϋνωσ και ςυνεόσ ςτο [ 1, 2 ]. Άρα ικανοποιούνται οι προώποθϋςεισ του Θ. Rolle και επομϋνωσ η εξύςωςη f ()=0 ϋει τουλϊιςτον μύα λύςη ςτο ( 1, 2 ) Δ Επομϋνωσ και αν f () 0 τότε η f εύναι 1-1 διότι αν δεν όταν από το προηγούμενο θα υπόρε τιμό του τϋτoια ώςτε f()=0 ΑΚΗΗ 1 Δύνεται η συνϊρτηση f με τύπο f() = 2 + 1, 0 3 Να εξετϊσετε αν + 1, > 0 εφαρμόζεται το Θ. Rolle ςτο [-1,1] και αν ναι να βρεύτε τα ςημεύα για τα οπούα f ()=0 Με > 0 η f εύναι ςυνεόσ ωσ πολυωνυμικό. Μϋ < 0 εύναι ςυνεόσ πολυωνυμικό Για = 0 πρϋπει να πϊρουμε πλευρικϊ όρια. lim f() = lim (3 + 1) = 1 και lim f() = lim 0 0 (2 + 1) = 1 και f(0) = 1. Άρα η f εύναι ςυνεόσ ςτο [ 1,1] και η παρϊγωγόσ ςυνϊρτηςη εύναι: 2 αν < 0 f() f(0) f () = 3 2 για = 0 ϋω: lim = lim = lim αν > = 0 και 0 + f() f(0) lim = lim = lim = 0. Επομϋνωσ f (0) = 0. Εύναι και παραγωγύςιμη ςτο(-1,1). Ακόμη f( 1) = ( 1) = 2 και f(1) = = 2 Επομϋνωσ εφαρμόζεται το Θ.R και το μοναδικό ςημεύο όπου ιςύει f ()=0 =0 ΑΚΗΗ 2 Δύνεται η συνϊρτηση f με τύπο f() = 4 + α, αν < 0 β 3 + γ, αν 0, με α, β, γ R. Να βρεύτε τις τιμϋς των α,β,γ ώςτε να ιςύει το Θ. Rolle ςτο [-2,2]. Πρϋπει να εύναι ςυνεόσ. Επομϋνωσ lim f() = lim 0 0 +f() = f(0). Άρα lim 0 (4 + α) = lim 0 + (β3 + γ) α = 0 f() f(0) f() f(0) Ακόμη lim = lim Ακόμη f( 2) = f(2) 16 = 8β β = 2 ΑΚΗΗ β 3 + γ 0 lim = lim 0 = γ

3 Έςτω ςυνϊρτηςη f οριςμϋνη και ςυνεόσ ςε ϋνα διϊςτημα [α,β], παραγωγύςιμη ςτο (α,β) και f(α)=f(β)=0. Να αποδεύξετε ότι: α) για τη συνϊρτηση g() = f() c, c [α, β], υπϊρει 0 (α, β)τϋτοιο ώστε: g ( 0 ) = 0 β) υπϊρει 0 (α, β)τϋτοιο ώστε η εφαπτομϋνη της C f στο σημεύο Μ 0, f( 0 ) να διϋρεται από το σημεύο Α(c, 0) α) 1. Η g εύναι προφανϋσ ότι ορύζεται ςτο [α, β]αφού c [α, β]. 2. Ακόμη εύναι ςυνεόσ ςτο [α, β]ωσ πηλύκο ςυνεών 3. παραγωγύςιμη ωσ πηλύκο παραγωγύςιμων ςτο (α,β) Άρα ιςύουν οι προώποθϋςεισ του Θ.R και ϋουμε: g () = f ()( c) f() ( c) 2 και από Θ. R υπϊρει τουλϊιςτον ϋνα 0 (α, β): g ( 0 ) = 0 f ( 0 )( 0 c) f( 0 ) ( 0 c) 2 = 0 f ( 0 )( 0 c) f( 0 ) = 0 β)η εξύςωςη τησ εφαπτομϋνησ τησ C f ςτο ςημεύο Μ 0, f( 0 ) εύναι: ψ f( 0 ) = f ( 0 )( 0 ) Για να διϋρεται από το ςημεύο Α(c, 0)θα πρϋπει f( 0 ) = f ( 0 )(c 0 ) f ( 0 )( 0 c) f( 0 ) = 0. Που ιςύει από το πρώτο ερώτημα για εκεύνο το 0 που προκύπτει από το Θ.R για την g. Παρατόρηςη. ε οριςμϋνεσ αςκόςεισ μασ ζητούν να δούμε αν εφαρμόζετε το Θ.R μόνο. Όπωσ ςτην προηγούμενη. Εμεύσ καλό θα εύναι να βρύςκουμε και τα 0 για τα οπούα εφαρμόζεται το Θ. Rolle ε αςκόςεισ όπου μασ ζητεύται να αποδειθεύ ότι υπϊρει ξ (α,β) τϋτοιο ώςτε f (ξ)=0 ό f (ξ)=0 και ςε κϊθε περύπτωςη μασ δύνει παρϊγωγο ανώτερησ τϊξησ τότε πιθανόν να εύναι πολλαπλό εφαρμογό του θεωρόματοσ Rolle ςε κατϊλληλα διαςτόματα. ΑΚΗΗ 4 Αν μια ςυνϊρτηςη εύναι τρεύσ φορϋσ παραγωγύςιμη ςε ϋνα διϊςτημα [α,β] και ιςύουν f(α)=f(β) και f (α)=f (β)=0 να αποδειθεύ ότι υπϊρει ξ (α,β) τϋτοιο ώςτε f (ξ)=0. Αφού η f εύναι παραγωγύςιμη ςτο [α,β] θα εύναι και ςυνεόσ ςτο [α,β]. Και επειδό f(α)=f(β) εφαρμόζεται το Θ.R ςτο [α,β]. Άρα υπϊρει 0 (α,β) τϋτοιο ώςτε f ( 0 ) = 0. Και τώρα ϋουμε f (α) = f ( 0 ) = f (β) = 0. Εφαρμόζουμε το Θ. R για την f ςτα διαςτόματα [α, 0 ]και [ 0, β]και ϋουμε Για το [α, 0 ] υπϊρει 1 (α, 0 )τϋτοιο ώςτε f ( 1 ) = 0 Για το [ 0, β] ϋουμε ότι υπϊρει 2 ( 0, β)τϋτοιο ώςτε f ( 2 ) = 0 Εφαρμόζουμε τώρα Θ.R για την f ςτο [ 1, 2 ] [α, β] και ϋω ότι υπϊρει τουλϊιςτον ϋνα ξ ( 1, 2 ) (α, β) τϋτοιο ώςτε f (ξ)=0 3

