A B C DE E AB CDAEF B F B E C F ADBA D D A E C BA B E D B E D C E D F A E
|
|
- Ἡρὼ Πολύμνια Φωτόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 A ABCDEE ABCDAEFBFBEC FADBA D EAE EAACDBFB EAACDEEFE DDAEC ED D BAB EDBE B BAE CB DD CCB BFED AFEA DEBFDAD E DBFA BFB DCEDFAE EEFE DEBEAE
2 A
3 A B AAABAFDDA DEDEDABDD DADABDABDA DBDBADAEBAA CDEAAADFADDABEBAEE A CDB D F DA ED EDA DADAAADBEDD A A A F EDA DAA D D AAAEABAAADBAAAEDE EDACAEABB CDEAABAAEDADDCA DDDAEEDBADEBDAEAED DEDCDBBDAAEDDABBD A ADABADAAEDEE DAEADDAADA DBAAAADABDADAA EDDAEADADEAAABADCABBA EDD EDADAABBCEBDDADAADA EDADDCDAEEAADBAEDAAEDBDAAB DAEDBDAAEAEDD AADABADDABBDADBCE DEED A
4 A AA
5 BCDEAFACA... i ABCDEFEB...iii ABCDEFE... viii FEBD... 1 AEEEBEBFEFEEFEBEEDDED... 5 FF... 7 F... 7 F... 7 DDAABACADA... 8 DDAA... 9 F DAEBBDDEBB DAEF DBEDEADB ABDEAEDA DABABDCA DEBDAEBDCABBBDEDAEDA DEBDAEBDCABBBCADAEBA AEAECABBCDABDBEDBAEDC AAAAEAEDEADB FD ABCAEAAEDED ADEA ADED AAEDBACDBBDADEDE ADEACDBEADDEAD ADEACDBEADDADD EABA AAA
6 BCDEAFACA ADDAEAEDECAEDE ABAEAAEDEAC F D AEEEDDEDEFEDBEBFEBEECBEFEBBE FD FFF FFE D AAEDED FDEAA DEDABD DAEDBDDEEA DEDAB BDAEDBDDEBDC DB DDCABBEBDBBBCAEBDDE D CBDAEADEAEDEEDBDE A FEDEEAAEAEBDE DE AEBACDEDEBDF AD BDEBDDBDDDAAEEAE DBAEDAADB DAEAAAB AAAEAAEDE BDAD DBEEAAEDED A
7 BCDEAFACA BDDAEBDBBBCAEDEDDBD ABB FFD CDAEDF DBADAEDDEABADBAA AADABDBDFA CDAEDDEDAEDDDAE BAEAD FF AEEEDBEFEBDEFEDBEEFEBF FFFF FFFC FFF E AD AD FFF ADBAEDABDDAE ADBAEDABFEAD FFF. 114 FFF AEEEEBDBEEBDBEFEEEFEBFE B FF F F
8 BCDEAFACA CDADAEDC CBCAFDA CAEDFEDCEDBAADA CAEDF CAEDCEDEBDAEDF CADAEBDEBD CDDDADAEBDAC FD CAA CADBBDDBA CAAADABBDEBDBDABDAEDBBCAAB B FB CDBDCEAA CDDDADAEDD CDDBAEDAADBEEA F A
9 A AA
10 BCDEAFAA ACDDABAFAEF ACDDAADAEF ACDEFDEDDADDAFDBA ADBEFEDBDDA ACEBFFD BDDAABEBDDAEDCDADCBDCABB ACFDADBABAEAE ADDEDB ACDABAEACAEEDEEB ACFDEDA ACDDABDBEFDA BDDBEBDEAE ACDAEDDDAEE ACFACDBEDEAEDBBDEF ACBAEBDADBDDDBDAEBDCABB ACDDAADAEB ACEFDEDBADAAFCDA EDBAEDC ACFDABAAEAAEDEA ACBCAEDEA ACFDEAAEAAEDED AC D FD E AA E DE D EE E A ACDEDDDAD ACDAEDDAEEDDBAEAE DBADAAB ACFFDBEAFEAD ACABDAEBDDBADABDDED ACAAEAEAAED AAA
11 BCDEAFAA ACDAAEAEAAEBDDCAA DC ACDAAEDEDDEDDEABA AEDEBDCABBDEADBEDBA ACBCAEDEDEDDEABAD FDEAAEEEA ACCDADAEBD ACAAEDEACBAAD ACAAEDEBAADBD ACFDEBDBBBCAEDED ACEEAEEDAEDDEABADE BAF ACDDAAAEDBEBAF ACEECDBDBADAAEEEDC ACDEDABD ACDADEDAAEFEEDCADADABBDB FDBAADBABAA AC EE E D DCAD E BD A D ADA E DDα DAB ACDDAAEEAEDDBD ACDEDAB ACDFEDEDAAEFEEDCADADABBDB FDBAADBABAA ACFACDBEDEABDADAD ACCBDAEADEAECABB ACDEEEDEDBAEDDCADAE DBA ACEAEEAE ACDEBDDBDDDAAEEAEBDE ABDADBBCAABFABD ACFDEDAEAAEDED A
12 BCDEAFAA ACEDAEAAEDDEABA ACAAADBEBDDADCAEDDEABA EB ACDDAADAEBDEAE ACDDAADAEBDEAE ACDCEAAEDEEAD ACEEEAAEBDCABB ACBDDEDABDEF ACFACDBEDAEF ACABDCA AC DAA E E AD E AA E DE ADB AC DDA BD D E E BCA E DE BD AD ACAEACDAEDDAEDAEAD ACAECAA ACAEEDEACCA ACBABBEBDAEBDCABBAEBDDBEBD ADEBBEE AC FD E BD BB E DE D B AD ACDEABAD ACFDBAADBEDBDDEEDCADA ACEEEABED ACDEABED ACFDBAADBEDBDDEEDCADA ACEEEABED ACDBAEDAEBDEEEDCADA ACEAABDDBAEDAADBEA D
13 BCDEAFAA ACAEAAD ACBDDDBDBEF ACEEAD ACEEAD ACAEAAEDEABBACDDA ACFDAEBDAC ACDBADAEDDB ACEBDBCAEBF ACADCEAEDEB ACDAABAAEDED ACFDEBDFADDAABAEDB ACBDEFEACCDDA ACDAFEDFDBDEDEEDA CABB ACFDEDCEDEBDAEDF ACDEAABEBDDAEDF ACAAEAADCEDBAADA ACAAEEADCEDBAADA ACAADAEBDDBEBDAD ACFEEAAEDFDDE ACEBDEBDCBBAE DCEDBAADA ACBDE DCEDBAADAEDF ACBDEBDAC ACFDBAADBDBEBDC EDF ACBDEBDDBDEEDEEBDC ACBDEABDAEEBDCEDBBCAABDE ACDDAEBDACEBDA A A
14 BCDEAFAA ACDDD ACDDADAEBDEDAEDAAEBDA EDBADADADAEDEAEEAAEBDA EDBADA ACDDAEBDDAEAAEAEAAAC ACDAADCAAAADBEBD AC BDA B D BD A E BD A BDCDA E BD D ACAABAEBDEBBE ACACEDFABDABDBDA ACDBDCEEAACEAA ACBDDDBABAA ACAACBAA ACEBDCAABEDD AC D ED AE AA E DD BDD ADAEAAEDDBDD ACDEBEDEDDAEDDBDDD EDEDDAEDDBDD ACAADAEDAEDD ACFDBAEAAEADBDDBAEDAEEAAC ACEAA ACACABBE ACDEDBAEDAEBDDC ACDCAEBDAC AA
15 A AAA
16 FACEA F BAA E CA ADB E A DABA B D D DA D BD DA E CA BDBBAEDBDADBDEABDEDA BDCDADAEDBEAECAAC EAADEDABEAEBAE ADDCAAADBBABBBDA BAADDDBBBEDDDCAEADBEDBBABA CDEEADEDECDEE AAEDEDECDEABDABABEDE BEDADEEDABBDDAE DCDEADDBEDEEBABA BEDDADABDCBDC ACAAABDDEEDBADABDABEBADDA CDBBDDEECEBEADDBDADADDBBBE A BB D AED E A DADB DD EDABEADDBBBBCDBDABAA DEDDDBADABADABBAABAADDDBBB ABDBEDDCABBEA D AB BB F ABADA DA E EA B E AEDAEBAEAD ABADABAEEDEAEADCBD ACDABAEDAEEBAEADDBABADAE BBBBDACDDDEAEADEDDAD DBADADEAEBAAEADABABADC EBBAEBDABAADEDABDBCAEBD BCADAEDEBDDED EABEADEEAACDBAC BADAEAEBE BEBDBDAEBDDEEAEADCABBAB
17 FACEA DABAEFDBBEAABDDAAEDDEAA EAEAEADDAEAE DDAEEABACDADBDEBDEBCAE DE D DA E E A DAA BBA E BACDABAEADDDBBAAEDEBA D AD EAA ADBA E DECAADBADAEDBEDBADADA DBEADADBBBBBCAEDE D D E DD EABA D EB EDACABBDC D D EDA E DD BB D ED BD AEADAEDEACDBCAAB BD A D E BBB BDA EA B AA E A E BB BCA A E DDB DEA DDDDCDDBAEDAADB A E BD E DE A E BCA E DEAABACDABABDAEDA AADAADBAEBDBCAEDE DEDBDABBABAADBAA DEAEADCAD DABDDAEBDBAAEBCABDAEDE DDEDDEABABDAD BADAEBADACDBEAEBD AB AADA E AA AA E EAA E D DABA B DA E BA E B EDA E BD DAEDAEADDEAAEDE EAEACDAEBDBCAEDEDEDB EADABEADADBDDAEBDEDE AEAACAEDEDBEABCAE A E BCA BAA A E BBB BDA DE DBAAEADAEEACB EA B B EA DBADA BADA D A E EA
18 FACEA E E DA E BD A BD A E AC BCAFDABDEABDAEDD EABABDDBAAAABADBADAADBE EAACDEABDDBAE
19 A
20 CAAACACFAFAAFACAAEEAEA FBF C F AEEEBEBFEFEEFEBEEDDED... 5 FF... 7 F... 7 F... 7 DDAABACADA... 8 DDAA... 9 F DAEBBDDEBB DAEF DBEDEADB ABDEAEDA DABABDCA DEBDAEBDCABBBDEDAEDA DEBDAEBDCABBBCADAEBA EDBDADBDDD EEDBDBAAEDEAA AEAECABBCDABDBEDBAEDC AAAAEAEDEADB FD ABCAEAAEDED ADEA ADED AAEDBACDBBDADEDE ADEACDBEADDEAD AEDBACDBABDACDBDA... 28
21 CAAACACFAFAAFACAAEEAEA AEEBADABDDBADADDBADAD DC ADEACDBEADDADD EABA ADDAEAEDECAEDE ABAEAAEDEAC F D
22 CAAACACFAFAAFACAAEEAEA F F AEADBDDADEBABB BCAEBBAEADDADADBB DBA DA AADB B DA E AD CABB AB FDDEDDADBBBD AEADDDAADBBEAAB DDAAEDDEAAEAEAEADDAE AEDBDEADDDBBADEACDB EDEDEDBBDEBDEBDEAAE DE DA E E A EA D D BA EBACDA ED BBAE AD A BACDA E EAEADBACDAEAAEDED ADABADBDDBEBBAEAAEDEAC B DBADA ABB AA E BBA E AD DDDEBADADEAAA DBAEDECAADBADAEDB EDBADADA F FBDAEDCABBABBDABB ABAABAEDBAEADDAB ADABDABDEBDBEE DDAADADABADDBDACDB BBDAEFFDA BEEDACABBEDDEAEAABEDA BD BBA DA B F D AEAAB D D
23 CAAACACFAFAAFACAAEEAEA EFAEAAECA EDDEDCAECABBE AABDCADBDDAEDDBBECA ν D ACDDABAFAEF DACBDEBDDDAABAEFE EAACAEEDA DBDEBDAEBDCABBAABDAEABF BDDBDABDEEDAB CAABADADEBDAEBDCABBABDAE ABFEAADBBDDB D BD ABDA E D A E AD EAA D A EAEDADAEEAEBED DAEDAFDABDDBEDEDBDDBCABADA DBBDBDA 1 I canal C0.( VGS Vth Vcanal ). V 2 = canal
24 CAAACACFAFAAFACAAEEAEA C 0 Z. µ L n ε. e SiO. ε 2r 0 = SiO 2 o o o o BDCEDDBBCEDDB BDABAEEDC BDDAEEECABB ε SiO 2 r BDEABABDAEBE o ε 0BDFBEEEEBEBEB o esio 2 BFEBBB DAEDEEDAEDBDBAAEDBAEAEBDA EFDDBDBBEAEDDB DDEDBCAEDDAED CADDABDEDDBEDEA EDBDA C I canal =.( VGS Vth ) = C0 Vcanal 2 ACDDAADAEF DEFDEDDADDAB BBBDACD
25 CAAACACFAFAAFACAAEEAEA FBDDDABDCABBBDABD DBBADAEBDDDAEADBDD DBA F F B DDA BDA E CABB ED BD CAFBDDDAEABAEADBFEBDCA EEBABDBEDABBDADBDAECABB DAEEDABABDDADB DDA EABA DA ACAADA B BD A EDACABBDCEBDA FBDDDAEDABBDADBDAEEDA DDADDADBCABEBBDA EFEDDDABBDACDDAED EBBADAEEEABDBADBEE F F F D DDA CABBEDA BADA BB E BD DDA F AE E ν BB AADB DBEBABBEDBDDAEFDBDA BDCEBDCABBDABDDAF ν AC D E F D E DDA DDA FD BAADBEFEDBDDA DBDDEDDDDAAEBEE EBDBEBBAEADA
26 CAAACACFAFAAFACAAEEAEA FFFBDDDAE FFFBDDDAEA FFBDDDAEABB DBEADDBEBDAEDAB BDACD DDDADEFBDDCDBDAA BDCABBDABDAEBDCABBEDBEAD BADDABFDDAEADA ADBDAEBDDEDBFDDC DBEADAEBDAFBDDCADADA BDAEBDCABBEDBDDABBBDEABDDC AEDBBDDABBBDEADADABDAEBD CABBBDDBADBDACEBEBDA EBDAEBDCABB
27 CAAACACFAFAAFACAAEEAEA F D ACEBFFDB DDAABEBDDAEDCDADCBDCABB F CDBBBDABDDEBBEA EADBABDACBAADBE DEBACDAEDBACDBEDECDBAA BCAABECDDBDDDBDE D A D ED BCA BD DA EDA E AEAEBADDABDACDBDA DBADAABCABDDE
28 CAAACACFAFAAFACAAEEAEA ACFDADBABAEA EADDEDB BFEADBDDADADBDDEA DBADAAABDACDABB BBDCABBBDDEAEEABD DA ECA D BCA EA A B D E BD DA D DA E DC DA BD DDA E E DABDABDCBBDDD BBDAEADEBCABDDBD AEDDADEBEECABBAAEDEA EAEABBDCABBBAEBDA BEDDAEAEADDAEBDBBABDE DAABBDBDEEDBABD BDACDEAABDBADABACDBEDE BACEABDEFACAECDDABD BDADAEBBEECABBDDBBEBDBABAB DBBABAABAED DBDDAADDBBDDBBDDEEFEAD BABAEBADABABDBDDA DBDBBEDAABBDEDAADBBACDBE DE AEDB B D B DD E ACDB E DE DABBDDAEDAEDEADA DBBBDEBDEAAEDEEDA
29 CAAACACFAFAAFACAAEEAEA ACDABAEACAEEDEEB AEEAABDDBDDAEFEAD ECDBBACDEDEAEBDBBBD EDAABBDEBAABD BDEABDAEDABBDAC AABDBBBEDADDABAEDDDA DA R G I G V GS I DS C Vdd I0 D I D ACFDEDA DDAAEDBABDEFED DABBBDACD DBDCBDAEBDCABBBDAEAB BDEBDCABBDCABDFAAEDE EADAEEDBDAFBDFDCD DBBEDEBDAEBDCABBDDABDAEABB DEDADAEEDADAAEE
30 CAAACACFAFAAFACAAEEAEA DABCFBDEAEEBAEADA FAAADBBDACAEADED ABFEABBADDAEDBDDA BDACABBDDDDBB BDDABBABDDDAEEFBAAADD EBDCDAEBDDDACABBEDA DBDAEEDAEBBEAAEDE ADBBEDBABDEDBDDA EDEDBEAABEDBDAED DABDAEDADAAEEDDAD DBBDDDDAFFBDAEBDCABBA DCDDBDADBAAAB EDDBDABDAEDADADDBAADBDEAAA EFDAADBDEBDCABBEAADAABADE BDADAEBDEABDDDEDABAA AF FABDEAEEBAABDAEDE BEEEDADBEAABBDAC DEEBDEAEABACAEDABDEEDAA DADBCDEBEAADADEFAD EBEBDDBEBDDBDBBBDEBDEBD EAEADBBEDADAEBDAECABBA ABDDBDAEEADEFBDDBEBDDABDDE EBDEAEABDEEDAABDDA AEDBDEBDEAEAEDBEAEADEBDAFA EADBB DDABEFDAEDBD DAEDBEAEEBDAABB EDBDACDDBEBDAEDEEBDCABBEFD
31 CAAACACFAFAAFACAAEEAEA V GS max I G max V GS I G V th t ( 1) ( 2) ( 3) (4) I G min I0 Vdd V DS I DS V DSon tfu1 tfu2 t Pon Pcond Poff t tri tfu tru tfi V GS max V GS V th t I0 Vdd I D I rr Qrr V DS I DS t tri I rr Qrr trr1 trr2 trr tfu ACDDABDBEFDA BDDBEBDEAE
32 CAAACACFAFAAFACAAEEAEA D EDBDABDBABDEB DBDADEBADBBDE EDAADADEDABDAC DFAEBEBDEAEBDCBEE DABDBEDABDB EFDBBDBDAAEEDBBBBD EEDC tri+ tfu tri + tfu PonM = f. VDS ( t). I DS ( t). dt = Pon + PonQrr = f.( Vdd. I Qrr. Vdd) P offm tru+ tfi = f. V 0 DS ( t). I DS ( t). dt = E off = tru + tfi f.( Vdd. I0. ) 2 AEDEDBBDBDA 2. Qrr Irr = trr EAEFDBBDBDAE FBDADBDDDEF Ω α DBA 2 P = I. R.α cond 0 DSon DDBDAEABEDAE BAABDBEDAABBAB EEDCEEDABDAEDEADE EFEEFEBADAAECEDA BDCADEDEEAADBDDAB AEDDDAEDBAADBDADAADB AA E DE D E DDA E E A D B EAAEBAABBDACDDBDE EABDEDBDDDADBBDBDB
33 CAAACACFAFAAFACAAEEAEA ACDAEDDDAEE I C C 1 dv dt DS 1 = EACDEAAADCAACDBE DEDAAEDBADADDBECBBDAEBDDAE DCBDCABBEFBDACBBEBAABD DABDEF ABAAAADBDCDAEBDCABBBDAEAB EAABAACDEDABDADEDE EDADAEABDABDCA DABAAEADCDBBDED DAAB ABAADBBDEDCDAEBDAEBD CABBADADB
34 CAAACACFAFAAFACAAEEAEA V GS max V th V GS V DS I DS I G ACFACDBEDEAEDBBDEF ABEAABDDAEBDBBA BEAEEABDADBDDDEABBAEE EDEBDBCAEDEDDEADEAEBDCABB ED BD EA B BD A E CABB CDE A BD AD ADEDBDDAADDBBDDBBEDABBADEADE AEBDCABBBDDED F DBDAEFCBDDC EDCEDDAEADBABDCABBBD B DA B AD E A E CABB ED B D E DA EADBDAEDABDDBADEDBB EDADADABDAEADEEEDEF EDBDDADBDA di dt DS g m V. G V C th iss I 2. g. R G DS m BDADBABDCABB CBDDEDAEEEBDEBA ADADBDCABB
35 CAAACACFAFAAFACAAEEAEA ABDAEDCEBDAEDAEDBD DABBDBBDBDA dv dt DS V V G Miller = CGD. RG V + DS Miller = Vth g m I AADDADABDAEDAEEA BEDADADCBDAEBDCABBBADAE AAEDEAEDEDADABADEBDAE BDCABBAEBDAEDADA FD E DBDADBDDD DB BD AD BD DD E A E AD EEDEBDEABBAABBDEDCEBD BAAEAADDABBDAEBDCE BDAEADDBAABADBDDD EDBDADDADBDDDFEFDA DADABDADEBDAEBDDC R DSon = α 2.6. V BR BDADBDDDEECDBEBDAEBDCABB DBBFDABBDAFEDBDA EABBDADBDDDEDBDAEDEED BABBDBBAEBDEBDACBE DA EDC BD A E BD CABB ED BD D E EA DA E AAAADAEABEEAEDBDAE BDCABBEAAABDAEBDDCEBEECABBA BFBDABDAEBDCABBADD EEBAADAEAAEEDABBDEBEECABBAAB ABDEAAADBBDADABABABEECABB EAAEDEECABBABF
36 CAAACACFAFAAFACAAEEAEA R DS R DSon Vth 15V V GS V GS max ACBAEBDADBDDDBDAEBDCABB EE DBDBAAEDEAA EADEBABDAECABBBD EDBDDDAEEABDADBDDDEEEA B EA DA BD D ADB DE B FDADBDEAADADBCDED EEDDEAABDAEDADABA CDEDDBDABDDDCAADBBFDDABBD EDBDCADABBDACDEEAB DDBEEDAEEEBDACABBFEBD AEDAFBBDA I c c C =.( V 2 V 0 ) 2 GS th DABDACABBBEDEAD FEFECAADBABDEEABA FBADFEEDDEABECAAAB DDBDAB
37 CAAACACFAFAAFACAAEEAEA V = GS 2 15V { I c c2 { V GS 10V Ic c1 1 = VDSon2 V DSon 1 ACDDAADAEB AAADEBFDAECABBADB EDBDDEEAEABEEABDDAD EADAEDCDDEEDAD EDDD ABADEBDAEBDCABBEDBDDEB EFAEDAADBBAAEDD AEDAACDBEDECDACDBBBDCED DBBDAEBDDEDABEEAB ED D E CDDA BDBAEDC D A E D BAAE BBDBAACDABDCABBBDE FABDDEAAEDBD Nν EABDDDA EEDAEBDEFEE EAA B BD AC DBB D BAEDCDDDCDDDADDAABEDD BDEAACAEA AAABEDA BDBAAEBDDDAABDACDCBDDEBDDDA FDBDADAEAEDAAEABE DADAEDCDADEBDDDAECABBACBDB
38 CAAACACFAFAAFACAAEEAEA EEAABEAEBDCABBDADDDBDBAEDC AEDDAAEBDEAEBDEF DADBADAEAEDADBA A E BD CABB E CDDA BDBAEDC D AD A E AD EA E DE DABADADBEDBEDEED BDACABDEDADAEABDAABAE ν ACEFDEDBADAAFCDA EDBAEDC A D EDDB BD DE E F EA D B BDAEAAEDEEBBDEAAAEACDBE DE E BD CABB ADB D BADA E DAA B AEFBABBAB BADADEBF ABDACDBDADADEACDBEDED DBADA AB D BCA DA BD DA ABDAAEADBEDBDEDAACAE AACDBEDEABDAADB
39 CAAACACFAFAAFACAAEEAEA o AEBDCABBAACDEDADABD DAEDAABDEDABAD BAEDAAEDA o AEBDCABBEDBDDDDADBED EAABADEDEEDADEAAED DDBDADBDDDADDAB o AEBDCABBCDADADAB DAEDBEDBAEDCEFEDBDB ADABDBAE ADDA ABBD ADB DBDAEDADBBDEBDEBDEBCAE DEADDDBDBDBBAA F D A A BCABDBBDABAAEDED BFDDDAEADCEDCDEA DBDBDADECABBDACBD ABAAEAA ACFDABAAEAAEDEA DADEAAEDBAAEDEEDBDADEBDCABB EEEBDEEDCDBBDBDA
40 CAAACACFAFAAFACAAEEAEA P 2 = V. C f G iss. D E A DB DBA BA BDACDABDACDEA DADADDBADAABDADAACDBEDE ABDAEADBADEDAABDADE FDEABDACABAEADDBADA ABDADAEACDBEDEDABDADAA BDACABAEBEDDDBADAABDAB AABAEDBDEFDEDAACDBE DECDAEBBAADDEDADAE B E EA E DA A CDABBDCEDAEEDBDBAEDCDAEBAA +V cc +V cc +V cc +V cc R G 0V +V cc 0V R G V cc +V cc R G V cc V cc 0V 0V ACBCAEDEA DDEABDADBBBDEABDADBBB DEABDADBEB DDEABDBABBDBDEDABBEA ECBACDBAEBDDABBEBDDDAEEBD EEDCEDADEDABBAEBDA DEDDDBADAD A DDEDADABAEADD EDBDEAAADAACDAD
41 CAAACACFAFAAFACAAEEAEA ABDDDAECABBDAAAACDADACB DEAAEAAEDE ACFDEAAEAAEDED AEDABDEDCDBDBAD AAEDBBADCDDBDDEDAEBA DABAEEDDABBD EBADBDDEAAABDE DAEBCAEEABDDAEEA DACBEAAEDEDDB EE A D E BAED DC ED BADBBDDDDAADBBABCA DDEAAEDEAAB DED B F A E EA E DAEDBBDACDAEDEE BDCABBDBDBAEDCEDA
42 CAAACACFAFAAFACAAEEAEA D ACDFDEAAEDEDEEE A DACDBEAAEDEDD EDDBADEDBAADDABEA EADECABBDABEAAAA CDA +Vcc Vcc ACDEDDDAD A DADDDDBDDEEFACAE BBBBEFBAEBBADBADA DEBACABDAEDDABDABDBB BEBAEFACAE
43 CAAACACFAFAAFACAAEEAEA A DADCAADBACDBEDEBCAE DEDEADDBBEDEDEBA DBACDBEDEBACABBADADBADA BD AE DEACDBABDACDBDA BAAABABDBABDACDBDAEBD DEBACABBDBBBBDBEDBDCE ADBCABBADCBDADBADBDAA ABA DD EABA DD D D BCA DABDDABEEDEBB EDEDBACDBEDEDBDDAADABAE A E BAEA E A A ED B DDC E EBDEADDBDDDA EABDAEDEDBDAEDCDAEACDBEEBE DCDABADEAEABDADAABDAABAEACDA DDAA AA DD EABA B BA EE E DABDE DAB DCDA AD DAE A EABADA AABA EACDA D BAD A D D A DA DA DABA E B D DBADA B A A A D DA B D B DBDDDAABBEEAEEABDAEBDBCAE DE AEE BADABDDBADADDBADA DEDC
44 CAAACACFAFAAFACAAEEAEA EDAADAEDBADABDBDAAC AEBABAABBEAAAABB DABADEDDBADAEDEAABDBADAAB BDDBADABDBDDCDBBA EBDEAEBADDDABBDA BABDBBDABBAABADBADAAB BDDEDEFBBEDDABBEDBDCCDE EEDCDDBAADAA BDBDEDBADAEBBAEADDBADA DBADEAABADDDDA BADCAADD EDBAEDDDCEEEDBADADABADA EAADEADDAADEAAE DEDDABAEBDBD BCAEADAEDBABDDBADA DDBBBEADDBAEA AACEDBADAEAADCDEDADE AEABDAADDABEDDAB EAAAEEEDBADABDDAEAE DCDADDAEADBDCDAEDEEBD D D BD E DDA E BDC B ADA B EDA E BDBADAABDEDDADDAEAAABABD DADA E A D AD EDA E AA D E E ABEDBADAEEAEDBDDECBDBDB DDADDABDDBBABAE E DE D B EA D AC B DDAEEADEDDBADAABABBE ABDABBBABEBDEDAACAE DA D D D E AA E DE E D E E ADCABEDBDDDAEE
45 CAAACACFAFAAFACAAEEAEA ECDEEDDADDAAADBAF DDDAEABDAEFBDDADAEBDAEBD FDDBDDAEEEABDAABED BDDDADDAEADBDA I dvs masse C. = dt 10 3 C = = 0.136( A) I C ACDAEDDAEEDD BAEAEDBADAAB BDEDBACDEEDBADAC ACDBEDEABDAABADEDBADAAACDA ACDBEDEADBEDDDACDAEDBD BEBAADBDBAEDCEDBD BAE DDDC E EDBADA ABA B FEDADEDBAAEADBAD ACBADCEAAEDEBBFE DADABADBDBADAAB
46 CAAACACFAFAAFACAAEEAEA ACFFDBEAFEAD BA E DBADA D AD D AB E E DA E AD BD BCA E AA E AD BB DBA A B AA E DE D AA E AEAAEDDBADABDADBDAC BDBDCBDABADABDCEDEDE CABDAEAAEAD ACABDAEBDDBADABDDE D DBEEDEBDADADEBDEAEEE E BD E A E D BA E BD DA E BD DEDABBAEDBADABD BDDEDBDABAEACAEDEB EDCDCDC DDEDBADAABDA DEABDBABAADB DDAEBDDEEDCEEDBE
47 CAAACACFAFAAFACAAEEAEA EA E DA E AD AD BD A ED DBADA D E ED EAA DE E BD DB AADEAABDBDDEDDEBDEDCEBA ABDDDDADDDEDADAEBDDAB DBEBDAECABB EDBADA C E A AD ED DAEAA DBADAABDA A EDBA B D DA EDA E AA DAA BD AABAEACDABAABABAAB BADADEAABDDAEADDABBD CDEDBAABACDABAAEAAE BDDBADABADDEDBADAEBDE BA DAEDEDBADABDBAAE DEDEDAACAEDBDCECAEDB DDAACBDBADAEAAEDEEDABAE AAEAEABADBDAC ACAAEAEAAED BA AB D D BB EDE E D EDBBBAADADEA
48 CAAACACFAFAAFACAAEEAEA ABDBADAEBDDEDADBDEDCE EDBDEEEAEDAACAEEAD BC A EDC AD E BD DAEAAEDEBDEEDCEAD D DEEEAEDABAEEAADBC BEDEDADCDB BAADBADA EDBDDEDCEEDBDEADA ADDEABDDDEDABAE ADADDADDAEEAEBD EAE BAADBADAEABDA ACDA BAA E AA EAAAB E DA BCA ABDABEDBEAE BEBAADBBABADDADBAA DBABAAEDEACBAAD AAEAEBDEDCEDBADAE BDDEDDAEBDAEAAEADBDAA EBDDEBBDACDDACABBB AAEAEAAEBDEDCAEADA EDABADEAAADEDBADA EADAEBDADADAECBACDBE AEADBEAE DDBEBDDDAEEEAEDAEAE BDDCDADCBDCABBEBAEADBBDAE DABBBDDCDADCBDCABBEBA AADBCDEBDDBEBDDDAEADC
49 CAAACACFAFAAFACAAEEAEA D ACDAAEAEAAEBDDCAA DC BAABACDBEDBEDABED AA BB EDE DBADA BD DC E BD DDABBBADBADAABDABA DBADBDABEADAEBBBABA EDBDBADAEBADAAEDAB A D AABDEADCAAADABDB ACDBEDEBCAEDEDBDDEABA DDBABDACDBDA AABDAEDEDDEDDEABA BDACDDDDBDAEAA EDEEBDADCEBAEDEBDC AADADAEDDDAABDABBD ADADAEDDBDDDACADD EEDDBBDBDAEα BDBAD AC ABB BD A D EDA E DD A BD A DBABDCABBEDAAEDBADBD A EDBADA E D DCD B DBABDAAADBABDCABBEAAEDAD
50 CAAACACFAFAAFACAAEEAEA BAADABDDDADEADEB DABBAAAABADBBDBADAE D BA B A DD EABAEBDDABBADDBAAEAAD EABAEECDBDEEAEF V α. = c V drv α =10% α = 40% α = 90% D ACDAAEDEDDEDDEABA AEDEBDCABBDEADBEDBA BADBCADEDDEABAABDC ABABDBAAEDBAEEEBB BDACDBEEEBDADEDAEDD EBDABDCABBBDFBDAC
51 CAAACACFAFAAFACAAEEAEA Vs + E t E V GS + E t E t0 t1 t2 t3 t4 D ACBCAEDEDEDDEABAD FDEAAEEEA E DE A B D ADA E DDCACDBEDEABABAADA DDEABADDBACDBBCAE DEEDAEDDBBABAEFED ADDEDAAAEDA BDAEBDCABBEDAEADDAAEDBD E EA E BDC D BDDDC E EA ACDB E DEABDAEDAEDBADAABDADA EDEDBAA EBDDDEFEADADADADDD ACDADEDAEDDBDAEB DAEAEEDCBDCABBEFEAD BDABDCABBBDEFBAEBDA ABEBDEDABBDABEAAEBDAEABE DAAABDA BDEADEEDABBDEBDEED BDABDA
52 CAAACACFAFAAFACAAEEAEA DAEDDEABAEDBACDBBCA E DE D E EBDA EA BB DA AD EABDA CDBDA B ED BABADA E DD EABA BD DEDBAA BBEADEEAABEDCDABDA E E BD DDA B ADA B EDA E DD BCA AD D DE DDDEEDDAEDD DA A D E B A B D E BCA BD DEEFDBDDADDABDDEADAE A BA DA B A AA BD ABB BA B DBADAAA BADA D DD AB DBADA DC EABA EDBADA FACDB E A AB A DE ABDA AA E α α α α α DBA ABα EDC E DD D D D D ADABA CDABA A A A DBDDDAEAEDECABDDE DEAACAE
53 CAAACACFAFAAFACAAEEAEA A DEADBEDEECAEBCA BAEBDBABDBDADAA BADABAEADBEADBACDA EAAEBEDEAEDAEAAEBBAC DAEDEADEAEAEADBAA EAACEDCAEBACDAEAAEDE CDABAABAAEDEACDAED EADDEABBDBCA CDAAEBDEDEACDEBDE ADBBEABCA D B DE E B DE DABA BBA E AA E DE AC A AC CDB BDC E DE DBABDABDDEBACBAEADAB DBDEABEAECA BAEDBABDDADEBADAEBD ADABADADEBDABAAEA AAAEDBADAABEDBADA EDDAACBDBADABDDE DBBBDEDCBDBADAABDA ABBDDBADADACBADCE E DE DBA D A E BD BB AC B AA E BDEBDDEDBBDEDA BDDBADA DA AA A DA BDC E BABDA BD DE BACDBDDEABA
54 CAAACACFAFAAFACAAEEAEA ACCDADAEBD AAACADABBAEAEAB EBAEDEDEDBBBAEAA EAAEAEDDACBE AAEDEACBAADABABAAD EBDAAED ACAAEDEACBAAD ABDBADAEAAEDEB DAEADBBAEACAEBDEADE EA B B A DA E AA E DE B AABEBDBDBBB BD A DADB AA D DA E AA E DE AC B AADBAAACADBAABA BAEADCABBABFEA
55 CAAACACFAFAAFACAAEEAEA ADADAAABAEDBADA AEABBBDABBBEBADA EDBBAEADEDEAABCEBB EAEADABBBBBA BAADBDDBDCDAEBDEAEADBD EAEBEDDADAEDCBE DDAEDAADBDCDAE EBDBAEAAEDEDADACBADCE BEAAEDEAADBDE EDDABBBAEABAAAEA BDDCBACDBBAAD DEDE ACAAEDEBAADBD B DB AB A E AA E DE AC B DBADAABBDEDDADADABDDEEA ABCAEDEADAEDCEAE ADDBBEAECABBBD ACAEEBDABDDBADABDA EAACAEDEDADABBAC D EA DBADA E BBA E AD ED B E ABAAADABADADAECDBAEDABDA EEABD
56 CAAACACFAFAAFACAAEEAEA F D DADADEDEDBBDBCAEDA CABBABFABDDEDEEAD BDEDBBAEADDDADEDADAD DAEADEAADEAEDBDE ADDBAABBEDADEABDADAD ADAADBABDABDE BDEAAEDEBFADAADBD BCAEDEDEDBAADEADBDEACDB E DE BAC D BABDA CDBDA B D E BD AD E DE ABAD EA A EDBADA D DA DE BBAEAAEDEACBEAEBCA DDBBBDDAEDDBEAAEBDEBDAE AEAADDDD FADBDEBAAEAEDDDABEE AAAEDECABBAEADD ABAABCABAEAAEDEDADB ABAABBCAABEAAA EDBDAEDBADABAEBADADAD AEDA D B DA DBB BB E DE DDEDDEABADDEDEDD EABABBDABDBADBDEDED EDBDAEBACDAB AC D BD A DA E DE AC D E BBB BDADDBAEACDBEDEADBBEA DDDD DADBADBADAEDBABD DEBBBCAEDEAEDBDA