4 Περιπτώςεισ όπου μασ ζητεύται να δειθεύ ότι υπϊρει ξ που ανόκει ςτο διϊςτημα (α,β) ώςτε να ικανοποιεύται μύα ςϋςη τα πιο κϊτω παραδεύγματα δύνεται η ςϋςη και βρύςκουμε κατευθεύαν τη ςυνϊρτηςη G όπου θα εφαρμόςουμε το θεώρημα Rolle για να προκύψει η ςϋςη που μασ ζητεύται Ξεκινϊμε πϊντα από τη ςϋςη που μασ δύνει και προςπαθούμε να δημιουργόςουμε, ρηςιμοποιώντασ τουσ κανόνεσ παραγώγιςησ, την παρϊγωγο μιασ παρϊςταςησ ύςη με το μηδϋν. Σην παρϊςταςη αυτό θϋτουμε ωσ ςυνϊρτηςη G και εφαρμόζουμε το Θεώρημα Rolle. τα παρακϊτω παραδεύγματα δύνεται μόνο η ςϋςη, ωρύσ τα ϊλλα δεδομϋνα, και βρύςκουμε την ςυνϊρτηςη όπου θα εφαρμόςουμε το Θ. Rolle. Παπάδειγμα 1. Αθού δίδονηαι διάθοπα δεδομένα μαρ ζηηάει η άζκηζη να αποδείξοςμε όηι ςπάπσει ξ ηέηοιο ώζηε: f (ξ) = κ Ενεργούμε ωσ εξόσ: f () κ = 0 f () (κ) = 0. θεωρούμε τη ςυνϊρτηςη G() = f() κ Παπάδειγμα 2 f (ξ) = κf(ξ) Η ζσέζη πος ζηηείηαι είναι f () κf() = 0 f () e κ κ e κ f() = 0 f () e κ + (e κ ) f() = 0 (f() e κ ) = 0 Σότε θεωρούμε τη ςυνϊρτηςη G() = f() e κ Παπάδειγμα 3 f (ξ) (κ ξ) = f(ξ) Η ζσέζη πος ζηηείηαι είναι f ()(κ ) = f() f ()(κ ) + (κ ) f() = 0 [f()(κ )] = 0 Θεωρούμε την G() = (κ )f() Παπάδειγμα 4 Η ζσέζη πος ζηηείηαι είναι f(ξ)(ξ κ) = f(ξ) f ()( κ) f() = 0 f ()( κ) ( κ) f() = 0 f() κ Παπάδειγμα 5 = 0. Θεωρούμε G() = f() κ f(ξ) = νξ ν 1 Η ζσέζη πος ζηηείηαι είναι f () ν ν 1 = 0 f () ( ν ) = 0 (f() ν ) = 0 Θεωρούμε τη ςυνϊρτηςη G() = f() ν Παπάδειγμα 6 Η ζσέζη πος ζηηείηαι είναι ξf (ξ) = νf(ξ) f () = νf() ν 1 f () ν ν 1 f() = 0 ν 1 f () ν ν 1 f() 2ν f ()( κ) ( κ) f() ( κ) 2 = 0 = 0 f() ν = 0 4

5 Θεωρώ τη ςυνϊρτηςη G() = f() ν Παπάδειγμα 7 Μύα γενικό περύπτωςη εύναι η παρακϊτω Η σϋση που ζητεύται εύναι f (ν) (ξ) = g(ξ)f (ν 1) (ξ) f (ν) () = g()f (ν 1) () f (ν) () g()f (ν 1) () = 0 f (ν) () e h() e h() h ()f (ν 1) () = 0 f (ν 1) () e h() + e h() f (ν 1) () = 0 e h() f (ν 1) () = 0 Θεωρώ την G() = e h() f (ν 1) () όπου h() μια ςυνϊρτηςη για την οπούα ιςύει h () = g() π. Ι ϋςτω ότι ζητεύται να δεύξουμε ότι υπϊρει 0 τϋτοιο,ώςτε [f ( 0 )] 2 f ( 0 ) = 0 ϋουμε f ( 0 ) = f ( 0 ) f ( 0 ) Θεωρώ την G() = e f() f () και εφαρμόζω το θεώρημα Rolle π. ΙΙ ϋςτω ότι ζητεύται να δεύξουμε ότι υπϊρει x 0 τϋτοιο ώςτε f ( 0 ) f( 0) 0 ln1996 = 0 τότε f () f() ln1996 = 0 f () = (ln ln1996) f() Θϋτω G() = e ln ln1996 f() Παρϊδειγμα 8 Η σϋση που ζητεύται εύναι f (ξ) + f(ξ) = 0 f () + f() = 0 και πολλαπλαςιϊζω με 2f () και ϋω 2f ()f () + 2f ()f() = 0 (f 2 ()) + ((f ()) 2 ) = 0 [f 2 () + (f ()) 2 ] = 0 Θϋτω G() = f 2 () + (f ()) 2 Παρϊδειγμα 9 Η σϋση που ζητεύται εύναι f (ξ) f (ξ) = 0. f () f () = 0 2f () f () = 0 [f () 2 ] = 0 Θϋτω G() = (f ()) 2. 5

6 Οριςμϋνεσ φορϋσ ςτα δεδομϋνα μιασ ϊςκηςησ δύνεται μύα ςϋςη που ιςύει για τα ϊκρα του κλειςτού διαςτόματοσ [α,β]. π. f(α) β=f(β) α. Αν αυτό τη ςϋςη την τροποποιόςουμε και ιςύουν βϋβαια οι προώποθϋςεισ, και πϊμε τα α ςτο ϋνα μϋλοσ και τα β ςτο ϊλλο, και αντικαταςτόςουμε το α ό το β με το ϋουμε την ςυνϊρτηςη όπου θα εφαρμόςουμε το Θ. Rolle. την περύπτωςό μασ θα γρϊφαμε f(α) α ςυνϊρςτηςη που θα εφαρμόζαμε το Θ. Rolle θα όταν η g() = f() = f(β) β β) Από την f(α)f (β) = f(β)f (α) f (α) f(α) = f (β). Θεωρώ την g() f(β) = f () για την f() ιςύει g(α)=g(β). Ακόμη εύναι ςυνεόσ ωσ πηλύκο ςυνεών αφού η f εύναι δυο φορϋσ παραγωγύςιμη. Άρα ιςύει το Θ. Rolle. Η παρϊγωγοσ τησ f εύναι: f ()f() f ()f () g () = f 2 και Θ. Rolle ϋω g ( () 0 ) = 0 f( 0 )f ( 0 ) = (f ( 0 )) 2 και η Εφαρμογό Έςτω ςυνϊρτηςη f δύο φορϋσ παραγωγύςιμη ςτο διϊςτημα [α,β] με f () 0 για κϊθε [α, β] και f(α)f (β) = f(β)f (α). Να αποδεύξετε ότι: α) η f εύναι αντιςτρϋψιμη, β) υπϊρει 0 (α, β) τϋτοιο, ώστε f( 0 )f ( 0 ) = (f ( 0 )) 2 α) Έςτω ότι δεν εύναι αντιςτρϋψιμη τότε υπϊρουν 1, 2 [α, β] τϋτοια ώςτε με 1 2 f( 1 ) = f( 2 ) αφού εύναι δύο φορϋσ παραγωγύςιμη ςτο[α,β] θα ιςύουν και οι ϊλλεσ προώποθϋςεισ του Θ. Rolle, οπότε υπϊρει ξ (α,β) ώςτε f (ξ)=0. Σο οπούο εύναι ϊτοπο αφού f () 0 για κϊθε (α,β). Άρα εύναι