57 CAAACACFAFAAFACAAEEAEA DBBBEADBADAEDEDB ADBBDDBAEDAADB
58 CAAACACFAFAAFACAAEEAEA ABACDA C CDA ABB D E D D DED D BDBADABDA DAAFAFAAFACAED FDEDEEAEEAD AEBACA AADA CA E F E AD EAC BDBADAEBDCEDE BEDEBAFAEEAFACABAAFFAACAA AFACBFDAA DADAFDABADADDADAA DDBBBEDCABBAB A DE E DA AADDE D A E A DA EDEAAAACEFAACDDAA BADACDEAADAAD F A DAA D DBB DE BA DEDA EAAC AACCDBBEEAAEFAAEAACFA AAAAAAFAAACEB DEDBBEEEDEEAEBAADAAAC EDDBB ADDECBEDAACABA CEAAEFAAEAACFAAAA FDEDEEAEEADAA AEBACA FDBDEDDADEEBACBEFDDAD FDEABCCAAAEBF FAAAEDAEBABAEDE ADADB ADDDDEDABDADEDADB AACDAABDCDEAAEFAAEAACFAA AABACEA B ABADC DC DA A DE F F D A AACFAACFDACDEDCDABCCAA AEBD DDADEAADDEDE FBAEADE ACAECADBADBDDBDDE
59 CAAACACFAFAAFACAAEEAEA ADABAAAABAACDACBBBAAFDAEFD DF EFDBADEDDABDEACDBDAD DBAECEADEBDBCAAEACFAA AAAABAACCEAABB FDDEDDEAACACABDAAAA EACFAAEAAAAAAACCEB C CDA BAA E A EAD D A E D E ADADB AADEBDAFBADBCBADADCBC FDEFAAEDEAE BACA BDEDBDBDADBCA DADDEFDDABADACDEFDE CDEAABCCAAAEBD FDCFADEFCCBABBA BABDADABCCAAAEB D E A DBADA E AA E DE E E ADF DDFDDDDAAADFDDDE EDAA A ABAD A A CEA A A EACEAAAAAFBB CACDCADCDEDCBAEDCDEACAA AEADCAAAAAACFAA DAADDCADAACDEDAB ADDAACEAAEFAAEAA CFAAAAABB BDCADBADAAEAAACBD AAAA FA BDE FACB DD DD FBA FACDDBDADBAABDE CDEADEABBCDEDAFBA ABCCAAAEBB CDAEBDBADAEBDDEDEAE ADABBD B DE FD A FBA D A BABBACDFBAABACEA AEFAAEAACFAAAA
60 CAAACACFAFAAFACAAEEAEA DADEDAACACD DDABABBFAAEACFAAEAA AAAAACCEB DAECEADADBAA DBDBCACEBADAAEACFEFDAAA BADAD DADBAABADADBDEDAAE BDCEBDA DEAAACACAEFDEDACBDC ACFAABEAAAEAAAEEA FFDEBDB DDAAEAEAA ECEAAAFAAFCCB DEEACFAEFAADBC ACBBAECEAAB AECDADBAE BDEDBAECAACDEACFAEFBDBCA AEDCFFEBDDEFBBAD BC DADEDEFDDADBD BB D BADA BDE ABCCAAA EBD DAEDEDCAABAEBDEE DDAABCCAAFAECB C DEBADADDBADADDA AAEB
61 CAAAEEAEAFAECACFACAADCAFACCAFEA FBFF E D F AEEEDDEDEFEDBEBFEBEECBEFEBBE FD FFF FFE D AAEDED FDEAA DEDABD DAEDBDDEEA DEDAB BDAEDBDDEBDC DB DDCABBEBDBBBCAEBDDE D CBDAEADEAEDEEDBDE A FEDEEAAEAEBDE DE EAEBDAEDBADABDFAE AEABEEAE EEAAEDDEABAAEDA EDF AEBACDEDEBDF AD BDEBDDBDDDAAEEAE DBAEDAADB DAEAAAB AAAEAAEDE EAEEAE... 72
62 CAAAEEAEAFAECACFACAADCAFACCAFEA EEADDADAEDDEABAD AEDAEDF EEEAADAEEAA BDAD DBEEAAEDED EABDCA EEDDADAADB BDDAEBDBBBCAEDEDDBD ABB FFD CDAEDF DBADAEDDEABADBAA AADABDBDFA CDAEDDEDAEDDDAE BAEAD FF
63 CAAAEEAEAFAECACFACAADCAFACCAFEA FF F ADADDADDBBEAAEDED EDACABBABADDEAABADAEDA DEADBDADEBDCABBEEAADBABDEBD EEDEDAEEA DDADDBBBAAEEDEADDDA DBBBBBCAEDEDDBDA E DD EABA D BB D ED BD AEADAEDECAADBDAB BDADDADEBAAEBAADAA EAEBBBCADEADBBDADDBBD DEEADAADDDCAEDA EDEACDEBBBCAEDEDA FF E D DEBDBBBCAEDEDBD ACDBBA BDDDADEDBE EFEFBF EACDBABDAAADDADAEDD EABA DD EABA E D DD E A DBACDBBCAEDEBAEAD DBABDACDBDABAAEDEB AAEAD
64 CAAAEEAEAFAECACFACAADCAFACCAFEA EDAEDDAFBDDAEABD EDCEBDDDAECABBEBAAADBBEBDBADA EABBBDDEABA ADECABBADEBBEEABA ADA ACFDEBDBBBCAEDED EBAFDADAABAB DEABDABADBDCABBEDBDDB BDACBDAAAADDEDB CBDADACDBAA ACDAEBAEADDEDAEADBA EDEEADDAEAABA EDAEEAEBD AC ACDA E DBA A F D DDAAAEDBBDACBDBBABDDBDBE BDAEDDBDABDDBDBEBDEAEAE EAE DA A BD A D E BA F EA ABDDBDB V BRZ 2 + V fz1 BAAEAEAABDAD EAAABDDB V BRZ1 + V fz 2 BAAEADADDDB DDBAFDDAADDEDABBBAE AAEDEDEDABBAAEA CDBDAABEAEDAABAEAADA BD DE E CABB EA DA E DA D D BD AB
65 CAAAEEAEAFAECACFACAADCAFACCAFEA ACDAEEEAEDAEBAEADDEAD BDE Vp t Sw t ACEEAEEDAEDDEABA DEBAF I Sw V + V BRZ1 fz 2 V + V BRZ 2 fz1 ACDDAAAEDBEBAF B D ED B EAE ABA DABA BD A DBA B EAE EA A E AB A AADEEADBEDEABBA AEBDDCAEADBEDDBD ADEEBBDABABAEA AACDADBADADAEDDDABDDBAE BDEBBAEDCEDCABDDDA
66 CAAAEEAEAFAECACFACAADCAFACCAFEA E E BA E AD D E B E DCADA EDCADADADEDDEABA AABADEABAACDADBABDCABBEDA EEEADEBDAEDBADAEBEBFDAAEAB EDDBDEEAEABDDCECABBBDBEAEA DBDAAEABCABBEDAEAD EEABAAEACDEDAEEAE BAEADABBBDACE A B A D ADA D EDA E DDDDEEABDE EADEDDDEDDAEη Vs η = Vp ABDADEBDEAEA BDABDADEBDCABBBBECABB EF FBDABDCABBBDEF BDEBDCABBEF α BDBA DEAEBBBCAEDED BAEDABEDBDAADBDEDEED BDEADBDAEDABBDADE AAEBDCABBAD Ut = Vs + V Z V 1 Z 2
67 CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E t E V Z1 V BRZ1 V fz1 t V Z 2 V BRZ 2 V fz 2 t Ut V 1 V 2 V GS t V =η E V fz V 1. 1 BRZ 2 V = η E + V BRZ + V 2. 1 fz 2 I G t t0 t1 t2 t3 t4 ACEECDBDBADAAEEEDC AADBBDAEADFBDB DDBAEDAABDADAEDDEDBD DEDABDBDAC
68 CAAAEEAEAFAECACFACAADCAFACCAFEA ACDEDABD ED BD D E DA BD E DA E AD B DADEEABDE ADAEDDABDAEBDADBFBB ADAEDDEABAABFBDDDA EAEDEBEEBDA DEAEEEDADCABDDCEBD DDAEEFEADDEDAABA EAAAEDBDADAEDDBDAD EDADE + η. EAABDEAEDEDCAEDDBD DEABDEAEBDAEA DAEDEEEAEBDA. E V fz 1 VBRZ 2 Ut =η BAEBDABDCABBBDFAEEEA DBDABBDCDBADBDEDCEBD BDDDAEEF V GS ( t) = Ut R. I ( t) G FABDEEBABAADCDEBDABDCABBBD FDADDBDADBDBBDBDA V GS max 1. fz1 BRZ 2 G = Ut = V = η E V V DCDDABADEADADBBDCABBE DA E AD BD E E BABA E A EA CDB
69 CAAAEEAEAFAECACFACAADCAFACCAFEA A BD D E E DC E BD DDA E E DA E ADFAEAABDAEDCDDDA DABAADEADDEAEABCABBE DEAD BADDEDDBAAABBD ADAEDDDDAEBEDEBEBAE DEADAEDDEDDABBBDAC DBCAEDCADAEDDAAAED EEBDEDDBDBBABDABDAD EDAEAABDEBDCEBAFBABDBAD BDDBEFEDBAAADBFBDBE FDEDAEABDEDCADAB D BD EAE A E F D E A D ADA B ADACEEAEADBBB BA EA D D E BA ED BDBB BD EDCADADBBEDDDBAAEBDEEBDD E DDAA E DD BD EDCADA E DD DABBBBBADCAADCDDABD EDCADABEDDDABAEDE
70 CAAAEEAEAFAECACFACAADCAFACCAFEA + E RdsON _ P1 R dson _ P 2 Rp I Lm Lm D ACDADEDAAEFEEDCADADABBDB FDBAADBABAA DACBDBAADBABAAEDBDD EBABAEDDCADEDDBDADE BB ADA E DD E E A B ADBDDDEFBEBDDEDA BDEBEBABAEAAAEDB BDEDBAEDDCADDDADDBADB BBDABDACBDDAEABAADADA BBAEDDCADDADBEDCDEE D E.( t1 t0) I Lm ( t1) = Lm
71 CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E Vp(t3) Vp(t1) E I Lm I1 t0 t1 t2 t3 t4 I 2 t t ACEEEDDCADEBDADADA EDDα DAB BDDEBAEBBABAEADB D ABDA E D D ADA AEA A CDA D ADA E DDADBBDBDAAE Vp t1) = I ( t1).( R + R Rp) ( Lm dson _ P1 dson _ P2 + τ = R Lm + R dson _ P1 dson _ P2 + Rp ACDADADAEDDEEEAADB EDEBDAEDBADAEBDEEBABAEDEED DEDBEBAEDDCADEDDEADBD DDEDAABACDAEBD DB η. VpDDDDEDAEDD DADEDEEBDCABBADABDBAD BDDDEFEAADADABDDE τ EBDDEEDCADADBBADBBDBDA DCDEBDEDBAEDDCADEAAAE EDBDDEBAEAAADB I1
72 CAAAEEAEAFAECACFACAADCAFACCAFEA EDAEDDDADBBDA CBACDBBDAEDABBABBDCEBDEAEDD EDAEDDEAEEAEDAFEBDDB FDDBDDABDEAEDEA AEBDADEBBEABBADDBDEAE BCBDAEA BAEDABDBDA DBDEAEAABAADAEDDBDFAA ADBACEEEABEBDEAEBDEADADEBD CABBEDADDABBBDACDBDEDCEBD DDAEEFDABDAFDABABD ABADEAAADBADAEBDDEBADDAD EDDBDEAEADEDCDABBEBDCABBD DADABDAAD V V Vs < V GS fz 2 BRZ1 EDDBDDCEBDDDAEEFEAD DABBEAABCAEADBAAEBDCABBBEAE BDADEBDCABBDAADBDADEBBEEABD BDAEBDCABBEAABCEDD I Z V BRZ V Z V fz ACDDAAEEAEDDBD D DACBAEDEDBDDEDA BEDAEADAAADBEDEBEB
73 CAAAEEAEAFAECACFACAADCAFACCAFEA FDADBEADEAB BADAEDDBDABDAEADB FAADBBADAEDDAADBF BDDDAABAEACDADADAE DD D B ABA D E CDB BB E BABAAAABAEDBDDEDABDEDB EDDDAAEABDBACDDABDEDCADAE DDCADBADBDEAEBDAA ACAEDDBDDEABDEAEBDAEA ACDEDAB DABDABDCABBBDDBBA Ut = η + +. E V BRZ 1 V fz 2 V ( t) = Ut R. I ( t) GS + G DAEBDCABBEAAAEEACDADE DECABBCDAABDEDCABAAEBDAEBD DDAEEFEADBDDEEDCAABD AFDADDBAADBACDADBBDBDA GS min 2. BRZ1 fz 2 G V = Ut = V = η E + V + V B DACDABBBAEDBDDEBDCEF EADDDADAEDDABEDBDEAA
74 CAAAEEAEAFAECACFACAADCAFACCAFEA BBEDBDDEDABEAEB EDBCDAEDBAEDDCADEDDDAB ADBFDBDDBEDBAABFEF DADEEAEDBDDDDA AEDEBADAEABAEBD DEBAADBAEDBDDDDDBAADB BDAC + E RdsON _ P1 R dson _ P 2 Rp I Lm Lm D ACDFEDEDAAEFEEDCADADABBDB FDBAADBABAA ED BD D E E DA B B D ED BAEDDCADAEACDABEBABAEA CDAEDBDDBDDBDBDA EDBDBB I1BDEDDCADEDB CBDEDCADADBBABDAC I Lm E.( t3 t2) ( t3) = I Lm ( t1) I1 Lm AAADDDDDADAEDDD DBDBBDBDA Vp t3) = I ( t3).( R + R Rp) ( Lm dson _ P1 dson _ P2 + DBDDEDAADBDCEFEADBDED BAED DCAD EAA DB DB A E D DEτ CDBBBEDBDDEEABDEAAABDA EDDB I 2
75 CAAAEEAEAFAECACFACAADCAFACCAFEA EDDBDAEBDCABBDCDABDEAEE BDADAEABDEAEABDABDAEDEBD EDCEBDCABBBDABDDAEDDBDAADB DB BD A D AD E BD CABB E DA E AD EDBDEAAED Vs V V < V fz1 GS BRZ 2 DEAABDEAEAEDBCAEBDADA ADDEAADEBDEAEAAEBDCABBBD AAAEDAEDDBD EAAEBDCABBEDBDBAABDABA EDBDDDBDDDAEEFEADEDCDB AAEBDCABBADBDADBBEEBDAEBDCABBEAADB DBAEBEDADBD D BB BCA E DE D AE B DDDC ADEAEACDAEADBA DBDAEDDEABABDDABBEBAA AAAEEAEBDAEBDEEBABA EDBEBEBDA DE BB EED E BD DABB E DA E AD DEEBDADECABBDBDDEEDCE CABBAAEAAAAEABA ADDEABADAEDABBEADB DE E ACDA BAA A ADC EAC DD EABA EA ABAA ABA DDEABADDDBAADAEDA
76 CAAAEEAEAFAECACFACAADCAFACCAFEA EDEBDDDAEDB DAE DFEADAEDDDBACDB DB ADC E DA AC A A E BBB BDADFDAEDEBDBADA BADABBBEBADBEA BDBAADDBDAEDEBDEDB DAAA DEEDAEDDEEAEA ABADBDDDABBDA ADCEBACDAEBAEADABAABD AEBDDEBDDDEBBAEDDA EDACDBEDEDBDCCD E D BA D BAA D D BD DDA E DD DADEABDADEDDEABAABAA BDBAAC BB ABA DBADA ABDA ACDB E DE ABDAD A E CABB CDAED BDB D EDBDBAEDCEDEADDE BBDABDEDBADAEEDCB B D A AE BB BCA E DE DDDBEDAACDBEDEABDADAEDBADA ABDADDABBDBBBBACDBEDED DADEAEBDCABBEDDDEAA ABBDBDAC
77 CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E V GS max VGS Vp + E V GS max V GS V BRZ1 t V BRZ1 t V GS min V BRZ 2 V BRZ 2 V GS min E E D ACFACDBEDEABDADAD DAEEABDBDADB AADBEBDAEBDCABBEDBDEDABD BEDBDDDBADEAEBDCABBBAADBDA EDDBDEBDEAEDEAEDBDBBAABAA DBDAEDDBDEBDEAEDAD EADDEEAAEEAEDAACDB EDEABDAEADDADEAEADAC DABBBADEDBBBDDBEBDAFDAABD AEDDBDEBDEAEBDDBEBDAFADAAA BDAEDDBDEBDEAEDBDBDAEBDCABBD EEADFDFADACABBBEADD FD GS min BRZ 2 V > V BDAEBDCABBDDADEDD DEAFDCDEDADADAEEDBDDE AAEBDCABBEAEDBDDEDAABD DDEDAEADADDDCDBDEEAB DEAADEEDDDEEDBDA DDADBDAABAEBAABDAA DEDACAAEAADDDBD EEBABAABABEEBBDDBADBEBDA
78 CAAAEEAEAFAECACFACAADCAFACCAFEA CABBEDAEADAABBDBDACFAC D BDEEEDBDBBBDAEBDCABBDADDB DADB BEEABAEADEDAEDD FFFBEAEBDCABBAEBD EEABA Vp + E V GS max V GS (w1) V GS (w2) V GS (w3) w3 w2 w1 z V BRZ1 t ACCBDAEADEAECABB CDEDBDACDEEBABABDAEBD CABBDADDBDADBDDBDAEBABAEAADBDEE BABAEDBADEAEBDCABBED BDDEDAAEDBDDDADBADA ABBDCAEBCADEDCDADBABDAE DAAADEBDADAEAAAED DEAADA
79 CAAAEEAEAFAECACFACAADCAFACCAFEA D E A EAA E AA E DE EDA E AEBDAEDBADABDFA EAEABEEAE DADAEAADAEBDDBEBD ADBDAEDDEDFEAEAB EEAEDAADBADEAEBDCABB EDBDEAAEDBADAAAE ADADBAADBEBDCABBEAEDEDDA η EAAEEAEAABDAEDBADAC EDAAEADADDBDB V =η E V V GS max. fz1 BRZ 2 V = η E + V + V GS min. BRZ1 fz 2 EE AAEDDEABAAE DAEDF DDEABADEDABDACDBDA DACDBEDEBDDBDAEADA DDABEBEADAAAD DDDAEAEBAEAEDADDEBDCABBE DAEADBDAABADCBBBEAB ADABEDADEDDAADABEAAABDA BAADBADABEDA D A E DD EABA DDB BB E DDEADBABDDEEDB EAEDBDBD
80 CAAAEEAEAFAECACFACAADCAFACCAFEA DDBDAEDDEABA A DEDDA EAA AD ADEABDA DEA DBDDDABDAEDDEABA DABDDBAAEDBADABEA AABEAEBDAEBABADBDEE BBADBADDDEABADACBDEE CA D E D ED BAED DCAD A E D BAα ED BABA AA DBA EDB BD EAEBDAEDBEDADAAABA DBBDBDABDDEBADEBA BBEAAEBDEEDCADADBBB DCADEDBDAEEEDBADADAEBD EEDCABDEAADABDDEEDCADA DBBADBCFAABACDADBAED DA CDB A B B BBA D E EDCA BBDADDBDDAABAAABDEAEBDA DAEDBEBBDBACDAAED BAEDBDAEABBDAC EDBDEα < 0. 5α = 0. 5α > 0. 5EDBDE α = 0. 5 DBD ABB ABADA E D A D B A E BD EA EB B A ADA E D D BD A E DD EABA B EAEBADEADEDBDEAEBDADBED ADBDBBEAAADDABDDABB DEAABEDABDDABBEDDEABA
81 CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E Vp + E B max db B max B min t t db t E α α < 0.5 Vp + E B min E α α > 0.5 B max db B min E α α = 0.5 ACDEEEDEDBAEDDCADAE DBA DADEBDAAAABDABAAEDA DA CDE DABA DAA BAED DCAD AAA BAED E A E DD A B D A AA ABEADBDBE EADADADEDA DBDEAEBBAEADADBDEAABEDBD DBDAED E. t Np = B max. A noyau ADB A BD DB E BAED DCAD E DDDBDBDABDEAEDEDA
82 CAAAEEAEAFAECACFACAADCAFACCAFEA Lm A 2 = L * Np B D E A DB E BAED DCAD E DD EABA B AD BD DD E F D DDADBDBEBDADADAEDDDE EDBDDEBABDDEEDCADADBBBD DBADADDABBAAEBDCABBED BDEDAABDDDBDBBDADADA EDDDEEBDDEBAEDBDDEDAABD DDEFEADDBBDBDBAD Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) DBAEADADADBBDEAAEA V V η Vp < V GS fz 2. BRZ1 DADADAEDDDEEBDDEBAEDBD DEDAABDBEFEADDBB Vp = I Lm min.( RdsON _ P1 + RdsON _ P2 + Rp) AEADADADBBDEAAEA η. Vp V fz1 VGS < VBRZ 2 DBEDBD I L max I L min EAA EDBDBBAAEABEAEBDADADB DBDBBDDEABAADDABBEDBDC EABDBCDEAB I Lm max E.( t1 t0) = I Lm min = Lm DAEDDBAEBACDBEAAE DEDDBABEBDDEDCEEDCEBDCABBE DAEADABDDAEDCEDBDEAEA
83 CAAAEEAEAFAECACFACAADCAFACCAFEA EAEAEDBDDEDABDDDA EDCDEDBDEAEACDBEAEA ED BD D E DA B DC DBB EEBABAEADBDADAEDD EAEBDEAEDDADEAAEBDCABBB D E E EDC BD CABB A EA EAA ABBDADADEBDCABBDACDABBB EBDDABDEDAEADBDDAE DC E ED BD EAE A DA BDA EA ED BDBADAEBABADADAEDD V1BDE AEBDCABBDEDE + E Vp VGS V1 V 2 V 2 Vp1 Vp2 DT DT I G I Lm max Qrr Qrr Qrr (a) (b) (c) ACEAEEAE DFDDDABCDBDEEDCE DCADEEDCEDC AEABACDBEDEBF BABFDDBDAEBDDEBAED BFBFBDEABF DDBEDAADBBDADEFDABAA BBDDCADABDBDEDABADCDA
84 CAAAEEAEAFAECACFACAADCAFACCAFEA ACEBDDB I Lm max ADEDEDCBDDDAEBDCABBD EAEADADDBDEADDBDEAEAEADAD EDCDADEDEAAEDAA EBDADEAD EDDBEBDDCDEDCADD ABDADAEEDEDEBDAEBDEAE DAABADBCBDADAAB BEEDCEDCEDBDEAEDBAAABDEAEBD CABBAADAABBDBDACDEB CDBDDAEBDCDBEADA AABDEDBDACBA EEDCBDDAEDCEBBDCEBDEAE BBAABDAEBDCABBBEDAABBD ADADAEDDBDDCADABDBDADAAD BDEAEAAEFABFDABDDEBADA BDACDADADAEDDBADEDDBB DABDEBDAEBDADEBBADABBDE ADBDEAEAAEBBDEADBDAD BDDDEABCDEDBDD EBAADBADBDDDEFDEAEBD CABBEDBEEAD V 2AAAD V1 B D DA B A E EAE B AA E BDDBD DA CDB E B DDAA E EA AD DBEDDABEDBEDAE AAABAEDDABBBDADEBDBA E BAADA E D D B E EAE F DDBD DADDDCEDDABA B F AE DAD BAD E BD D E A BD DDAAEEAEDADEADAEDDBDD
85 CAAAEEAEAFAECACFACAADCAFACCAFEA EABAADDAABBAEAA EDED DBADEBDDBDDDAAEEAEB EAEDDAEDDBDEADB BBAAEDCDAEABDAEDDBDEAA DE BD D DC DA B EAE DD A EDDBDDEEEADBDDBDBBAA EDAABDAEDDBDDCEDCDBDD E D E A BAA DC AA A E BD DDDAEABDAEDBBCAABFABDABCAABE ABDA D E EA B DDAA BA B AEDBAEAE AABADEBDDBDDAAEBDEAEEBD EAEADEEDCEEAEDAABBADA A EDDBD DA BD D DAD A D EAA BD DABDCEBDDDAABDEABDA ACADBAD
86 CAAAEEAEAFAECACFACAADCAFACCAFEA DEDE CDAE DEA CDAEA EDDBD DEDE CDAE DEA AAAEA EDDBD AEDE AEDE D ACDEBDDBDDDAAEEAEBDE ABDADBBCAABFABD DAEAE DABABBEDEDDE FEBABEBDEDDADAC BDBAEAAEADEDEBDDE DABAEDBDBD ACFDEDAEAAEDED
87 CAAAEEAEAFAECACFACAADCAFACCAFEA DDEAAEAD F C AE EEDC EE Ω DBDDDEAAEAD E AEEAE DBDADDDBBABDDED BBACDBEDEADBBFEDAEABDA D E DB ADB E DA ED A DBAEDA ADBDBBEAABAAEDEDABACDBE DEAABEEAAAEAE EAE B A E ABA D EDA E DDEAEDEDBBDD BDAAABDEAEAEEAE E V =η E V V = ( V ) GS max. fz1 BRZ 2 = V GS min = η E + V + V = = 5( V ). BRZ1 fz 2 EE ADDADAEDDEABAD AEDAEDF ADBAEDAEAEAAEDE DABABDAEDBDEDE DDEABAABDAAA
88 CAAAEEAEAFAECACFACAADCAFACCAFEA DBB B E A D BD B AA B EAADBDADBEABAEA EDBDDCBDEDCEBDCABBEDAEA ADBDBADAAABEAADDBED AABDEDAADABDDEAE DDAEDDDDDAEBDAEEA EABEAEBADA EDAEDD 9 E. t 15*500*10 Np = = = B max. 0.25* 4.4*10 A noyau DAAEAEBADABAEEDA EEAAEDEDDAEA DDBEBAEDDCADEDDAA DBDBDBDDBEEEDB ABDDEABADBAABADEB DDADAEAEAADDDBEAEAADA ADBDEEAEDDAEDBA ADBDAAEAABBDCDCA ADEBDDABDAAEDABBEDBD DACBAEDAEAAE DDEABADBEEAEDDD BEAEAADADAEAABEBDCEDAE DDDBADABABBDACD BDADEBBADA BAEDDCAD ηbdebdc BDADEBBEDA BAEDEA
89 CAAAEEAEAFAECACFACAADCAFACCAFEA Impédance (module en Ohm) Z0mod Z0 mod Zccmod Z ccmod f Fréquence (Hz) ACEDAEAAEDDEABA 57 mω η = nh 113mΩ 107 µh ACAAADBEBDDADCAEDD EABAEB AEDDCADEEADEAADBDB A DBB B D DADB AADB ED BAED DCADBEADEDBADAEABAEADADAE DDDBEDEDDADAE DBADAEDAADEDAEDD EABDDADBAADBEDBAEDDCADB EBDBADAEABAEABDBDED BAEDDCADAAADBADDEDBAABA
90 CAAAEEAEAFAECACFACAADCAFACCAFEA 9 E.( t1 t0) 14*500*10 I Lm max = = = 0.065( A) 6 Lm 107*10 E.( t1 t0) 14*500*10 = 6 Lm 107*10 I Lm min = 9 = 0.065( A) ABDAEBDABAB E ΩBFBE ΩBF DBDBDDEDBAAEDE DDEAAEDE C E F Ω F Ω Ω kω DBDDDEAAEDE EEE AADAEEAA DDBDDDAAEEAEBDAEED E BCAB BCA A E D BD DDAA E AEADDACBDACAB DDAAEEAEDB EEBDDADEABDBDEAED AEDDBDEAEAEAEDEABD EAEDAEDDBDEAEAE
91 CAAAEEAEAFAECACFACAADCAFACCAFEA AEDE DEDE AEDE DEDE D ACDDAADAEBDEAE DAEDEDEDEBDEDA AEDE DEDE AEDE DEDE D ACDDAADAEBDEAE DAEDEDEDEBDEDA EDBB ) 15.1( max V V V E V BRZ fz GS = = =η ) 5.3( min V V V E V fz BRZ GS = + + = + + = η DADADAEDDDEEBDDEBAEDBD DEDAABDDDEFEADADBB
92 CAAAEEAEAFAECACFACAADCAFACCAFEA Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) = 0.065*( ) = 0.65 ( V ) ADADADBBDEAA VGS V fz 2 Vs < VBRZ ( 0.65*1.57) < 16 DADADAEDDDEEBDDEBAEDBD DEDAABDBEFEADEDBB Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) = 0.65 ( V ) ADADADBBDEAA Vs V fz1 VGS < VBRZ * < 6.2 E B E EAA B AA E DEDDBAEACDBEDE BDCABBEFEADAEAABEAEBDAE BDBADADAABDDEABABDEDF DD AA E DD BD DB E BAED DCAD D EAADADABEAAEAAEDEDA AAAEDBDBDBBDDBADAE DA D DDB B BD AD ABAD B AA E DE B DACBADCEAAAAEBAAE DEDBAAEADAEBAABDEAA DEBDDABFBFEDBDEBEBD DEDDAEABACDEDE EEDDEABABAABCACDDB CBACDEDEBACBDAEDEBEB FAEDDAEBABADAEAADDBCA CBDAEBABAE
93 CAAAEEAEAFAECACFACAADCAFACCAFEA DDDBAABACDAEBDDEBACDE EDDDBDABAA DD ACDCEAAEDEEAD DACBEEEABDADEDAE DDBAEEAEBDABDCABBBD EFFDAABDEBDCABBDACDB EEAEEDABDACBDAC EDABBBDEEEFEAD CDEDBDACBABDABAE AAAEDBADEDAEDDBDEAE ADDBDDEABDEAEBDAEABDB EDABBDAEBDCABBDCBDEBDCABB DCDAEDAAABDAAEDCBD DDAEEFDEDCAABDAEBDCABB DADDBDADBDBDDBDAAA BBDADEAABDADADBCABB EDEADEABDDBDBBEDBD DAAAA FBDACBDACDDABDDE DABDEFEDAEAB ACDBEDEBBBEAEDBDDA EEDBFDBBDDEBA DABDAADBAAEBDCABBEFB
94 CAAAEEAEAFAECACFACAADCAFACCAFEA DDCADABDEDAEDDBDAC BDADABEDDAEDDCAD DDDDEDAEEDCBDCABBABEE BDDCADAEDBDEAEEDBDBADAEBABAD EAEBDCABB V 2EDADBBAAA EADBBEAABDDCADABDADABDEAE BBBDACDAABE BDEAEAAEFEAA CDAADDEDAEDDBAABD DEBAABDACDADEDADAD DDBADBDDDEABDAEBD CABBDADEDCDBDEAEBDEAEDBDADBB EDAABDAAEDEADEEAE DEBDADBBEDBBDEAAABEDBD ADBBEAEBDCABBEDBBA I VGS 11 = = 196( µa) 3 Rd 56 *10 Rd = CDEDBDACABEEBDDDAA EBDEAEDAEDEEAEBD DEAEABACBACDBEDBDEA DDBDADBBE DDABDACDBDABDE DABDDDADDEBABAEADADADBBD DEBAEDAEDDB DEEBDEAEDAADABEED ABEDCBDDDAEBDCABBEAAEEDCB ADDADAEDB V1EA ADADBDDEBDCEFABAEA CDAEDBADEDAEDDBBDAC DABDEAECAEDDBDDEABD EAEBDAEADAEBDCABBEAA DAEACDAADBBDBDABDD
95 CAAAEEAEAFAECACFACAADCAFACCAFEA CDAEDBDCABBEDCBDDDAEEFDAABB ADBBDADCABBABCCDA V = E + V + V = = 5.3( V ) GS min BRZ1 fz 2 DDAAEAEEDBBB DEDBDBDDABDEAAE DBEDDCADABDDAEDC EDBDEAEEDDADBDDAB DAEBDCABBEADEDDCADABDD EDA E DD A ED BD D E BDC E F E ADBDAEBDCABBDADBCDABBAD EDDBDBBDAEDDBDEBDEAEBB EAADBDBDEBDDEBDCEDBDEDCADBAA EBDCABBADBDADBBEEBDDAEDBDDE DAABDDDEFEADBDEAEAE BAABDEDCEBDCABBDAADBDEA EBABDDBDADBBEEBDAEBDCABB E I VGS 4 = = 71( µa) 3 Rd 56 *10 Rd = DBDDDAADAEBDBDAC ABDEAAAAABEDBDEAE AEDEAEDCBACDBEDBA DDBDADBBE
96 CAAAEEAEAFAECACFACAADCAFACCAFEA F EA EA EA EA EA D EA EA F EA EA F EA EA EA EA EA
97 CAAAEEAEAFAECACFACAADCAFACCAFEA EA EA F EA EA EA ACEEEAAEBDCABB DEDAEEFEF EA EA EA EA V1 V 2 F EA F EA EA F EA EA EBD A CDA D ACBDDEDABDEF DFDE BDADAEDEDBDDBA BAAEAEBDBBBCAEDED
98 CAAAEEAEAFAECACFACAADCAFACCAFEA DACDBEDEEBDCABBDAAAADBE DADADAEBDDAEAEACDAE DA EDB BD DA B D A E BD CABB DAAEDBDDDAABDBE BDBAEDCDBDAABD AC B ACD E DA E F AB DBAE B AEEAFBDDABDE ABBDADADEBDAEBDCABBBBEDAEDDDAE BDCABBDADDEEBDEAEEADBAED EADEDAEDDEABAACDBCDE DABAEDDDAEDBAAEBDCABBEF FEA FEA FEA D
99 CAAAEEAEAFAECACFACAADCAFACCAFEA FEA FEA FEA ACFACDBEDAEF DDABDDAB E ABDCA FBDACEDABBBDDAAEADDB EABEDBAAEDE P E P CMOS PT P Z1 P Z 2 P RG P Rd ACABDCA ABDEADADBDA
100 CAAAEEAEAFAECACFACAADCAFACCAFEA P + E = PCMOS + PT + PZ 1 + PZ 2 + PRG PRd P = P + P + P + P CMOS dynamique Lm statique com PE BDDADBEAAEDE PCMOS BBEBBAD o Pdynamique BCA EAA ED B AD BD DD E DAEDFBABDDCBDEDCEBDDDA EEFEAD o PLm BEADEDBDEBAEDBBB BCA ED BAED DCAD EAA ED B FBBDDADA o Pstatique B E AD D E D E A ED B DAEDF o Pcom B E AD DE B F E D FBEADDEDEAAED BDF PT BEDBDD PZ 1BEDBDEAE PZ 2BEDBDEAE PRG BCAEAAEDBDADEBDCABBBADDC EDBDCABBEFEAD PRd BEDBDADBBEE CAABDDCBDEDCEBDDDAEEF E AD EAA AADB ED B AD BD DD E DAEDFEDBDADEBDCABBDADBBEDC EEDCBCAADBBDBDBEBDDC DBEBDCABB VON VOFF ABDBAEEBD
101 CAAAEEAEAFAECACFACAADCAFACCAFEA A E BD CABB ED B DA BD B BD EEDC 1 1 P = QG. VON. f + QG. VOFF. f 2 2 DADBBBCAEAAEDBDAEDF DBDBEDBDADEBDCABBDBDB P P P dynamique ON OFF = P ON 1 = QG. V 2 + P ON 1 = QG. V 2 OFF OFF R. f. R dson _ P1 dson _ P1 R. f. R dson _ P2 dson _ P2 + R + R dson _ N 2 dson _ N 2 + R + R dson _ N1 dson _ N1 + R G + R G P RG 1 RG 1 RG = QG. VON. f. + QG. VOFF. f ) 2 R + R + R 2 R + R + R dson _ P1 dson _ N 2 G dson _ P2 dson _ N1 G EAD PLm EDBDEBADBBDBDB AE P 2 = Lm. I f Lm Lm. EE DDADAADB DACEDABBBEADDCEB EAAEDEEADDB EDEDBEAEAEDAD BD EAE BD EAE BA B EDDBD E BBA AAEBCAEDEDEADBD ADECABBEAADBABADBDA ABDDBBDADBDAEBDCABBDCE EDBDDABDEEDBDDA BAEBDCABBEBDDCDBEBDCABBEA BBEEDDBAE PRG AEE DEBDDBDABEBDDAE BDDAEDCDA