7 ΑΛΛΕ ΠΕΡΙΠΣΩΕΙ ΥΕΔΙΑΜΟΤ Περύπτωςη 1 Ζητεύται η σϋση f (ξ) + σφξ = 0 f(ξ) Παύρνουμε f (x) f(x) + ςυν ημ = 0 ημ f (x) + ςυν f(x) = 0 ημf (x) + (ημ) f(x) = 0 (f(x)ημ) = 0 Θεωρώ τη ςυνϊρτηςη g() = f()ημ Περύπτωςη 2 Ζητεύται η σϋση f 1 + 3ξ 2ξ2 (ξ) = ξ Θεωρώ την f 1 + 3x 2x2 (x) = f (x) = 1 x x + 3 2x f (x) (lnx) (3x) + (x 2 ) = 0 (f(x) lnx 3x + x 2 ) = 0 Θεωρώ την g(x) = f(x) lnx 3x + x 2 Περύπτωςη 3 Ζητεύται η σϋση lnα ξ f (ξ) = 1 xlnα f (x) = 1 f (x) = 1 xlnα f (x) = (log a x) (f(x) log a x) = 0 Θεωρώ την g(x) = f(x)log α x Περύπτωςη 4 Ζητεύται η σϋση f (ξ)εφξ + f(ξ) = 0 Παύρνουμε την f (x)εφx + f(x) = 0 f (x) ημ ςυν + f(x) = 0 f (x)ημ + ςυνf(x) = 0 f (x)ημ + (ημ) f() = 0 (f(x)ημ) = 0 Θεωρώ την g(x) = f(x)ημ Περύπτωςη 4 Ζητεύται η σϋση f (f(ξ)) f (ξ) = 1 Θεωρούμε την f f(x) f (x) = 1 (f(f(x)) = x (f(f(x) x) = 0 Θεωρώ την g(x) = f f(x) x 7

8 Περύπτωςη 5 Ζητεύται η σϋση 2f (ξ) f(ξ) = f (1 ξ) f(1 ξ) 2f (x) f(x) = f (1 x) f(1 x) 2f (x)f(1 x) = f (1 x)f(x) f 2 (x) f(1 x) f (1 x) f 2 (x) = 0 f 2 (x) f(1 x) + (1 ) f (1 x) f 2 (x) = 0 f 2 (x) f(1 x) + (f 2 (x)[f(1 x))] = 0 f 2 ()(1 ) = 0 Θεωρώ g(x) = f 2 (x) f(1 x) Περύπτωςη 5 Ζητεύται η σϋση f (ξ) f(ξ) = 1 α ξ + 1 ϐ ξ f (x) f(x) = 1 a x + 1 ϐ x f (x)(a x)(ϐ x) f(x)(ϐ x) f(x)(a x) = 0 f (x)(a x)(ϐ x) + f(x)(a x) (ϐ x) + f(x)(x a)(ϐ x) = 0 (f(x)(a x)(ϐ x) = 0 Θεωρώ την g(x) = (a x) ϐ x f(x) 8

9 ΑΚΗΕΙ 1. Έςτω ςυνϊρτηςη f παραγωγύςιμη ςτο [0, π] με f(x) 0 για κϊθε ςτο [0, π]. Να αποδεύξετε ότι υπϊρει ξ ϵ[0, π] τϋτοιο ώςτε f (ξ) f(ξ) + ςφξ = 0 2. Έςτω ςυνϊρτηςη ςυνεόσ ςτο [1, е] και παραγωγύςιμη ςτο (1,е) ώςτε να ιςύει f(1) f(е) = е 2 3е + 1. Να δειθεύ ότι υπϊρει θϵ(1,е) τϋτοιο ώςτε f 1 + 3θ 2θ2 (θ) = θ 3. Δύνεται ςυνϊρτηςη fοριςμϋνη και ςυνεόσ ςτο διϊςτημα [α, ϐ]και παραγωγύςιμη ςτο (α,ϐ) ώςτε 1<α<β και ιςύει f(β)-f(α)=log α β 1. Να δειθεύ ότι υπϊρει ξϵ(α,β) ώςτε lnα ξ f (ξ) = 1 4. Δύνεται ςυνϊρτηςη ƒ οριςμϋνη και ςυνεόσ [α, β] παραγωγύςιμη ςτο (α,β) με f(α)β ν = f(β)α ν με 0 < α < β. Να αποδεύξετε ότι υπϊρει ξϵ(α,β) τϋτοιο ώςτε ξf (ξ) = νf(ξ) 5. Έςτω f: [α, ϐ] R + παραγωγύςιμη με ln f(α) ln f(ϐ) = ϐ a. Να αποδεύξετε ότι υπϊρει θ ϵ(α,β) τϋτοιο ώςτε (ln (f(θ)) + 1 = 0 6. Δύνονται οι ςυναρτόςεισ f,g οριςμϋνεσ ςτο [α,β] με f()>0 και παραγωγύςιμεσ ώςτε ln f(α) ln f(ϐ) = g(ϐ) g(a). Nα αποδεύξετε ότι υπϊρει θϵ(α,β) τϋτοιο ώςτε f (θ) + f(θ)g (θ) = 0 π 7. Δύνεται η ςυνϊρτηςη ƒ:[α,β] [α,β] παραγωγύςιμη ςτο [α,β] με 0<α<β< και f(α)=β και 2 f(β)=α και α β = ημα ημβ. Να αποδεύξετε ότι Ι Τπϊρει 0 ϵ(α, β) τϋτοιοσ ώςτε f ( 0 )εφ 0 + f( 0 ) = 0 ΙΙ Τπϊρει ξϵ(α,β) τϋτοιο ώςτε f f(ξ) f (ξ) = 1 8. Δύνεται ςυνϊρτηςη ƒ δύο φορϋσ παραγωγύςιμη ςτο [α,β] για την οπούα ιςύει 9

10 f (α) = е f(β) f(α) f (β). Δεύξτε ότι ι. Τπϊρει 0 ϵ(α, β) τϋτοιο ώςτε [f ( 0 )] 2 f ( 0 ) = 0 ιι. Αν το 0 εύναι θϋςη ακροτϊτου τησ f τότε το 0 εύναι θϋςη πιθανού ςημεύου καμπόσ τησ f 9. Δύνεται η ςυνϊρτηςη f ςυνεόσ ςτο [α, β]με 0 < α < β και δυο φορϋσ παραγωγύςιμη ςτο (α, β) Ι. Αν f(α)=α και f(β)=β και υπϊρει γϵ(α,β) ώςτε f(γ)=γ να δειθεύ ότι υπϊρουν 1, 2 ϵ(α, β) τϋτοια ώςτε f ( 1 ) = f( 1) και f ( 2 ) = f( 2) 1 2 ΙΙ. Αν η ευθεύα που ορύζουν τα ςημεύα Α( 1, f( 1 )) και Β( 2, f( 2 ) διϋρεται από την αρό των αξόνων να δειθεύ ότι υπϊρει 0 ϵ(α, β): f ( 0 ) = Δύνεται ςυνϊρτηςη f οριςμϋνη και ςυνεόσ ςτο [α, β] και παραγωγύςιμη ςτο (α, β)με f(α) = 2α 2 και f(β) = 2β 2. Να δεύξετε ότι υπϊρει ξϵ(α, β) τϋτοιο ώςτε f (ξ) = 2ξ + α + β 11. Δύνεται ςυνϊρτηςη f ςυνεόσ ςτο [1,2] και παραγωγύςιμη ςτο (1,2) και 2f(1)-f(2)=2. Να αποδεύξετε ότι υπϊρει ξ(1,2) ϋτςι ώςτε η εφαπτομϋνη τησ C f ςτο ςημεύο Α α, f(α) να διϋρεται από το ςημεύο Μ(0, α 2 ) 10

11 ROLLE KAI ΕΞΙΩΕΙ ΠΕΡΙΠΣΩΕΙ Όταν μύα ςυνϊρτηςη f εύναι παραγωγύςιμη ςε ϋνα διϊςτημα Δ και η εξύςωςη f()=0 ϋει δύο ρύζεσ, τισ 1, 2 [α,β] τότε η εξύςωςη f () = 0 ϋει οπωςδόποτε μύα τουλϊιςτον ρύζα ςτο [ 1, 2 ]. Αυτό εύναι ϊμεςη εφαρμογό του Θ. Rolle ςτο [ 1, 2 ]. Διότι εύναι ςυνεόσ ςτο [ 1, 2 ] και παραγωγύςιμη ςτο ( 1, 2 ) και f( 1 ) = f( 2 ) = 0. Αρα από Θ. R η εξύςωςη f () = 0 ϋει οπωςδόποτε μύα ρύζα ςτο ( 1, 2 ). Γενικότερα όταν η f()=0 ϋει ν-πλόθοσ διαφορετικών ριζών ςε ϋνα διϊςτημα [α,β], τότε η f ()=0 ϋει οπωςδόποτε ν-1 πλόθοσ ριζών ςτο ύδιο διϊςτημα και η f ()=0 ϋει ν-2 και γενικϊ όςο αυξϊνεται κατϊ ϋνα η τϊξη τησ παραγώγου, μειώνεται κατϊ ϋνα το πλόθοσ των ριζών. Σο Θ. R μασ βοηθϊει να αποδεύξουμε το ακριβώσ ό το πολύ μύα, ακριβώσ ό το πολύ 2,, ακριβώσ ό το πολύ ν ρύζεσ. Πώσ? π. ϋςτω ότι θϋλουμε να αποδεύξουμε ότι μύα εξύςωςη ϋει ακριβώσ μύα ρύζα. Αφού αποδεύξουμε ότι ϋει μύα, δεόμαςτε ότι υπϊρει και δεύτερη. Σότε η παρϊγωγοσ πρϋπει να ϋει μύα, που το πιο πιθανό εύναι να μην ϋει και καταλόγουμε ςε ϊτοπο. Αςκηςη 2 π. ϋςτω ότι θϋλουμε να αποδεύξουμε ότι ϋει το πολύ μύα ρύζα. Σότε δεν απαιτεύται να αποδεύξουμε ότι ϋει τουλϊιςτον μύα. Αλλϊ αποδεικνύουμε ότι δεν μπορεύ να ϋει δύο. Πώσ? Δεόμενοι ότι ϋει δύο και επομϋνωσ η παρϊγωγοσ ϋει μύα και καταλόγουμε ςε ϊτοπο Πολλϋσ φορϋσ μασ ζητεύται να αποδεύξουμε ότι ϋει τουλϊιςτον μια ρύζα η εξύςωςη f()=0. Και δεν γύνεται να αποδειθεύ με το Θ. Bolzano. Σότε το αποδεικνύουμε εφαρμόζοντασ το Θ. Rolle ςε μύα αρικό. Αρικό ςυνϊρτηςη μιασ ςυνϊρτηςησ f ονομϊζουμε μύα ϊλλη ςυνϊρτηςη F για την οπούα ιςύει F =f. π. αν f() = 2 τότε η αρικό τησ εύναι F() = 3 3 Παρϊδειγμα 1 Να δειθεύ ότι η εξύσωση e = 1 ϋει ακριβώς μύα ρύζα στο (0, 1) Θεωρώ τη ςυνϊρτηςη f() = e 1. Εύναι ςυνεόσ ςτο [0,1] και f(0) = 1 < 0, f(1) = e 1 > 0 επομϋνωσ f(0)f(1) < 0. Από θ. Bolzano ϋω ότι ϋει τουλϊιςτον μύα ρύζα ςτο (0,1). Έςτω ότι ϋει δύο ρύζεσ τισ ρ 1, ρ 2 τότε f(ρ 1 ) = f(ρ 2 ) = 0 και ςτο [ ρ 1, ρ 2 ] ιςύει το θ. Rolle. Επομϋνωσ η f ()=0 ϋει μύα τουλϊιςτον ρύζα ςτο (0,1). Αλλϊ f () = e + e = 0 e ( + 1) = 0 = 1. Δεν ϋει επομϋνωσ ρύζα ςτο (0,1). Αρα δεν μπορεύ η f()=0 να ϋει δύο ρύζεσ ςτο (0,1) 11

12 Παρϊδειγμα 2 Αν α < 0, να αποδεύξετε ότι η εξύςωςη 4 α 2 + β + γ = 0 ϋει το πολύ δύο πραγματικϋς ρύζεσ. Έςτω ςυνϊρτηςη f() = 4 α 2 + β + γ Έςτω ότι ϋει τρεύσ, τότε η f ()=0 πρϋπει να ϋει δύο και η f ()=0 πρϋπει να ϋει μύα Αλλϊ f () = 4 3 2α + β και f () = α και f () = α = 0 2 = α. Αδύνατη διότι α < 0. Άρα η f δεν μπορεύ να ϋει τρεύσ. 6 Παρϊδειγμα 3 Να αποδεύξετε ότι η εξύσωση = 0 ϋει μύα τουλϊιστον ρύζα στο (0, 1) Έςτω f() = Παρατηρώ ότι f(0) = 1 και f(1) = 1. Αρα δεν μπορούμε να εφαρμόςουμε το Θ. Β. Γι αυτό εφαρμόζω το Θ. R ςε μιϊ αρικό δηλ ςτην g() = Η g εύναι ςυνεόσ ςτο [0,1]και παραγωγύςιμη ςτο (0,1) ωσ πολυωνυμικό και g(0)=0=g(1). Επομϋνωσ ιςύει το Θ.R για την g και επομϋνωσ υπϊρει 0 (0,1) τϋτοιο, ώςτε g ( 0 ) = = 0. Παρϊδειγμα 4 Δύνεται η ςυνϊρτηςη f:[0,1] (0,1), ςυνεόσ ςτο [0,1] και παραγωγύςιμη ςτο (0,1) και f () <1 για κϊθε (0,1). Να αποδεύξετε ότι υπϊρει μοναδικό ξ (0,1) τϋτοιο, ώςτε f(ξ)=ξ. Θεωρώ τη ςυνϊρτηςη g()=f()-. Η g εύναι ςυνεόσ ςτο [0,1] ωσ διαφορϊ ςυνεών και g(0)=f(0)-0>0, g(1)=f(1)-1<0 διότι από τα δεδομϋνα ϋουμε για κϊθε [0,1] ιςύει 0<f()<1. Επομϋνωσ ιςύει το Θ.Bolzano. Άρα υπϊρει ϋνα τουλϊιςτον ξ (0,1) ώςτε g(ξ)=0 f(ξ)-ξ=0 f(ξ)=ξ. Έςτω ότι υπϊρει δεύτερη ρύζα η ρ ξ και ϋςτω ξ<ρ. Σότε g(ξ)=g(ρ)=0 και η g εύναι παραγωγύςιμη ςτο (0,1) ωσ διαφορϊ παραγωγύςιμων ςυναρτόςεων. Άρα ιςύει το Θ.Rolle και επομϋνωσ υπϊρει 0 (0,1)τϋτοιο ώςτε g ( 0 ) = 0 f ( 0 ) 1 = 0 f ( 0 ) = 1 το οπούο εύναι ϊτοπον αφού το f () <1 για κϊθε (0,1). Επομϋνωσ δεν ιςύει και η υπόθεςη. Δηλαδό δεν μπορεύ η g()=0 να ϋει δύο ρύζεσ. Παρϊδειγμα 5 Δύνεται ςυνϊρτηςη f:r R που εύναι δύο φορϋσ παραγωγύςιμη και f () 0 για κϊθε R α) Να αποδεύξετε ότι η εξύςωςη f()=0 ϋει το πολύ δύο ρύζεσ β) η f εύναι «1-1» γ) Αν 2f(1)=f(2) να αποδεύξετε ότι η εξύςωςη f()=f () ϋει ακριβώσ μύα ρύζα ςτο (1,2) α) Έςτω ότι ϋει τρεισ ρύζεσ η εξύςωςη f()=0. Σότε η f ()=0 ϋει δύο και η f ()=0 μύα. Άτοπον διότι f () 0 για κϊθε R β) Αν η f δεν όταν 1-1 τότε θα υπόραν 1, 2 R με 1 2 και f( 1 ) = f( 2 )και εφαρμόζοντασ το Θ. Rolle ςτο [ 1, 2 ] για την f ϋω ότι υπϊρει 0 ( 1, 2 ) τϋτοιο ώςτε f ( 0 ) = 0. Σο οπούο εύναι ϊτοπο επομϋνωσ, η f εύναι