102 CAAAEEAEAFAECACFACAADCAFACCAFEA P P RG RG 1 = Q 2 = G. V ON 9. f. R dson _ P1 R + R G dson _ N 2 + R 1 + Q 2. V ( ) ABEAD PCMOS EAABEADEB PT PZ 1 PZ 2 B PCMOS G G OFF 9 RG. f. ) RdsON _ P2 + RdsON _ N1 + RG 3 10.( ) ) = 54( mw ) EEADBDDADBE DDBBB Pdynamique DBBDBDAE PCMOS DA Pstatique PRG PRd BED PLm B Pcom A EA AD E BD DAEEAAAADBDEBDAE DFDAADABDEAAEDBDF ADDEEAD AEAEBADEDEDFB DDAAAEDDEADABDEBD DAEEAEDDEDAADBB DA B BA BD DCADA E DD AADBBDDDBBEABABECDC AADCAEDADADEDEEBF DBDADBBBAEACDADAEAABD DEBDFEABDDAEAADC BADAEEACDADEDEA DA B D E AA ED BD F DA E EA B E ADEDDEEABEDEACDBEDEDA EABEADDDA
103 CAAAEEAEAFAECACFACAADCAFACCAFEA E EDA DA ACDAAEEADEAAEDE ADB B AEDBBDDEBCAEDED ABBDAABDEDBDACEDA AABADABDDEABA AEDBDEEDEDD BBBDACEDBDADABABEAAE DEDEBFEADBDDEAAE ADEDBDBDABDBCAE DEEBDACDABABDAF CDBACDBEDEBFDAEAEDB BAB D B A E BD DA ADADCBBDBADAEDFBA
104 CAAAEEAEAFAECACFACAADCAFACCAFEA AAEAEDEEBDCABBAEBEBCAE DEABACDAEAEDEEBDCABBABE EAEBEAABAEBDEAED BD D AC D B D E E BCA E DE BD DAEEABDDAEAEFE ADBCAEDEBECA BDBCAABBBBDEABD AEAEDCDAEBDDADDAAADB BABDBCAADBADAEDA AEEAEDEEBDCABBDEABDBCAABBBD AEDBADAEABDDABD EFBBDABDEEADBBA BDAEABDCABBEFEADEBAE DA E F DA B D ABBDAAEBBFEADDEA DA E A DEA D E E DA BC B CDE D B D ED A CDAEADBBDAEADDBD BAEDC EA E F AB EA D EDEBBEEDBDEDE ABB
105 CAAAEEAEAFAECACFACAADCAFACCAFEA BBBCA BCAABB AD DAE E E EEA EA DA DA EF E E F F ACDDABDDEEBCAEDEBD AD EAEDEDEDDDCD DBDABBEDACAD DEEADEDBEAEEDB DDDCEBDABAAEAEBDADABAEBACDABA EEAEDAEBAEADDEBBEEC EBABDAEAEACDAABBA DEAEDA FF D DAAAEDEAE DE AC A BD A CA D D BCA E DE DDEBAEDBAABB EAABABACDAEEBAEBA DAEDEDCADAEDADDDB BAEACDAABEDE
106 CAAAEEAEAFAECACFACAADCAFACCAFEA F ABDFEDBDEDEDA DEAEDFEDAADCAACED EDFDDBADAACD AADEEEAABADBADA BEABAABDADDAA EACDADEDEBAABEAA BDAEDFDBDCABAADAEACDEDE AEDDEDBABDEDABEEAAE DEDDBDABABCABACDAEBD ABDEDBCAFEDABEADAEBD ABDDDADAEBAABEDADA B D D BD A E A E DE D E DBADABADADAADCADBAEDD EABAEBADCADEABAAAAB D E BA DD EABA D E D A DEDBAEDAAEABDDDDAD EAAAEBDDBADADBBEB DADDBDDDDADDDEADDA DBDDABDCDBDEAEACDA DAEEBEEBBAEDADAEDBDC F D EDAEDDBDABEEAEA EADAEA BAA AEDA A DA ABDA B DDAACDAEDEADDEE
107 CAAAEEAEAFAECACFACAADCAFACCAFEA BDDAEDBEDBDBDACABB AEACDA F ABB F ν DA ACAEACDAEDDAEDAE AD BADDBDBDADAEBDDEDAABDA DADADABADEAAACDADBA CABBEDEADDADAADCEBC BDBBAADACAEA ACAECAA EBAEAEA E DE EA E A ECA D BADADACBADCEBEDEB DBADAEBADAABDEABBAA ACDBADFABAAD BDEDDEABAAAAAAB AABBBEDEADDEDBEAE ACDAEA
108 CAAAEEAEAFAECACFACAADCAFACCAFEA ACAEEDEACCA FF DEADADBBBCAEDE D DD BABADA E DD EABA D DBABAAEAEAAEDABBDBDE AADDDBBDDDCEBB DDAEDEEAAEAAEDEBBDA E DC A D B E EAA E AA E DEAEDDAAEACDBEDEADBBEAA ED B DA BDAD DBAE DDB A DDBBDDAEBEEA D DA DDA E DE D BD ABBABADBDDEABABBBCA D EDDDC E DA E BCA DA BB B DDDCEBDADABAEBDABAAEAEBACDABA DDABAEACDADAEBBBCA EDEDDAAAEDEBBACAB
109 CAAAEEAEAFAECACFACAADCAFACCAFEA BDBADABADADBDAADDBBB DBADAEADBAEDE
110 CAAAEEAEAFAECACFACAADCAFACCAFEA ABACDA CADEDADABDEDEABABCDEA ACACDAABACEAAEFAAEA ACFAA C CDA BAA E A EAD D A E D E ADADB EFDBADEDDABDEACDBDAD DBAECEADEBDBCAAEACFAA AAAABAACCEAABB FAFCDEFDCBAEAADED FCDEAAAABCCAAAEB D FADEA DE DD B EAADA ADB AEBACA EDDDADBAA BDCADBADAAEAAACBD AAAA BBDEDABDACADB EACCCDADEBACDBA BDCDBDAACDAAAAEDAD DEDCADA BDC A DE C D D AC DE DBADAACBCDEBDEAABCCAAFA ECB CAADDEDEFDBBACDEEA BABDECDDAAAFAACFAAAAA ACCEAA
111 CAAAECAFACEAFAECAAFACFAA FBFFF F AEEEDBEFEBDEFEDBEEFEBF FFFF FFFC FFF E AD AD FFF ADBAEDABDDAE ADBAEDABFEAD FFF. 114 FFF
112 CAAAECAFACEAFAECAAFACFAA FFF F D DA DBB A DBA E BD BCA E DE D ED B DA BBA BA ADBA A AA B E AA AA E D E EDCADAEDDEABABDDEAABD EAAEDEADEAEADCA DDDDADBDEDE BABABDDADBBDADBD DBAEDAEAEEA FFF C BEDEDDEDDEABA BBEDBDABBEDBBDAEBD CABBDACBDDCEDBDDDAEAEDAE ADEDBDDDBDBEBAADBDDDAE EDCADBAAEBDCABBADBDADEBDCABBBDADBBEAB DBDAEBDCABBDDEA EDDEAAEBDCABBEEEAEDAEAD BA A E D BA E BD E EDC DB ABADDABBABDAEBDCABBEADABED BDDDABABBDAEADABDAED DBADAEDAAEADBBDDA DAEAEBDEABBDAEBD CABBEAEDAAABDAEABEDAEADA BDBEEDCEBDDDAEAA AADABDAEBDCABBEDABDAEAD DADBDAEDDBEDBAEDCDABD CBDBDAEEBEDABDE BAA A DAA B BAA E A E DE D D E
113 CAAAECAFACEAFAECAAFACFAA DDEABADAAEDCAAEAD BBEEAEBDCEDAEA BCDDBADEDAEAD AAB D AB ABA EDDC DEA B A DABDAABDAADBDEBBDBAEDC BDADEDBDABDDAAADBE BDEDCEBDCABBAEBDADEBBEBDEAEEAE CBACDBEDBDEAADBDADBBEFBDAC ABBBDEDCEBDCABBDEAEBDAD BBE B DD E D E AA E AD E AA E DEBABAEDBDABDEEDC EDDBAEEDAD EBDADEBBEBDEDCEBDCABBEFEADA BDADEBBEEE kωbdaebdcabbeaa DEEDDBDAEABEF E Sans Rd Rd 100 kohm Rd 56 kohm Rd 30 kohm 10 8 Tension (V) Temps (µs) ACBABBEBDAEBDCABBAEBD DBEBDADEBBEE AEDAABAAEDEDABD DDABDEDAEADCAACDA CBA BD DDA E E DA D E ABA E D AD
114 CAAAECAFACEAFAECAAFACFAA BDBADAEDEAAEADADAEDDEBD AEBDCABBDEEADEADADABD DDAEDDDCBEDBDDDC BEADEDBDFDEDDEDBAED DCADAABAEABDEDCADADBBADBF D B D DABB A AEA DA E EDCADABDAEBABAABDEDEBADE BBABAEAAEDEEEAAEBDCABBE DADEDBDADDDBBADEBDA CDA AA DD ED BD D E EDCADA B AD E BDADAEBDCABBEDAEAD DDAEBAAEDDABAD BDEDBDADEDBDA DEAABDDEBDEDCADAEDDEDBADBB EEABAEACEADDBA EEA FFF E DBBEDEBDAC EDEDDBBEABAE AAEADCAEABDDDAEEDAE ADADAEDDEADDAEABAA AAACDAFADDEEDCADAB DDDEDDDADDBDAECADCADB EA ED BDC A D EAA BD E DE ED B DA D E EDCADA DBBADBFABDACEBADBDDD BDADABADEADDABDEDCADA BBCEDBBBDAEBDCABBDAACAADA DADAEAEDBDADBBDDE
115 CAAAECAFACEAFAECAAFACFAA EDCADAEDDDDADBAEEA FADADDADBDDDBD EDCADAEDBADFAD BDEDCADAEDBADAAE BAAABAEADDBDBBDDE EDCADA D EA E BD D E D BAED DCAD BD E AD E EDCADA D E EDCADA B AD DDC E A B AD ED DDADEADAEDDBDDBABBA DDBABDBDADAEBDCABBEDAE ADEDABEABDAD EDBDAEDA ACFDEBDBBEDEDB AD E DACEDABBBDBAADBBA DEBDADBDDEDCEBDDDAEEDA BD DA BD E BAA BD EA BD D E EDCADAEDDEABDAEDEADAE DDDAAEADBBCAABD
116 CAAAECAFACEAFAECAAFACFAA BAABAAEDDEBDADEBBADA BAEDDCAD Rp ILm Rp ILm Lm Lm D ACDEABAD DDEDCEBDCABBEDADEEDCADAEDD FBDACBEEDBADAEACDE DEBFEDFDAABEEEBD A DBA D ADA E DD Vp E D ED BAED DCAD I Lm EBDAEBDCABBEDBDAD VGS DEAA D E DA BD AA B DA AAADBBBDAEBDCABBAAADBEBDD BEDCA DEDABDDAAEABB EDBDDAEDADDDAEEFEAD DCBDBADAEABAEADADAEDD DDADAABDAEADBFBFBDD EDBDEDBAEDDCADDCBADA BBDA di Lm E = dt Lm
117 CAAAECAFACEAFAECAAFACFAA BABAEADBBDDEDCEBDCABBAA BDEDBAEDDCADDADDBDADB ilm maxadbb DBDA DEEDCADA E *( t1 t0) i Lm max = Lm EDDBFDEEADEA BDDABDEADAEDDA EDABADBFAADDA AAEDAEABAEDBDDEBAEBDDE EDCADA DBB ED BD DA D B ABA ED D ADEDBADCDEEABEEDCADAE DDDACBDBAADBEDD RdsON _ P2 RdsON _ P3 ABADBDDDEF + E R dson _ P3 R3 R dson _ P2 Rp I Lm Lm ACFDBAADBEDBDDEEDCADA AAAADDAAADBEDBAED DCAD LmE I Lm maxbddeeaa τ1dbbdbda τ = 1 Lm R equ 1 R 1 = RdsON _ P2 + RdsOn _ P3 + R3 Rp equ +
118 CAAAECAFACEAFAECAAFACFAA D D E EDCADA A DDD A A CDA Vp' D ADAEDDEBDDBDEEBDDEDBDA Vp' = i Lm R max. equ1 EDBDDEEDCADABDAEBDCABBEFEAD DAAEAADDEDEDBADEBBEEAE AAEDED P1 P2 N1 N 2 P3 P4 Vp + E Vp' I Lm I Lm max V GS V +max V +min t0 t1 t2 t3 t4 ACEEEABED DAEAADBADBDE EBADBBEEABAAADAAA AABDDEEAAτ1BDDEEDCADAA B
119 CAAAECAFACEAFAECAAFACFAA D EA EAA BD A BD B CDA D ADA E DDDEEBDDEEDCADAEADDBDBDADA EBDCABBEDAEADBDACAAAEADADA BDEAAEEDBDAEDBDBB η.vp' BDADEDA EDDEABDACDAEDCABDD EDA D AD BD EAE A D A DDBDADAEADEBDADAEBDCABBEDA EADDDDBEDBDA V V + η < GS max fz 2. Vp' VBRZ1 AABDEDBABDDEDDDD EABAEAABDAD DAEEAAEAAEDEEDBDADB DD FD FA BD DABB E EAE BD DABB E DD EABA EA BD DC E BD A CDA Vp' ADBADADAEDDDD BDBDADAECABBEFEADADBDA DAEBDDCE Vp' EEABDDCEBDADDBDA EABDABDEDCADAAB 5* τ1d BDA EABAEAEAEDDAEB ADAADBEBDAEBDCABBAABDDABA DC BD CABB ED D ED A E BD D E EDCADAAABDBAEBDDBAEEE DAEDCBDEAEBDCABBEEDEAE BDADBBEE DBBDCEDAEADABBEBDCABBA DADBAEDBDAABDADBEDA AEBDCABBCDACDBBBAADAABBD
120 CAAAECAFACEAFAECAAFACFAA BAEDCEDBDAEEBEDABDE DAEAD DACEDABBBDBAADBBA DEBDADBEDCBDDDAEEDAE ADBDDABBDEABDDEEDCADA EDDEABDAEDEADAEDD DABC Rp I Lm Rp I Lm Lm Lm ACDEABED DDEEDCEBDCABBEDADEEDCADA F BD AC B EE E ACD ED B ADDEAD D E DA B D E EDCADA D D E DABAEABBEDBDDAEEDA EBDDEEDCADADAAABDABDDE EDCADA B A D DDDD D BD DE τ 2DBBDBDADACBD BAADBEDD τ 2 = Lm R equ 2 R 2 = RdsON _ P1 + RdsOn _ P4 + R4 Rp equ +
121 CAAAECAFACEAFAECAAFACFAA + E RdsON _ P1 R dson _ P 4 R4 Rp I Lm Lm ACFDBAADBEDBDDEEDCADA D A AA Vp' D ADA E DD D E E BD D E EDCADADBBDBDA Vp ' = i Lm R min. equ 2 BDDABBDADEDBDA AAEDCABDDEDADAD DADBAAEBDCABBBDEAEADA DDBDADEADBDEAADDDBEDB DA. Vp ' V fz1 VGS min < VBRZ 2 η AA BD E DBA BD DE D DA AEABBDBABDDEDDBDABD ADBBE
122 CAAAECAFACEAFAECAAFACFAA P1 P2 N1 N 2 P3 P4 Vp Vp' E I Lm I Lm min V GS V V min max t0 t1 t2 t3 t4 ACEEEABED FFF A EDEBDBAEEEEDCADADDA DBDEDCADADBBEABDEDCADAADBF DABABF RdsON 5ΩBF EABDBFDADADDABBB DDEABAAEEABDDBAABA EDBDAABAEAAEACBD ADAEDDBBAAABBDBAEE EEBDADBDACB
123 CAAAECAFACEAFAECAAFACFAA EEEBDAEDDADAEDDD BADAEBDEEEDCADAEDBDDBEDBDEBDBB DEADBEBDADBDAABADCED ADAEDDEDBADBBEABAEAB DAABEDBAEDDCADDBDBDB BDADDDDBAEBDACDA DDDADAEDDDEEBDDEEDCADADAAB EEDCADA ADADA E DD D D D DCADA DBB A ACDBAEDAEBDEEEDCADA DDADA E DD
124 CAAAECAFACEAFAECAAFACFAA 5τ. 1 ' V p DB DB DB DB A A DCADA DBB Ω Ω DBDDDDDAAEBDDEEDCADAEAAE DECADEADEE EDCADA DDBDDBDEEEDCADA DBB B DD D EDCA B D ADBB DD E ABA E A DAA B D ED BAED DCAD DAA A D D D E EDCADA DBBCADDABADEEEDCADAB EDCADABEAAEBDAD E ΩDBABDBADAEACDA EDADAEDDDEADADE Ω DEABEEDCADAADACDAE DADAEDDBDAD DBDDBBDBBAEBABAE BADDBDEDCADADBBDADBBEE ABAEADDAADDBDBADAEE DAABFEADDE D A AEADAABFEADDA EDEABDDCEBDACDA AA D ADA E DD DA BD EDCADA D D B AEAAEDEBDDBDA
125 CAAAECAFACEAFAECAAFACFAA DBDDEAAEDEABAEDBDA EA V = GS max 15. 1V V V GS min = 5. 3 FADBAEABAEAE EDBDDBEDDADBEDBAEDDCADE ADBDABEDBDDBEDAADB DEBED BAD V GS max V fz 2 η. Vp' < V + η. Vp' < V BRZ1 V GS max η. Vp' < η. Vp' < 1.01( V ) BRZ1 + V fz 2 BDDBEBDADEADADA η. Vp' < 1.01( V ) i R Lm max equ1 R3 < 9Ω. Requ 1 < 1.01 < 19Ω BAD η. Vp' V fz1 V η. Vp' < V GS min BRZ 2 + V < V BRZ 2 GS min + V η. Vp' < ( 5.3) η. Vp' < 1.01( V ) fz1 BDDBEBDADEADADA η. Vp' < 1.01( V ) i R Lm min equ2. R < 19Ω R4 < 9Ω equ2 < 1.01 DBBADBADA EDCABBDDE DAD B BD AD ED BD AC BD EDC E BD CABB D BD DBAEDA E E E EDCADAEAABDAEDCDADEBBEE E kωbdaebdcabbeadaaedbdaabd DDBBAEADDDEEBDBBDBDAC
126 CAAAECAFACEAFAECAAFACFAA BDAEBDCABBDEEDDBA EEABAEADBDDDBAD E ΩADBEAAAE ACEAABDDBAEDAADBE AD DACBBDADDEBFEAD DDABBBDEEDCEBDBAEEBD DDDEBDAEBDCABBDEEABAEA DBADADAEDDDCBDCABBBDAEBDCABB ABBEDEEEBDEAE DDEEDBDAEE BDEAEEDDAAADBDDAEDCABDCABB EDBDDEDBADAEBABAACDEEA ABAAEDCBDCABBBDAEBDCABBEDDBDBADA EBBABBEDDACDDAA EAEDBDAEBDCABBDCEA DDDCBDDBED ABDBBABAEACDACEBD DABABAEAAAEABBBD DBAEBDEBDEADEABAA BDBDACBDACBDAEBDCABB
127 CAAAECAFACEAFAECAAFACFAA DADEEBBEDBDBDD DEEDC F EA EA F EA ACAEAAD F EA EA EA EA F EA EA D ACBDDDBDBEF DDDDDB
128 CAAAECAFACEAFAECAAFACFAA FABDADEFEAD DDAABAADDD BADDCEABA BDCBDCABBDACBEEEDEE ADABDAEDAFBDEEDAFBDAEBD CABBBDADADAEDDEDE DBDAEBDCABBDAADABDBDE DBEEBDEAEAADDAEDA BDDDDABDBDBDEEDAEBDACAA ADBDDDEA ΩEFEAD F EA EA F EA F EA ACEEAD DDADBBDBDAC ADABAEEABDAEBDCABBDA AABBEAEADDABABDEDC FEADBBDAEBBDBAEDCD
129 CAAAECAFACEAFAECAAFACFAA F EA F EA F EA F F F EA ACEEAD EDBAEBAEBABEAD DDABBDEDEAAED DBAEBDBDCEAEBDEDEDD DDDAEDABEDEDEBBDACD EDEDDAEDF FFF BDDABDACBEEAD EBDEAABABDDCEBDCABB DABDAEBDCABBEBDDBABDDBDBDEDCE BDCABBDAEEBDAEBDCABBEBDDBABDDB DDABDDAEDCDAABDCABBEDAEAD DA EA BD BDC EABA E A D E EA D
130 CAAAECAFACEAFAECAAFACFAA AABABADAEDDEABAADCEE B AA E DE B ABBAC DDA AEAD D EDADCEADEBDAEBDCABBAABBDBDAC DEAEEBADEBDAEBDCABBBBBA EAAADADAEDBDDDBBAEAAAD ADADBDBEDBDBAAEAEB B AA E DE BAC C E ABA DC EDCBDCABB CDBADCDCBAABADAEEA BDDABBEDDEABAEDDABAEDCADAB DAEEEA ACAEAAEDEABBACDDA FFF D DA D BB E DE DAADBAEBDEDBDADAE ADDABBEDBCDEBDCEABBD
131 CAAAECAFACEAFAECAAFACFAA E D BD AD DE D B DDBADBAED
132 CAAAECAFACEAFAECAAFACFAA ABACDA DADBAABCECFACAAFAAECAFAEA C DEAAACACAEFDEDACBDC ACFAABEAAAEAAAEEA CADEDAACDEBDEDCADAAA DDAABDCDEAAABA CEAAEFAAEAACFAA
133 CAAAACECAACECAFAAAFACFACA FBF F AEEEEBDBEEBDBEFEEEFEBFE B FF F F CDADAEDC CBCAFDA CAEDFEDCEDBAADA CAEDF CAEDCEDEBDAEDF CADAEBDEBD CDDDADAEBDAC FD CAA CADBBDDBA CAAADABBDEBDBDABDAEDBBCAAB B FB CDBDCEAA CDDDADAEDD CDDBAEDAADBEEA F
134 CAAAACECAACECAFAAAFACFACA F F DEADADBBBDEDEAEAA EEACADEBDBCAEDEDEDB DADABDAEACABADBDBCA DBBAEDEDFBDADEB DDEDEBADAEAD AEDEDBBBEAABDAE DDEABADBAAAABAD ACDAAAABAABAAEDFEBD ADADAEDDDEABEEAC DBDCEDBAEACADAB DBADAEEADEABDBD DA F DBDEEDDABEBDBAAAEDE DAEDCAEAABAE DBADAEAEDDDABEA CAEAABABABDAEAAEDE BDABEAEDCADDBBEA CDBADEEDAACAEDAAEDAB AEBDBCAEDEDDEDDEABA EDBDADADAEEAAAAEA EADEDAEADADEBABAB DBADABABDBDAAEDAB ABAADBDBADAAABDAE ADDEABDDAABEADCEABABAEA ACDCEAEAAEDACF BAAAABDBBDDEABADA DBAAEEAADBDAABDA
135 CAAAACECAACECAFAAAFACFACA ACDAEDEEBDBDAEABAABDA EEABEDAEAAACEDBDEEAA BDAEDBAABBDEAADCA ADBEDAEDF ACDA E DD EABA AA ED BD EDDBAAEAAABAADAEDBADA DAADAED F C FABDEAAAEBAEAEEACAAE EAABDAEDCBDACAAEDFEBD DAAD D AC EA A D F A DE DAEADDDDADEAED FDADAEDDDACABBBDA ABAAEBDAADFBBCAD DDCBBADEDBDAEACDBBCABDA EDBADAAEDCEDBAADAADBAABACDB EDEBDAEDFCEDAADBBD DA E D D F D DA AD D EDABB B EAABAEA DAEDAEDFBBDBCABA DEBDAEDEECABBDA DFEAAEBAAEDEDEE BDDABDAEBDDA BEDAEADAEDAEDC E DE E D ADB E DA E AD E A ADEAEBDA
136 CAAAACECAACECAFAAAFACFACA B DBA D E B EADA D EA DBADA DAEDFBDEACBAA ABAAADABABDA ACFDAEBDAC C E A EAA DDDD AB D AA ABA BCADEDDBAAAACABABDCAE EEAECDEEBCA A D B ADAF F A E BCAEBDADBBEDDEAE CDEEDAEABABCA A AABDA BB E BADAF D DBD
137 CAAAACECAACECAFAAAFACFACA EDDAABDBCAEBADAF BADA DDABABDBCAFADBDDADDADB AABABDEAAABAAEADEBDBCADD ABBDAAEEABEA EDADADBDDBABDDEEAA DABDEADBEBDDEDBADADACABB AEEBFDDADBADABB DBAEEBDBCA BAEBDBCAE ACDBADAEDDB D BCA D E AD E B ABAA D AD E DBBADA E B AD A DA B AD DADABADEDDADADADDAC BDEBCABCADB DADAECDAADBEBABBACA ADABADDEAABCAABDA EAABBDACDDAACBD EEDEBAEBDBAEEBDADEB DADADAEAABABA BAABAEDAFFDBDAE EBBDEBDACEDDA DABDDEBBCEDDBEEDEBDBA
138 CAAAACECAACECAFAAAFACFACA AEDABADBDDDBDCDBECABB EDD B AD B DBA A CDE BCAABAEDADEAADDAD AEABEAADEDEDBDAEACDBBCA EACDBEAEA D ACEBDBCAEBF DDADEDEFFEDADDA DA C D DDFBDAEDACEF EFDBAAEDEBBDACDD
139 CAAAACECAACECAFAAAFACFACA BCA F DDDC D AA E AA E DE D BB BABADA E ACDB E DE A B E AADBDEDBDBDAAAE FDDEBABDBBADEABDACDBDA BDBADAEBDDEBDBDACBB ADBDEBADBADAABADBA AEDEBDCABBBDEDABD BDAC EE EE EE EE F EE F F DE D EE F F F D ACADCEAEDEB DFFFFDDBADAABBDDEE DAACAEFFDEDBADAB DE EDBDABFBFEDBDFDEDB ACDBDDEEAADEDA DABDCEDEEAEAAAE AABDDAECAEEA C BDEAAEDBDDAEDADEDAEDCB DFEAAAEAEDEADA DAEBDAEADDAABFB FBFBFABAEAE CABBDADBEBDBAADEBADEAEABADADA EDDEABA
140 CAAAACECAACECAFAAAFACFACA DAEBAEDEAAEBDEDAEFAEA BDEDAEDDAEDEBDCECABB FEDEBDCECABBFD EBAEDAABDAEDFEEEBDDABBEF DEABAEDCDAEDEDBDFEEE BBEF EAEAABDDABBEBDCECABBBFBFBB W W PMOS NMOS 3 = 360*10 3 = 525* = 8333µm = 5714 µm BDCECABBDADDACBACB AAEDBDEDAEEBAABDE AABDAEEDCEDED EBDACAEFEDFEAD EEDDBAEEA EDDABDBCBEEAADBE DEAAACEDBAABAD EDEAEDBBBBDEAEDFABBD E D DBA D AD E DB EA AD E DBBADA E BDAAAABADBBEDAD ABDADBEBDDDAEFBDDAD ADEABAADEADDADEDBBADAA E EA D DA BD AD E D E D D AC BAAEA
141 CAAAACECAACECAFAAAFACFACA ACDAABAAEDED DEDECABBCDBEAEDAEABD ADDDAACEDBBEBDDE F E D A F BABBBDA D EA E AD EDCBDAEDAEFEDBDD ABAEADEDBBADABEBABAADBDE CABB BCDBADEDBDADAEDDAAE AEDABDAEDAFBDEEDE DEDAEABABEEABAA DEDBAEEEEDB DEEEDABDABDEDBDED BEDBAEDAD BACAEEBDDBDDCEABA AEDBFABDEAEAAA ABBBDACDABABBBD EDABADA A B F D A ED BD ABA BCACDDAEACDEAC DCBDADAEAADADAEDEDFD BADEDBBADABBDAC
142 CAAAACECAACECAFAAAFACFACA ACFDEBDFADDAABAEDB EBD F DA EA BF ABB DA ACBDEFEACCDDA DACBDBDEFAABAEDBDF DDBDEDEEDADECABBEAAD E A E F D DAA C E D BBEBDDEFEDDAEDDEADB
143 CAAAACECAACECAFAAAFACFACA EDE E D ECABB E D ECABB EDEEDA ACDAFEDFDBDEDEEDA CABB C D DABB E F E D F A AC D AD BD DDAEEFEBBEFEDB DDAABDAEDBBCAABDEADEABA ABBDAEBDDEBACEAABCADEBAC ADACBAAEDBDDE DEEAFDDDCEDBAADABDDAE CABBEFDADCBADBADAAEDBB DAADCDABAEBDDEA DADBEAAEBDADAAAAADBE DCBCABBEFEDFDDE DCEDBAADADADEADBBDFE BACDA
144 CAAAACECAACECAFAAAFACFACA DACBDEBEDEBDAED FDEADCEDEDDAEABBAA DCEDBAADADAADAEEAABAADB DEAAEDF A DC D B DA BD AD DC EDEDDAEABDAADBADBCAEBDDE BACBADEDEECABBBDAEDC EDBAADAAD DABAADCEDBAADADBAABDAE BBADDEBDDDDADCDBCEADED ADEDFEDBDDEBDEADC BAADCEDBAADAADBAABACDBE DEBDAEDF DEDABBEDAEA D D F E EDA E DA E D DC EDBAADAABDDDDDAEEAABABDCEDA EABDDBAED B A DC EDBAADA D F F F ACFDEDCEDEBDAEDF DEAEDBDAEBDACBBACDE EDFDDEAEDEADADA BACDBCAEBDEDAEBB
145 CAAAACECAACECAFAAAFACFACA ACDBCAEBAABAEDFBDABDAB DEEBDDADBBCABAEAD DA E BAA B BDC BDCA D DA AD D EDABB BDABA EAAEBDDEBDFDAE EAAEBDCBBEDFEABAADC EDBAADAEAAEDCDAE BDAEDBAADCBDDABBEDAE DCEDBAADAEDADAA ABDDABBEDAEDCBDAEDCADD DEDAEBDFDDBDAAD DAEEBDDAAEAAEDBDFD ACBDDAAEDEAAEDBDFDEBD AEDEEFFEAEAB V < Vg < E + V D V gsthn = 2. 93V V gsthp = 1. 65V E F gsthn gsthp EBDDDABDDDAADEAAD ACBDBDABDEAAEDFBD EDDAEDAEAADCEDBAADAABAB DABBBDDBDABDABDAEEBCAABDE DDEBEADEDEDDAEBD EAAEDBDFDABAABAEA AEDAEDFADDBDEA DBEAABAADCEDBAADADAABA DDAEABAAEDEADDEBDF DEACDEAACDBAABDEAA EDEDDABAEAAEDEB BBBDADEBDFEADADEB D E AA EA CDE AD B E E BDCECABBEDAEDBBABB EEBDBCAEF
146 CAAAACECAACECAFAAAFACFACA W W T1 T *10 = 360* *10 = 525* = 500 µm = 342 µm Vg E E +V thp V thn t Ic c t ACDEAABEBDDAEDF DE AA DEAAEBD DABD DEAAEBD DAB DEDDAEAADCEDBAADA ACAAEAADCEDBAADA EAAEDAEEADCEDBAADAABD EDBBEAADCDACBDEBAE DEAAEDBDEAADCEDBAADAAEBD
147 CAAAACECAACECAFAAAFACFACA DABBEDAEEADCEDBAADABDAEE DEDBDEAAEDBDEAADC EDBAADADBDABDDDDEAAEDBD FEAEDDDEBEDEDDADAE EADCBDEAADABADAE BBDCECABBADADBEEBDBCAEF µm W µm W T T *10 30* *10 30* = = = = DEDDAEEADCEDBAADA DE AA DEAAEBDDA BD DEAAEBDDA B ACAAEEADCEDBAADA ADCEDBAADAEADBACDBBDAEBB ABEADCABCEADDEBCEADE DEACDBABDEDDADDABDAEDEACDBBD DADADBADDABDDABBEDAE DCEAADCDEDEDAEBAAB ADABDCAABDABEAABDDABBE
148 CAAAACECAACECAFAAAFACFACA DCAEABBEEADCDDDABBADE AEAABCADDEDAEDCDB AEDDCEDBAAD W W T 5 T 6 = 83µm = 57 µm DCBBAAFBDAEE B E BD DB E BD AD BD EDA E AA DA DA BD DADABDDDBBABDEABDA BDDBEBDADADBEEAADA DDDAECADDDBBADAD AD D A BB D AD CDE A EAA BCA BD DDA E B A DA A D EAADDBDDEFEDFDCEDAE DADACEEBAEE BDDDBDADAEBDDBEADDD DAADE kωddebedbb EADEAADABEBDDE BBDADBEDBDDDBDCEDBAADAE ABDAABEADAAEAE ABEBDCABBDABADEDBACDBBCADEAA EBDAFADEECABBA V GSth = 0.48V ) ADADA EAA DDEBDC BB A EAA W T 7 = µm R = 3027 kω
149 CAAAACECAACECAFAAAFACFACA EADEBDAD EADEBD AD FDD FDEBDAD AD ACAADAEBDDBEBDAD D AC DA B EAA E D F D DEDDEDAEDCEDFDACBDAC BBDEDCEDBAADAEDAEDF
150 CAAAACECAACECAFAAAFACFACA ACFEEAAEDFDDE DCBBA DCEDBAADA ACEBDEBDCBBAE DCEDBAADA
151 CAAAACECAACECAFAAAFACFACA DAF EDF DE E A EDF DB B D E A DAF EDF DCEDBAADA DCEDBAADA ACBDE DCEDBAADAEDF CA DAECDEEDFEDBDACABAEADB EAABDABDEAEDEBDDBDBADA DAABAABAEDFBDDAEDE BAABBDCBDCAABBAEACDEDE BBEDDEBAABBDCBAEACDEDE BAADBDEAEDFDACBD BDEBDEDBDBBEBAADDCB A A BBB BDA E D E BDC BB AB DCEDBAADABEAADABBBBDA
152 CAAAACECAACECAFAAAFACFACA EDE E DCEDBAADAEDAED DFDDEAAEBBDEAD EBDAE DCEDBAADABE DCEDBAADADA BCBDBBBACBBEADAB ADEBEADEADAD CDEDCEEEBDAEDCDAEBDCAA B DA A EAA A DDBBB D AEA E ADA BDCA CBACDB BBA E BAADEDDCEDADADBBDBDCE AEAAEABEDEED DAABBDEDEEBDDEBDBADAEAD DEAE DE DE AD DADB E A DEB D DE DE BA DC EDBAADAEDF DC EDBAADABD F D DE ACBDEBDAC D EA B BDC BDCA BBB E DE BDAEDBDBBAAEDBBBDEADEAEAA BDBCDEDEBACDBEEDDEABAED
153 CAAAACECAACECAFAAAFACFACA ABDDDACBDBAADBBB ADADBDDAD CABAEDEABDA EBDD CABADEAEBDD CCABAEDBBBDABD ABDABDDBDABDD ABDDADDAEBDADD BDD DDDAEEAEADDEE F F F C C F F F C C C C D D ACFDBAADBDBEBDC EDF BDAEEBCAABEBDABDADBBBDB EADEAEDEBDDBEDDADDABBCAAB DEEDAEADBDAEBDDBD EBDBAEDBEDDDDA
154 CAAAACECAACECAFAAAFACFACA DD DB A C C CC DBDDDEAAADBEADD DDAABADABDABDAEDBBCAABDE DDBBADEBDCBDCABDAEDBD DDDADCEAABDAEDDEBDDA ACDBEABDDDACBBDEABDA DDBDEEDEEBDCDBAB DDAAEAEABDAEDBBDAED DEBDDBDDDAABADEBAAADD BADEDEDEEEDBADAD BAEBCABBDACBDD AEABAEEDEEBDCBDAEBDEDBEA ACADBBDACABBDABBBDEBDCABBDABED ABBAAEBDDADBDCBBAB DCEDBAADADDCABADBDEB ABDEABDABDACDBADAD BAEDEEBDCEABDDBEDEE BDBADAEBDDDDBEEDEEBDCEEDE BD EA EBD E A C D B AAEAADDBBBDEEDCADABD DBEEDBBDAABBEABAEEDDA DA ABB D D A DBE B EDEEBDCBDABDA