13 γ) f() f () Δύνεται f() = f () f() f () = 0 2 = 0 f() = 0. Θεωρώ την ςυνϊρτηςη g() = f() για κϊθε (1,2). Εύναι ςυνεόσ ςτο [1,2]ωσ πηλύκο ςυνεώ και παραγωγύςιμη ςτο (1,2) ωσ πηλύκο παραγωγύςιμων ςυναρτόςεων. Ακόμα g(1) = f(1)και g(2) = f(2). Επειδό f(2) = 2f(1) g(2) = g(1). Επομϋνωσ ιςύει το Θ. Rolle 2 και επομϋνωσ η εξύςωςη g () = 0 ϋει λύςη ςτο (1,2). Δηλαδό f() f () = 0 f() = f () ϋει λύςη ςτο (1,2) Θεωρώ τη ςυνϊρτηςη h() = f() f () και ϋςτω ότι ϋει δύο ρύζεσ ςτο (1,2) τισ ρ 1, ρ 2 με ρ 1 ρ 2 και h(ρ 1 ) = h(ρ 2 ). Σότε εφαρμόζοντασ το Θ. Rolle ςτο [ρ 1, ρ 2 ] ϋω ότι η εξύςωςη h () = 0 ϋει λύςη ςτο (1,2). Δηλαδό h () = 0 f () f () f () = 0 f () = 0 f ()=0 ϋει λύςη ςτο (1,2) που εύναι ϊτοπο αφού f () 0 για κϊθε R ΑΚΗΗ 1. Να δειθεύ ότι η εξύςωςη ( + 2) 2 = 2xlnx ϋει το πολύ μύα πραγματικό λύςη. ΑΚΗΗ 2. Αν α πραγματικόσ αριθμόσ διαφορετικόσ του μηδενόσ και ν ϊρτιοσ φυςικόσ να αποδεύξετε ότι η εξύςωςη ( + α) ν = ν + α ν ϋει ακριβώσ μια πραγματικό ρύζα ΑΚΗΗ 3. Να δειθεύ ότι η εξύςωςη = 0 ϋει ακριβώσ δύο πραγματικϋσ ρύζεσ. ΑΚΗΗ 4. Να δεύξετε ότι αν για τουσ πραγματικούσ αριθμούσ α,β,γ ιςύει η ςϋςη α 2 + β 2 < 4αγ, τότε η εξύςωςη α 2 + β + γ = γe 2 ϋει μοναδικό πραγματικό ρύζα. ΑΚΗΗ 5. Αν α,β,γ ανόκουν ςτο R τότε να δεύξετε ότι η εξύςωςη αημ + βςυν2 + γςυν3 = 2 π ϋει τουλϊιςτον μύα ρύζα ςτο κλειςτό διϊςτημα [0,π] ΑΚΗΗ 6. Να δειθεύ ότι η εξύςωςη e = ϋει μύα πραγματικό ρύζα ςτο διϊςτημα (1,2) 13

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΕΦΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ-ΘΕΩΡΙΑ Έζηω ζσλάρηεζε θαη ποσ αλήθεη ζηο πεδίο ορηζκού ηες. Θα ιέκε όηη ε είλαη ζσλετής ζηο αλ θαη κόλο αλ Αςυνεόσ θα εύναι μύα ςυνϊρτηςη αν δεν υπϊρει το Αν υπϊρει το όριο αλλϊ δεν

Διαβάστε περισσότερα

ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ

ΚΟΙΛΑ-ΚΤΡΣΑ-ΗΜΕΙΑ ΚΑΜΠΗ Πληκτρολογόςτε την εξύςωςη εδώ. ΚΤΡΣΟΣΗΣΑ ΗΜΕΙΑ ΚΑΜΠΗ ΟΡΙΣΜΟΣ Έςτω ςυνϊρτηςη f ςυνεχόσ ςε ϋνα διϊςτημα Δ και παραγωγύςιμη ςτο εςωτερικό του Δ. Θα λϋμε ότι : Η ςυνϊρτηςη f εύναι κυρτό ό ςτρϋφει τα κούλα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE 1 ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE ΑΣΚΗΣΗ 1. f () f () + σφ = 0 f() f() + συν = 0 ημf () + f()συν = 0 ημ ημf () + f()(ημ) = 0 ημf() = 0 Θεωρώ τη συνάρτηση g() = ημf() η οποία είναι συνεής στο [0,

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: 1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΠΟΛΤΩΝΤΜΑ. ΠΑΡΑΜΕΣΡΟ λϋγεται το ςύμβολο, ςυνόθωσ γρϊμμα, του οπούου το πεδύο οριςμού ορύζεται ϋτςι ώςτε να ιςχύει κϊποια προώπόθεςη.