155 CAAAACECAACECAFAAAFACFACA DE DE AD DADB E A DE B D DE ADB AB { BCA DE DE DE D DE ACBDEBDDBDEEDEEBDC DEDEEBDC D ED A EEBDC ACBDEABDAEEBDCEDBBCAABDE
156 CAAAACECAACECAFAAAFACFACA CD DABDBDACA EBBADDBAAEDADACD BDDAEBDDABDACBDE BDAAAADBBCAD BADEDBADADE D ACDDAEBDACEBDA A EDEDBDDAAEBDD DDBAAEEDDABDDCACD B E AA D EABADA D D BDAED EDAEBABBDABDAD E
157 CAAAACECAACECAFAAAFACFACA FACDBEEA FACDBEEA FACDBEAEA FACDBEAEA D ACDDD ADBDEDBEAAEDCDADE ΩAADEDEABDDDA EEAEADEADDBBF ABDBDACD ACBEDADAABDEAED FAEBDAEBDBADABEEAADB EDBBBDAEDEDDBADBDADBB EEEAADBEDBBBDAEEEE DDBADBDADBEBDDBADAA BEDAEBDADEEDDABA DEEDBABDCEDAACAADAA BAEDEAEDFABDABADADBDAEDBADA EBDBDABDDCEEDBDEDCD DBADAEABDBDBAAABBEAAEDB DAEDCDDAADE ΩBDDC
158 CAAAACECAACECAFAAAFACFACA E EE DEDCDADB DEEDCDADB D AEDBADA D AEDBADA ACDDADAEBDEDAEDAAEBDA EDBADADADAEDEAEEAAEBDA EDBADA DDABABBDEAAACD BBEAADEAEDBDADABADF EBDACDEBFEADEAAEDBD ACBDDEDEAAEADDBB DDEAAEDEDCDBBBEAEBD ADECABBCBDADBBEEDAABDDDAC DBAAEABAAACEBDDADB ECABEADBABDDEEDAEDF D AA E A B B E AD DA DA DECBACDADEAEBDDA DBEEAAEADABADEAB DAEADADAEEEDBDA FCBAADAEBDDEBDF
159 CAAAACECAACECAFAAAFACFACA AAEA AAAC AD DAEEA DA ACDDAEBDDAEAAEAEAAAC F D CA A E DA EAA B EAA E DD EABADDABDDAAEAAE DAEDCEAABACDBEDEDA AEDDCADDBBADBDDBEDDCAD ABDEDBDFEDBDDBABBADEBD ADEBBADAEDDDAABCA EAA AAB ED D BD DDB ED B DAEDBBAEDDCADEDADADBBDB CDEABEAEDBDAEADE DADDEADEADBBE ABAEDADDABADAADD AADDBAEDAEDC
160 CAAAACECAACECAFAAAFACFACA EDEADBBBDDAAADBADBEBDAEE E ACDB D B DD B BB DA DA E AEDDDAEEBDCABBEDAEADDE ABBDADDDADDADEBDCABBEEA AEDEAEAEAAA ADADDEBAD ABEDBDEADBDD EDDBDBAADAEDEAEDFBBAEA DB BAA E DA DADB D AD A E BAEABABAEBDCADEBDD ABADBAEADAADDAAE EAA E AD E B AB EDA D ABDEADBDDDEDAEDF EF ΩEF Ω DDABBEDAAABBDEDD ABAABDAAEBAEDDCADBAB BADEDBDAEDDEABADAD BDAADDDDEDAEDDEDBDDEBA DADEAEEAABBAADDDBE BAEDDCADDAAEDAEDCBDDD AAA DDBDAEDDEDBDA EBDDEEAEDAABDADEDAE DDDBDAAEDEECABBDB AABAEAEEEAEED ADEDAEDDE EAAEBAEDDCADDBDBAAEBD ADDDEDAEDDEDBDDEBA A DEBAEDBDDD
161 CAAAACECAACECAFAAAFACFACA V GS V fz 2 Vs < V Vs < V BRZ1 V BRZ1 GS + V Vs < = 2 fz 2 DEBAEDBDDD Vs V fz1 Vs < V V GS BRZ 2 < V V BRZ 2 GS Vs < = 2 V fz1 AE DA BDBADA D ADA E B D E DDAEDDEEEABDBAAEAD ADAEDBDDEBADBDADDABDBB BDAABDACDBAEBDAADBE DCBDDCEAEADABAEAABAAB EABDBAAEBDADADAEDDDE EBDDBADAEDA Vs 2 Vp = = = 1. 36V DBAADADBEDEDBAEDDCADDEEBDD BAEEEADBDABDADBDDDE F ED B D F DB Ω D B E BCA E DAD CBAC ED A B E BD AD E BB ADAEDD I Vp 1.36 = = 0.298( A) R + R Lm = dson _ P1 dson _ P2 AEADBAEABAEAEED DADAEDDBDDBEBAEDDCADE DBBDBDA Lm = E * t I Lm 15*500*10 = = 25( µh) DAD DB BCA ED BAED DCAD BCAEAAAEDBDFEDBEDEBADBD BBDEEDCAE BDEDADDCECABBDBE
162 CAAAACECAACECAFAAAFACFACA BDAEDEEBCAEDEEBDCABBEAA EDBDFDBBDBDA PLm = L* I Lm * f = 25*10 *0.298 *50*10 = 111( mw ) 9 3 PCMOS = QG * V * f = 100*10 *20*50*10 = 100( mw ) DBBBCAAABEAAEDEDE BABCDEBBDADEBDAEADA DDDBDADEABDCADEEAEEEBBD DBEBAEDDCADBEAAEDDBB ABCAEAAEDBDEBAEAAE DADEADABBADBEAA EDBDAC CA DABABDAEBDEDAD B DBADA E BDD B AA AA DA DB E BAEDDCADBDBCDEABDAADBEA EDAEDADABABDADDDABA DE D B DBADA E DD EABADACDBADCEAADCAEBB DEDCEEAAEDDAB EAEAAEDBDABEBAEDDCAD EEBEBAEBBED DEDDBDEBDDEDEDDDBDE BAEDABDAEBAEBDBE BDBBEEAA
163 CAAAACECAACECAFAAAFACFACA A e B C G H F E Φ1 + Φ2 D Φ1 Φ2 D ACDAADCAAAADBEBD DACBDADBDBDDAAEB EDBDAAEBDEBEEABD DBEBAEDDCADEDDAEEA EBBADADBDAE R ABCD = R AFED = R AB + R BC + R CD R AGHD = R AG + R GH + R HD 2 Lm = n1 2 2* R + R AGHD FBBDBBDDBADEEDAA BBADADBBDAAEDDCADEA DADAAEAEEDADEDADE DDADABDBDAEDCDBAEA EBAAAABACDCBE AADAAAADDDAEAE BDCDBAEBEDABBAABDAEE A D D D AB EA B AD D BDCDA E BD FABDAABEADADBE BDAEDDEBDDBADAEDDBDDB AAEBDAEBDAAEBEDDE BAA ABCD
164 CAAAACECAACECAFAAAFACFACA BDADBBBDBDCAADBEAADAABB DDDCBDDDEBDABD ED BB ADA E DD E D ABAB EBA BD CABB E DA E AD E D DCAD D ABABDADBEBDDAABEED EBEEBDAEDEABDEDB ACDEBBEDEDBAEDDCADE DBBEAABDBDCEAEAAEDEDBAED DCADFDDDAEDDCADEBDDADB EDBBADEDBADAABAEEDDE DEABDDBEDABABEABBEAD DDBAEEBDEDACE ADADAEEBDBDCEBDAEAAAEDE BDCDADDDDDBB BDCEAEBAEDBABDCE B A ED B BD DADA B EAA A BABDDDCAAEDB EBDABCAEDBADAEB
165 CAAAACECAACECAFAAAFACFACA ACBDABDBDAEBDABDCDAEBD D CA D ABDBBDDBADABDBAEB DDBDDBDABDABDAEEBCAABBA DAEAABBDEBDAABBBDC EAEA EDE BD DBADA E A E B B AA EA BEDADBDCAADBEADAADBBA BEEBDDABDDDADBD BBBBABAADBDDEAABEDBDA DDABDABAEABBABBDDA DBEDABAABAEBDEDAAE BBADAEAADAE EDADAEABAABD ADEABDAABBDEBDAEDA BDC DCA D E AABA E BD B BD ACD
166 CAAAACECAACECAFAAAFACFACA ACAABAEBDEBBE DFFFFBDFF DBDEBDDDAEEEAAE BDCDBDABDAEDBBCAABBDBD EAAAEBDCBCABBDDBDBAED EADBEDDEAACDEDDBBEBD BDAFFDEABDBDBDA EAABDBDDBEBAEDDCADBBD EBBDBDBBDDBAE DBAEEAADBEADACB BACEDABDEDBDA FFF FFF EDDCAD EDEA AAEBDC DBDDDAEE
167 CAAAACECAACECAFAAAFACFACA ACACEDFABDABDBDA DBDBDDEBBAADAA B AD A D BD ABDA ED B D D BDEBAABDABDDBE ADEBADAEDADADBDDBD ADBDDDEFEDF Ω ΩAD DADDEBDCABBDAABDADADAEDBDDE BADADADAEEAAEAADDBDBDEA BADEBDDCCDD BBABCDCDAEBDADDDA EDEAAEA ADA FEDA EA DCEA ADBA AD mωb AD mωb DBDDDEBBAA
168 CAAAACECAACECAFAAAFACFACA F B CD DBDCEEACAABDACB AAAABDDEABADBABAEBD DBADAEDDDEABEEAC DBAADBCAABEEACBCAEDAADBA DEADDADADAEABEEDBDCE EEADADDABBEDBBBDBDE BDBDCEBEBDACEDAE DDDAADEDAEADAB BDBADABADABABDACD EFC AD ABCDB DFA DDA DFA D
169 CAAAACECAACECAFAAAFACFACA E BD EDE EBDC ACDBDCEEAACEAA D DBADA E DD B AA EA E E DADDAEDADABDAEEAEB DABABDDADBDDADA ADAADBBAEEAAAA ADAADBBABEEAAAA ADB DACBDEDDEABADBAB AA
170 CAAAACECAACECAFAAAFACFACA ACBDDDBABAA ABDACBDEEABADADABBE D BD DA AD DBB BD DDADA E DD BDDABDDBAEDAADBEEACA ACAACBAA CD ABDDEABADBABAAAA BDDDABDAEEEEAED
171 CAAAACECAACECAFAAAFACFACA DABDDDDDAAEDAEEA AEDDCADDAABDADEADCADAEDBD AC DA DAA E DDA B ADA E DD CDEDBDACBDDBADEAED EAEDEDDEDEEA DEBEBBAEAADDBE DBDBDDBDAAEBDDDB AEAAFDDBEEDBDCCDEBD EAEABDADE BBADABB mωabddbe mωdbdabdadbdadaed BDADEBBADAEDD η ACEBDCAABEDD D A DDA B DD AA B BD E BDACDDBEBAEDEADBE AEBDDBEDBDABDADB DDADBDDBEBAEDEAEAEDD EABADBAEDBDADEADDA BAEDDBDDDDDDDBDA DADAABDDBEBAEDEACDEE EBBDABADEBEDBBDACAADD ABDCEEDBDA EDBEBAEDDCADEBAEDEA
172 CAAAACECAACECAFAAAFACFACA Lm (H) Lf (H) Résistance à vide (Ohm) Résistance en court-circuit (Ohm) Rp_ouvert_compensé Rp_cc_compensé f Fréquence (Hz) D f Fréquence (Hz) ACDEDAEAAEDDBDDAD AEAAEDDBDD DDABBAABBEDEDDAE DDBDDBDBDACB DDDDEDDADBEDBDCBDCE DABEABE DEBAEDDCADDBDDADDADDDDEBE
173 CAAAACECAACECAFAAAFACFACA od DEDDAEB Rapport de transformation (phase) narg DEDDAD f Fréquence (Hz) f Fréquence (Hz) D ACDEBEDEDDAEDDBDDDE DEDDAEDDBDD ABDDAAEDDBDDDDA AEAADADDBBEBDAEACDBDDBDD ACDB E DE E DBA D ADA E DD B EDAACDBEABAEAAACDA DDDBAEEEEDACBB ADEEEEAADAEDAEDD A D B E DCDA D B DDDACBACDBCDBEABBDAE A D E BD E ACDB D E BAED E A E DDAAEBDBAEEBABAEAEAA DABDEADBDADEBBADADE DDCAD
174 CAAAACECAACECAFAAAFACFACA Vp Vs Vp Vs 10 A x ACAADAEDAEDD BBDDADDADAEDDBDDBDD DBAABDADADDAEDCDD AEDDCADAEDEABDADEBBDAA B D E DDA B DB DA B E DDBDDAEDBDBDCEED DAADDBDDBAEDAADBEEAB CD D A ABA EA AE DE A BDADACDEBCABDF CDAABCACDDBFDDEABAAEBAAB DEAABACAEBBAEEDDDE AADDAEAEBEACD EDEEADEAAEADBDDDA BDACBDACBDEAAEBEAAC DEEEAAEADBEAAEAD EEBDDABAEA
175 CAAAACECAACECAFAAAFACFACA EEDC α = E Ω E A C ΩE kω ACFDBAEAAEADBDDBAEDAEEAAC A AC ACEAA DACBEEEABDCABBBE DAAEDBE BBDDBAEBDDABDBAE BDDABDACBDEEED ABDEDBAEDDAABDADEBDDC AEABDBDDBAEBAE EABEAEDADA
176 CAAAACECAACECAFAAAFACFACA BEADDEBDDCEDCEDDAEE BEADEDBDEEDCADADBBEDD BEADDADEDEAEDAED FDACBADCAEBDAC BBADDDBAEAABDBAAE DBADAAAEAEDBDCEEADBDDDAEBD DAEAEBADCEBD BDEAEBDEBDDDDEAABDEAA D BD E A ED BD D DA E AA D B AD EABDEADDBBCDDAEBDDDAEDBDDBE BD ACACABBE
177 CAAAACECAACECAFAAAFACFACA DC ACDEDBAEDAEBDDC ACDCAEBDAC
ABCDA EF A A D A ABCDA CA D ABCDA EF
ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA ABBFA AAFAB ABCDAEF AAABBA AA CADA BABA AA DA ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA CAA BABADFAAFAB BCAFAB ABCDAEF AAABBA
Evaluation et application de méthodes de criblage in silico
Evaluation et application de méthodes de criblage in silico Hélène Guillemain To cite this version: Hélène Guillemain. Evaluation et application de méthodes de criblage in silico. Sciences agricoles. Conservatoire
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby
Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude
ABCDEDF AABCDABEFBB FBCBFBAADB ACBAC ACCDCBFA DDAEFBBBB ADBB EF DB B B BDB CD DBB ABBBBADD EFCBCBBBFAB CEFB BFBC B ABCAAA ACFABBBCA B A CDA CD D ABBCDDEFB EFDDAACBBA BADAEFBEF BCCBBBAABB DCCBDABBD ABABBBBB
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
9 1. /001/2 27 /8? /89 16 < / B? > DEE F
!" #$ %! &!$ % ' $ ($ $ ) #%*!! +!(, % -. /001/2 03 4 /1. / 5 /6 0/078/2 27 91 1:3 /14 10 72 91.1;11 27 < 2 82 27 = 9 /62025 9> / = 9> 0/80 > /8? /89 16 < 3 9 4 24 4 /11 / 89 ;1 @ = 271002 A1? B 602 C
Global excess liquidity and asset prices in emerging countries: a pvar approach
Global excess liquidity and asset prices in emerging countries: a pvar approach Sophie Brana, Marie-Louise Djibenou, Stéphanie Prat To cite this version: Sophie Brana, Marie-Louise Djibenou, Stéphanie
Χίος, 4/2/2019. Ως επιλέξιμοι κρίθηκαν: ΕΠΙΛΕΞΙΜΟΙ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ Α/Α ΚΩΔΙΚΟΣ ΑΙΤΗΣΗΣ ΕΠΙΛΕΞΙΜΟΤΗΤΑ. Διαθέτει τα απαιτούμενα προσόντα
Χίος, 4/2/219 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΤΗΣ 52418/2 ΠΡΟΣΚΛΗΣΗΣ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣΓΙΑ ΣΥΜΜΕΤΟΧΗ ΣΤΗΝ ΠΡΑΞΗ ΜΕ ΤΙΤΛΟ«ΕΝΔΥΝΑΜΩΣΗ, ΕΝΙΣΧΥΣΗ ΤΩΝ ΔΕΞΙΟΤΗΤΩΝ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗ ΤΩΝ ΠΡΟΣΟΝΤΩΝ ΤΩΝ
AE F F E C F E D ABC D
AEFFECFED CB BC EFEFFEEEEE BFCEBFE ABCD ABCDEFCE CCAABCDEFCE DA EFF EFF EFEFFF EFF EFF EF F EF F EFF EFF EF CCAABCDEFCE A FCF FBF FEBF F FB FA ABCDBEFFBA FCFDBABCCB ABBFCFFDABCCB ABCD ABCDEFCE CCAABCDEFCE
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Πίνακας ρυθμίσεων στο χώρο εγκατάστασης