ΠΟΛΤΩΝΤΜΑ. ΠΑΡΑΜΕΣΡΟ λϋγεται το ςύμβολο, ςυνόθωσ γρϊμμα, του οπούου το πεδύο οριςμού ορύζεται ϋτςι ώςτε να ιςχύει κϊποια προώπόθεςη. ΠΟΛΤΩΝΤΜΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΕΣΑΒΛΗΣΗ λϋγεται ϋνα ςύμβολο, ςυνόθωσ γρϊμμα, το οπούο παύρνει τιμϋσ μϋςα από ϋνα ςύνολο Α. Σο Α λϋγεται πεδύο οριςμού. Αν το πεδύο οριςμού εύναι υποςύνολο του ςυνόλου των πραγματικών

Διαβάστε περισσότερα

Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ)

Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ) Μαθηματικϊ Γ' Ενιαύου Λυκεύου (μϊθημα κατεύθυνςησ) : 1. ΤΝΑΡΣΗΕΙ Ορύζουν και να αναγνωρύζουν μια ςύνθετη ςυνϊρτηςη 2 1.1 Επανϊληψη Εκφρϊζουν μια ςύνθετη ςυνϊρτηςη ωσ ςύνθεςη ϊλλων ςυναρτόςεων Ορύζουν και

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ Έστω συνάρτηση f για την οποία ισύουν είναι συνεής στο κλειστό [α,β] είναι παραγωγίσιμη στο (α,β) Τότε υπάρει τουλάιστον ένα σημείο ξ του (α,β), τέτοιο ώστε να είναι : f (ξ) = ΑΠΟΔΕΙΞΗ

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017 α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Ημερομηνύα: Ονοματεπώνυμο: ΘΕΜΑ 1 0 : (25μονάδεσ) ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ τισ ερωτόςεισ 1-4, να γρϊψετε τον αριθμό τησ ερώτηςησ και δύπλα ςε κϊθε αριθμό το γρϊμμα που αντιςτοιχεύ ςτη ςωςτό απϊντηςη:

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii) . Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.

Διαβάστε περισσότερα

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2. ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΚΑΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΓΔΤΣΔΡΑ 5 ΜΑΪΟΤ 5 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ:ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΑΠΑΝΣΖΔΗ ΘΔΜΑ Α Α. Σρνιηθό βηβιίν

Διαβάστε περισσότερα

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Πρακτικές και καινοτομίες στην εκπαίδευση και στην έρευνα. Χρόνης Χ. Παναγιώτης pachronis@gmail.com Περίληψη Στόχος της εργασίας αυτής είναι να καταδείξει

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ 3 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ Τρίγωνα -Κφρια και δευτερεφοντα στοιχεία τριγώνου Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ τόχοσ 1 : Κύρια ςτοιχεύα τριγώνου Αςκόςεισ 1. Να ςχεδιϊςετε ϋνα τρύγωνο ΑΒΓ. Να ορύςετε τα κύρια ςτοιχεύα του. Να βρεύτε

Διαβάστε περισσότερα

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β], Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

Μαθηματικϊ για Οικονομολόγουσ Ι-Μϊθημα 4ο Παρϊγωγοσ Συναρτόςεων μιασ Μεταβλητόσ.

Μαθηματικϊ για Οικονομολόγουσ Ι-Μϊθημα 4ο Παρϊγωγοσ Συναρτόςεων μιασ Μεταβλητόσ. Μαθηματικϊ για Οικονομολόγουσ Ι-Μϊθημα 4ο Παρϊγωγοσ Συναρτόςεων μιασ Μεταβλητόσ. Αμϋςωσ μετϊ ο Χαμπϊσ-αλ-Χαςύμπ δημιούργηςε την εφαπτομϋνη. Η εφαπτομϋνη εύναι το ιδανικό εργαλεύο για την μϋτρηςη του ύψουσ.

Διαβάστε περισσότερα

Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι

Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι 1 Σ.Ε.Ι. ΑΘΗΝΩΝ - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΦΑΝΙΚΩΝ Σ.Ε. ΑΝΣΟΦΗ ΤΛΙΚΩΝ Ι 03/07/2013 ΘΕΜΑ Η δοκόσ του ςχόματοσ α ϋχει τη διατομό του ςχόματοσ β. Ζητούνται: a) Σα διαγρϊμματα Q και M. b) Σο απαιτούμενο πϊχοσ t του

Διαβάστε περισσότερα

BAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ

BAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ BAΙΚΑ ΘΔΩΡΗΜΑΣΑ ΤΝΔΥΔΙΑ Α. ΘΔΩΡΗΜΑ BOLZANO (Θ.Β) Έζηω κηα ζπλάξηεζε f,νξηζκέλε ζε έλα θιεηζηό δηάζηεκα [α,β].αλ: Ζ f είλαη ζπλερήο ζην [α,β] θαη, επηπιένλ, ηζρύεη f a f 0 Σόηε ππάξρεη ένα, τοσλάτιστον,

Διαβάστε περισσότερα

[ α π ο δ ε ί ξ ε ι ς ]

[ α π ο δ ε ί ξ ε ι ς ] Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...

Διαβάστε περισσότερα

Μαύροσ Γιϊννησ Μαθηματικόσ

Μαύροσ Γιϊννησ Μαθηματικόσ Μαύροσ Γιϊννησ Μαθηματικόσ Ποιοσ εύναι ο οριςμόσ του ςυνόλου; Γιατύ μαθαύνουμε οριςμούσ; Αν ςκεφτεύ κανεύσ ότι τα μαθηματικϊ εύναι μια γλώςςα, όπωσ τα ελληνικϊ ό τα αγγλικϊ, και ο ςκοπόσ τησ εύναι να διευκολύνει

Διαβάστε περισσότερα

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΘΔΜΑ 1 ο Μονάδες 5,10,10 ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο

Διαβάστε περισσότερα

Β. Να δώσετε τον ορισμό του τοπικού ελαχίστου μιας συνάρτησης f με πεδίο ορισμού το σύνολο Α. ΜΟΝΑΔΕΣ 5

Β. Να δώσετε τον ορισμό του τοπικού ελαχίστου μιας συνάρτησης f με πεδίο ορισμού το σύνολο Α. ΜΟΝΑΔΕΣ 5 ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΡΙΑΚΗ ΜΑΡΤΙΟΥ 5 ΘΕΜΑ Α Α. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ

Διαβάστε περισσότερα

3. Ειδικά θεωρήµατα Συνέχεια

3. Ειδικά θεωρήµατα Συνέχεια 3. Ειδικά θεωρήµατα Συνέχεια Κ ε φ α λ α ι ο 3 Ι ΘΕΩΡΗΜΑ BOLZANO Με το θεώρηµα του Bolzano (Θ. Bolzano) εξασφαλίζουµε την ύπαρξη ρίζας σε µια συνάρτηση. ΕΝ βρίσκουµε την ρίζα. Προ ποθέσεις είναι η συνέχεια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ

Διαβάστε περισσότερα

με το ςχόμα ΑΕΖΗΓΔ χρηςιμοποιώντασ αλγεβρικϊ και όχι γεωμετρικϊ εργαλεύα. παρακϊτω ςχόμα, ςαν ςυνϊρτηςη τησ μεταβλητόσ x. (Μονϊδεσ 5) 2χ+1 Ζ 4χ+1

με το ςχόμα ΑΕΖΗΓΔ χρηςιμοποιώντασ αλγεβρικϊ και όχι γεωμετρικϊ εργαλεύα. παρακϊτω ςχόμα, ςαν ςυνϊρτηςη τησ μεταβλητόσ x. (Μονϊδεσ 5) 2χ+1 Ζ 4χ+1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο (Άλγεβρα) ) Δύδεται η αλγεβρικό παρϊςταςη: Π= (α-) + (α-) (β+) + (β+) Να δεύξετε ότι η παρϊςταςη Π εύναι τϋλειο τετρϊγωνο (Μονϊδεσ 8) Εϊν α, β πραγματικού αριθμού με α+β= να υπολογύςετε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦ Τ ΣΗΜΑΣΑ ΑΡΙΘΜΗ Η ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ 425 = 4 εκατοντϊδεσ 2 δεκϊδεσ 5 μονϊδεσ 4 * 2* 5* 4 * 2* 5* 4 *2 2* 5* 94257 = 9* 4* 2* 5* 7* * 9*5 4*4 5*2 7* * 2*3 Για τον προηγούμενο αριθμό Θϋτοντασ β= (η βϊςη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.

Διαβάστε περισσότερα

f x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e

f x 2xln x x x 2ln x 1 x f x 0 x 2ln x 1 0 2ln x 1 0 ln x ln e x e 8 9 6. Θ Ε Μ Α B 4 Β. Τν πεδίν νξηζκνύ ηεο ζπλάξηεζεο είλαη Α,. Ζ πξώηε παξάγωγνο ηεο ζπλάξηεζεο είλαη : ln ln ln ln e ln ln ln ln e e To πξόζεκν ηεο ', ε κνλνηνλία θαη ηα αθξόηαηα ηεο θαίλνληαη ζηνλ παξαθάηω

Διαβάστε περισσότερα

ΤΟΜΟΣ 2ος ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΤΟΜΟΣ 2ος ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΤΟΜΟΣ 2ος ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ Γιώργος Αποστόλου apgeorge2004@yahoo.com Μαθηµατικός Εκπαιδευτικό

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού

Μαθηματικϊ. Β' Ενιαύου Λυκεύου. (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού Μαθηματικϊ Β' Ενιαύου Λυκεύου (μϊθημα κοινού κορμού) Υιλοςοφύα - κοπού Η διδαςκαλύα των Μαθηματικών Κοινού Κορμού επιδιώκει να δώςει ςτο μαθητό τα εφόδια για την αντιμετώπιςη καθημερινών αναγκών ςε αριθμητικϋσ

Διαβάστε περισσότερα

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e 8 45 38. Θ Ε Μ Α Β B. Η ζπλάξηεζε είλαη ζπλερήο θαη παξαγσγίζηκε ζην,, σο πειίθν παξαγσγίζηκσλ ζπλαξηήζεσλ κε παξάγσγν: ln ln ln ln ln (),. ln ln ln ln ln ln ln ln ln () () ()= Από ηνλ παξαπάλσ πίλαθα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει

Διαβάστε περισσότερα

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.: 5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

Για τισ παρακϊτω 6 ερωτόςεισ, να μεταφϋρετε ςτο τετρϊδιό ςασ τον αριθμό τησ ερώτηςησ και δύπλα από αυτόν να ςημειώςετε τη ςωςτό απϊντηςη.

Για τισ παρακϊτω 6 ερωτόςεισ, να μεταφϋρετε ςτο τετρϊδιό ςασ τον αριθμό τησ ερώτηςησ και δύπλα από αυτόν να ςημειώςετε τη ςωςτό απϊντηςη. ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 0 : (25 μονϊδεσ) ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Για τισ παρακϊτω 6 ερωτόςεισ, να μεταφϋρετε ςτο τετρϊδιό ςασ τον αριθμό τησ ερώτηςησ και δύπλα από αυτόν να ςημειώςετε

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης 4 o Γενικό Λύκειο Χανίων 008-009 Γ τάξη Τμήμα. Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης γ Ασκήσεις για λύση Μ.. Παπαγρηγοράκης 4 ο Γενικό Λύκειο Χανίων Γ Λυκείου Θετική Τεχνολογική κατεύθυνση Σχ. Έτος

Διαβάστε περισσότερα

2 1, x < 2. f(x) = 3x + 1, x 2. lim. f(x) = lim. x 2. x 1, x < 1. 3x 2 x > 1

2 1, x < 2. f(x) = 3x + 1, x 2. lim. f(x) = lim. x 2. x 1, x < 1. 3x 2 x > 1 ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός οὐκ οἴεται θεοὺς εἶναι ὁ ἄθεος, ὁ δὲ δεισιδαίμων οὐ βούλεται, πιστεύει δ ἄκων φοβεῖται γὰρ ἀπιστεῖν. gkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ - ΚΑΡΡΑΣ

Διαβάστε περισσότερα

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΛΟΠΟΝΝΗΟΤ

ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΛΟΠΟΝΝΗΟΤ ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΛΟΠΟΝΝΗΟΤ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΑ ΔΙΟΙΚΗΗ & ΠΛΗΡΟΥΟΡΙΚΗ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΑΘΗΜΑΣΙΚΑ Ι 6 Δεκεμβρύου 2015 ΕΙΑΓΩΓΗ Με την παραγώγιςη μιασ ςυνϊρτηςησ ϋςτω F(x) παύρνουμε μια ϊλλη ςυνϊρτηςη,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β π Για κάθε μία από τις παρακάτω συναρτήσεις με πεδίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Κουβεντιάζοντας µε τις ασκήσεις

Κουβεντιάζοντας µε τις ασκήσεις Κουβεντιάζοντας µε τις ασκήσεις Μαθηµατικά κατεύθυνσης Γ Λυκείου (Θέµατα σε όλη τη ύλη) Άσκηση 2 η Αν f συνεχής στο [1, 11], παραγωγίσιµη στο (1, 11) και f(1)=1, f(11)=11 δείξτε ότι υπάρχουν α, β στο (1,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (2)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (2) - 4 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ () ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ ΛΑΘΟΣ. Ο ρυθµός µεταβολής της ταχύτητας ενός σώµατος που κινείται πάνω σε άξονα είναι η επιτάχυνσή του.. Η συνάρτηση f()= 006 έχει διαφορετική

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [2008-2009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο

Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο Τεχνικόσ Μαγειρικόσ Τϋχνησ Αρχιμϊγειρασ (Chef) Β Εξϊμηνο 1 Οριςμοί Ζννοια τησ Λογιςτικήσ Εύναι μϋςο παροχόσ οικονομικών πληροφοριών προσ διϊφορεσ ομϊδεσ ενδιαφερομϋνων για την πορεύα μιασ επιχεύρηςησ που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ. Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΜΑΘΗΜΑΤΙΚΑ Α ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Β ΓΥΜΝΑΣΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ Σελίδα 1 ΑΠΟ ΣΟ ΔΗΜΟΣΙΚΟ ΣΟ ΓΤΜΝΑΙΟ 4 Διϊγνωςη των γνώςεων και ικανοτότων των παιδιών που ϋρχονται από το Δημοτικό ςτο Γυμνϊςιο. Ο καθηγητόσ με διαγνωςτικϊ

Διαβάστε περισσότερα

ΠΡΩΣΟ ΕΣ ΑΚΗΕΩΝ ΓΙΑ ΣΟ ΜΑΘΗΜΑ ΠΟΟΣΙΚΗ ΑΝΑΛΤΗ ΔΙΟΙΚΗΣΙΚΩΝ ΑΠΟΥΑΕΩΝ

ΠΡΩΣΟ ΕΣ ΑΚΗΕΩΝ ΓΙΑ ΣΟ ΜΑΘΗΜΑ ΠΟΟΣΙΚΗ ΑΝΑΛΤΗ ΔΙΟΙΚΗΣΙΚΩΝ ΑΠΟΥΑΕΩΝ ΠΡΩΣΟ ΕΣ ΑΚΗΕΩΝ ΓΙΑ ΣΟ ΜΑΘΗΜΑ ΠΟΟΣΙΚΗ ΑΝΑΛΤΗ ΔΙΟΙΚΗΣΙΚΩΝ ΑΠΟΥΑΕΩΝ Τμθμα: Χρηματοοικονομικθς και Τραπεζικθς Διοικητικθς Εξάμηνο: Γ Μ. Ανθρωπέλοσ. Άςκηςη 1 α) Γρϊψτε το πρόβλημα ςτην τυποποιημϋνη του μορφό.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 1 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ Έστω συνάρτηση f, ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεής στο Δ f ()=0 για κάθε εσωτερικό σημείο του Δ τότε η f είναι σταθερή στο Δ. ΠΑΡΑΤΗΡΗΣΗ Ισύει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Οριςμόσ προβλήματοσ. Θεωρία Γράφων 2

Οριςμόσ προβλήματοσ. Θεωρία Γράφων 2 Θεωρία Γράφων 1 Οριςμόσ προβλήματοσ Οποιοδόποτε επιφϊνεια που χωρύζεται ςε περιοχϋσ, όπωσ ϋνασ πολιτικόσ χϊρτησ των νομών ενόσ κρϊτουσ, μπορούν να χρωματιςτούν χρηςιμοποιώντασ λιγότερα από τϋςςερα χρώματα

Διαβάστε περισσότερα

Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη

Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. 1. Αν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 τότε η f(x) είναι παραγωγίσιμη στο x 0 του Π.Ο της; : όχι. Πρέπει επιπλέον το όριο να είναι πραγματικός αριθμός.

Διαβάστε περισσότερα

α = 2q + r με 0 r < 2 Πιθανϊ υπόλοιπα: r = ο: α = 2q r = 1: α = 2q + 1 Ευκλεύδεια διαύρεςη Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών Διαιρετότητα

α = 2q + r με 0 r < 2 Πιθανϊ υπόλοιπα: r = ο: α = 2q r = 1: α = 2q + 1 Ευκλεύδεια διαύρεςη Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών Διαιρετότητα Ειςαγωγό ςτισ βαςικϋσ ϋννοιεσ των Μαθηματικών 8 ο Μάθημα Διαιρετότητα Ευκλεύδεια διαύρεςη Για κϊθε ζεύγοσ ακεραύων αριθμών α, β με β 0, υπϊρχει μοναδικό ζεύγοσ ακεραύων q, r ϋτςι ώςτε: α = βq + r με 0

Διαβάστε περισσότερα

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ

Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ Ρητοί Αριθμοί Πρόσθεση και αφαίρεση Μεθοδολογύα & Λυμϋνεσ Αςκόςεισ Στόχοσ : Αθρούςμα δύο ρητών αριθμών Αςκόςεισ 1. Να βρεύτε τα αθρούςματα : α. (+ 5 ) + (+ 19) β. 2) + ( 12) γ. ( ) ( ) δ. ( ) ε. ( ) Βαςικό

Διαβάστε περισσότερα

ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ. ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: 3 ΧΡΔ

ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ. ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: 3 ΧΡΔ ΔΠΑΝΑΛΖΠΣΗΚΟ ΓΗΑΓΧΝΗΜΑ Γ' ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ζε όλη ηην ύλη) ΘΔΜΑ Α Α. Έζησ ζπλάξηεζε νξηζκέλε ζην, ΓΗΑΡΚΔΗΑ ΔΞΔΣΑΖ: ΧΡΔ α) Πόηε ε είλαη ζπλερήο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ ΥΤΙΚΗ B ΛΤΚΕΙΟΤ ΓΕΝΙΚΗ ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ

ΔΙΑΓΩΝΙΜΑ ΥΤΙΚΗ B ΛΤΚΕΙΟΤ ΓΕΝΙΚΗ ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ Ημερομηνύα: Ονοματεπώνυμο: ΔΙΑΓΩΝΙΜΑ ΥΤΙΚΗ B ΛΤΚΕΙΟΤ ΓΕΝΙΚΗ ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ ΘΕΜΑ 1 0 : (25 μονάδεσ) τισ ερωτόςεισ 1-5 να γρϊψετε τον αριθμό τησ ερώτηςησ ςτο τετρϊδιό ςασ και δύπλα ςε κϊθε αριθμό το γρϊμμα

Διαβάστε περισσότερα

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle Σελ.414 Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ».6. ΘΕΩΡΗΜΑ ROLLE Υποδείξεις Απαντήσεις Ασκήσεων.344. α. Σωστό β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό στ. Σωστό ζ. Λάθος η. Σωστό θ. Σωστό ι. Λάθος ια. Σωστό ιβ. Σωστό

Διαβάστε περισσότερα

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΣΟ ΚΕΥΑΛΑΙΟ ΣΩΝ ΠΑΡΑΓΩΓΩΝ ΑΚΗΗ 1 Αφού η ςυνάρτηςη είναι παραγωγίςιμη ςτο 0 1 θα ιςύει Επομένωσ ƒ ƒ(1) 1 1 1 ƒ ƒ 1 1 1 ƒ ƒ 1 + + 1 1 1 ƒ ƒ(1) 1 + + 1 6 xf x f(1) f x ƒ 1 + ƒ 1 f(1) ƒ ƒ 1

Διαβάστε περισσότερα

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε

Διαβάστε περισσότερα

Συναρτήσεις. όριο συνεχεία

Συναρτήσεις. όριο συνεχεία Συναρτήσεις όριο συνεχεία Συλλογή Ασκήσεων mathmatica -7 ΕΠΙΛΟΓΗ + ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΣΥΛΛΟΓΗΣ: 9// 7// Πηγή Απαντήσεις Συναρτήσεις -Όριο Συνέχεια:-Μια συλλογή ασκήσεων Έλυσαν οι: XRIMAK Αναστάσης Κοτρώνης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): blogsschgr/iordaniskos/ Επιμελητής: Ιορδάνης Κόσογλου blogsschgr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatoponblogspotgr/ Επιμελητής: Σωκράτης Ρωμανίδης

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων

Διαβάστε περισσότερα

Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ. Δομ. Προγραμ. - Διϊλεξη 5 1

Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ. Δομ. Προγραμ. - Διϊλεξη 5 1 Βαγγϋλησ Οικονόμου Διϊλεξη 5 ΠΙΝΑΚΕΣ Δομ. Προγραμ. - Διϊλεξη 5 1 Περιεχόμενα Πύνακεσ Αλφαριθμητικϊ Σκοπόσ μαθόματοσ: Να αναγνωρίζετε πότε είναι απαραίτητη η χρήςη του τύπου του πίνακα, Να δώςετε παραδείγματα

Διαβάστε περισσότερα

Μαθηματικά. Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ)

Μαθηματικά. Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ) Μαθηματικά Β' Ενιαίου Λυκείου (μάθημα κατεύθυνςησ) Α. ΑΛΓΕΒΡΑ 1. Επανϊληψη ύλησ τησ Α' Λυκεύου (5 περύοδοι). Απόλυτη τιμό πραγματικού αριθμού (5 περύοδοι) 3. υναρτόςεισ, πεδύο οριςμού, πεδύο τιμών, ιςότητα,

Διαβάστε περισσότερα