1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W
!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*
!" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
! "! #" # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! '
! "! #" # $ #% & '#()!!*$( & +( $#!,-'(. $ ), ( )* /0 1234 $ 5- (6 7# 8,6 - - /& 4&! ' 6,!(*$(- (,('& 9 !" # $% $% $$!" #$ # % # &'&&&&&'& &() #* $$ & '' $( $) * $ +"&,-&!" +$ )$ " ## +," )- )) ## &. ''
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436
! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &
J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--
,,-# $% &.(#./ %0 ) &, ((# ).!#3 8( # #2!*
&'(!"# $% ) *+(#$%#,,-# $% &.(#./ %0 ) &, ((#.1 2 3.4235*6#)7 1 #$%1 &#& "#$ ).!#3 8(. 423 6# #2!* % /%% (:% % $%# ;(# ("% (6 )# $%1# #2 @! ) 372
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
"#$%%!&' ( *+,%%- !%!%!*&."$%%/-0! !%!%4!*&."$((,%/ !%!%(!*&."$,1,$,%/,!%!%"!*&."$"%%%%!!%!%$!*&."$"(,/$!!%!%2!*&."$",%%%/%0 !%!%!*&.
"#$%% &' ( )* *+,%%- %%*&."$%%/-0 %%,*&."$((,%%%/ %%(*&."$,1,$,%/, %%"*&."$"%%%% %%$*&."$"(,/$ %%1*&."$"(%%%/23 %%2*&."$",%%%/%0 %%4*&."$((,%/ %%-*&."$"",%%/4 %%*&."$(%%%/% 56)7)89)7:;8
Παρατηρήσεις στα ϑέµατα
Παρατηρήσεις στα ϑέµατα του διαγωνισµού ΘΑΛΗΣ 2013 της Ε.Μ.Ε. Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 20 Οκτωβρίου 2013 1 Γενικές Παρατηρήσεις Οι απόψεις των παιδιών Τα ϑέµατα, ιδίως
0 1 D5 # 01 &->(!* " #1(?B G 0 "507> 1 GH// 1 #3 9 1 " ## " 5CJ C " 50
!$$ !! $ ' (( ) * ( + $ '!, - (())!*'! -!+ - / (())!* - ),!-* + ' 6 / 9 *, 78) ++)!*! φ( 9 $ * )) 8!' ) ;< 0 = ;
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }
ΣΥΝΟΛΑ Ένα σύνολο είναι µία συλλογή διακεκριµένων αντικειµένων, τα δε αντικείµενά του οµάζονται στοιχεία του συνόλου. Γράφουµε S { a, b, } =, όταν θέλουμε να δηλώσουµε ότι το σύνολο που ονοµάζεται είναι
C F E E E F FF E F B F F A EA C AEC
Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD
&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B
!"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#
]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1
! " #$ # %$ & ' ( ) *+, ( -+./0123 045067/812 15 96:4; 82 /178/? = 1@4> 82/01@A74; B824= 6/87 60/8567/; C 71 04D47/10; C 82/1 /
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
Space weather influences on atmospheric electricity
Space weather influences on atmospheric electricity Article Accepted Version Nicoll, K. A. (2014) Space weather influences on atmospheric electricity. Weather, 69 (9). pp. 238-241. ISSN 1477-8696 doi:
!"# '1,2-0- +,$%& &-
"#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000.
Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co Θερµοστάτης PJEZSNH000 Οδηγίες χρήσης Ηλεκτρολογικό σχέδιο 4-5 : ρελέ µηχανής 6 (L) : Φάση (230V)
Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =
7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ
ΕΟΜΗ ΛΚΝΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙ JBMO ( Ι ΜΘΗΤΕΣ ΚΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ Ιούνιος 003 Επιµέλεια: Ευθύβουλος Λιασίδης νδρέας Σαββίδης Να λυθούν όλα τα προβλήµατα Χρόνος: 4 ½ Ώρες Πρόβληµα 1. Ένας n θετικός
PDF hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition
SOLUTIONS MANUAL DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL ifth Edition M. MORRIS MANO Professor Emeritus California State Universit, Los Angeles MICHAEL D. CILETTI Professor Emeritus Universit
Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών. Εργαστήριο 5
Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών Εργαστήριο 5 ΕΝΤΟΛΗ: openssl (Linux) Το OpenSSL είναι μια βιβλιοθήκη κρυπτογράφησης για την υλοποίηση
Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total Synthesis of Eupomatilone 2
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total
magnétiques par des courants de surface. Application aux noyaux ferrites 2D
Modélisation PEE : epésentation des matéiaux magnétiques pa des couants de suface. Application aux noyaux feites D Hai ui Ngoc To cite this vesion: Hai ui Ngoc. Modélisation PEE : epésentation des matéiaux
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
! " #$ (!$ )* ' & )* # & # & ' +, #
! " #$ %%%$&$' %$($% (!$ )* ' & )* # & # & ' +, # $ $!,$$ ' " (!!-!.$-/001 # #2 )!$!$34!$ )$5%$)3' ) 3/001 6$ 3&$ '(5.07808.98: 23*+$3;'$3;',;.8/ *' * $
!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443
"#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών
. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr Day: 1 49th INTERNATIONAL MATHEMATICAL OLYMPIAD
Chương 2: Đại cương về transistor
Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR
Clothes without an Emperor: Analysis of the Preferential Tariffs in ASEAN
WWW.DAGLIANO.UNIMI.IT CENTRO STUDI LUCA D AGLIANO DEVELOPMENT STUDIES WORKING PAPERS N. 223 January 2007 Clothes without an Emperor: Analysis of the Preferential Tariffs in ASEAN Miriam Manchin* Annette
AB A C DE B FA D A D DB BA BA D ED A AB A AF BD A A A
ABACDEBFADADDBBA BADEDAABAAFBDAAA ABD ABCDEFEABC DBBBB ABBC EBBE FAAAB CBCB DB EBBAB B AB C CFCB BB AB BC ABBCBEBEBBBB AB BDBAAB AB BDBA ED Inhaltsverzeichnis AB C DAEFAFA DFFE ABCDE FAABACDA BAABA CABCBC
! "# $%&'()'*% + "%,'-,./0*1'-) 2-0 1,(/. "2 )- 3 0-$*-451-6778 9 9 999999999999 :,&-$*':, ',*%;1%-.- 4'&1: 04%&(,'?/-0 9 9 999999999999 @ A B C DE F G HIJKKLMN N JOGP N B QRD G LSMLKKLT
Microcredit: an answer to the gender problem in funding?
Microcredit: an answer to the gender problem in funding? Sophie Brana To cite this version: Sophie Brana. Microcredit: an answer to the gender problem in funding?. CR10/EFI08. 2008. HL Id:
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
!"#$"%$&'(%$ ) * +!,, #'%(((% -.-)+ /,/ # $'( %.$0. % !!1/3$"$&4.$ /,,. % %% 0 !1,,,'($ ) /) +. %, 03 ) /) +. %, %.$0.
! ""#$ %%$&!!' $ $(( )* "')* "%+ ""!%%$, "'%%%$ "!% *-$ % %)*!"#$"%$&'(%$ ) * +!,, #'%(((% -.-)+ /,/ # $'( %.$0. % -.-1 2!!1/3$"$&4.$.+ 2!!1)3$"$&4 " $$#(% $#& 0) 256578 /,,. % %% 0 +49':!1,,,'($ %.$0.0
# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '
" # " $ % $ " & " # '' '" ' ' ( & ) ' ( *+ & ' "#$% &% '($&)$'%$ *($+,& #,-%($%./*, -./ "' ' + -0,$1./ 2 34 2 51 2 6.77.8. 9:7 ; 9:.? 9 9@7 9:> 9@>.77 9 9=< 9@>./= 9:=.7: 9=@.7@ 9::.87./>./7
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
Pert ( Gent ( CPM. WBS ( CPM ( FBS (
100 : www.iedoc.ir . Pert. Gert CPM Gent. CPM : Pert FBS CPM. WBS CPM AOA AON ).... www.iedoc.ir A %50 B 10 A B A C D B E. B A. B A : B A. B A www iedoc.ir. B A Pert CPM A B C D E A B A, C B, D D B C B
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Εξωτερικό Γινόμενο Διανυσμάτων. Γιώργος Μπαλόγλου
Εξωτερικό Γινόμενο Διανυσμάτων Γιώργος Μπαλόγλου 4 η Μαθηματική Εβδομάδα, Θεσσαλονίκη, 7- Μαρτίου 0 Μνήμη Λουκά Κανάκη (95-0) υποθετικό κίνητρο: τομή δύο επιπέδων Ας θυμηθούμε ότι ένα επίπεδο E στον τρισδιάστατο
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/liearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου 2018 Ασκηση 1
( 1) R s S. R o. r D + -
Tο κύκλωμα που δίνεται είναι ένας ενισχυτής κοινής πύλης. Δίνονται: r D = 1 MΩ, g m =5mA/V, R s =100 Ω, R D = 10 kω. Υπολογίστε: α) την απολαβή τάσης β) την αντίσταση εισόδου γ) την αντίσταση εξόδου Οι
!"## $%"&'%()% &#% * &"(!%+"&,&& *- $&#% * %''%"( *./ $%+"#!#%#"()0'& *1 %2%&%&'%",&3 (%# * %3&4%0+&%"0 %+'56789: ** $%#%';+""'%() */
!"## $%"&'%()% &#% * &"(!%+"&,&& *- $&#% * %''%"( *./ $%+"#!#%#"()0'& *1 %2%&%&'%",&3 (%# * %3&4%0+&%"0 %+'56789: ** $%#%';+""'%() */!" #$%& 03
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 12: Κανόνες Συσχέτισης Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης
Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original)
Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original) H Steve Ndinga-Koumba-Binza To cite this version: H Steve Ndinga-Koumba-Binza. Phonetic and Phonological
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
! "#$%&'!()'"" %*+,-.+* "(*/0(/*'1 %+%/&2(#+)" 3#(4 0+)(#)/+/" (*2#("5 3#(4 02"' "(/1#'" +) (4' '6+&/(#+) +. 42%&+71#%&+#1" 2)1 8')'(#0 1#$+*%4#"$"
!"#$%&' "( )*"'"+*,&' -.%&/*,0!"#$ %& '"$ (& )*+,- (.//& /02/3.! "#$%&'!()'"" %*+,-.+* "(*/0(/*' %+%/&2(#+)" 3#(4 0+)(#)/+/" (*2#("5 3#(4 02"' "(/#'" +) (4' '6+&/(#+) +. 42%&+7#%&+#" 2) 8')'(#0 #$+*%4#"$"
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
x y z d e f g h k = 0 a b c d e f g h k
Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν
Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018
Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018 Άσκηση Φ5.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής
https://www.icsd.aegean.gr/t.tzouramanis/courses/dm1 ttzouram@aegean.gr Πέμπτη 7 Οκτωβρίου 016 Δ Κατά τον Καθηγητή Avram Noam Chomsky οι γραμματικές ταξινομούνται σύμφωνα με τα είδη παραγωγών που επιτρέπονται,
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
!" #$%&& ' (*)+!+,-./ * (4(#2.6587%5 0D =E FGD H< # $'& & & IJ587K5 PB =EQ?R<>< >BS;'$L :; :; #!$'&
! " #%$'& &( !" #$%&& ' (*)+!+,-./ * 0 1 23(4(#2.6587%5 #:96;=;?A@CB 0D =E FGD C@ H< # $'& & & IJ587K5 #:LM@!ON=D PB =EQ?R< >@ >BS;'$L :;=@C;UT :; :; H@ #!$'& &HV W? 7:7YX QFZ F?0[ \ 7 0D >@ :;' >;=
"#! "!$ "#$%#&&' " %&+'(( " " %&)*! ! &'+"!!./! "&+-"!
! "#! "!$! "#$%#&&' " %&!'(( " " %&)*! %(! &'+"!! "&+, "&+-!./! "&+!./! "&+-"! " %&+'(( ))",! 1 /)/,! " )+! "/$ ""!"$ "!(!2"/! " "!!! %+,! /! 1/3 )/-/! "!!!/!(!!/!!!+ "!//#"4""$ $" %& )!"'/!"!!5! )/!!,5
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
No No No No No.5. No
0-1 0-2 0-3 0-4 No. 1 1-1 No.2 2-1 No.3 3-1 No.4 4-1 No.5 No.30 30-1 Tokyo) (m) (cm) /ha 1 1062 101 36 58 48 / 139 19 44 1631 3095 375 10.1 ( 1,380 11 N80E dbd 9/17 8/27 2 1062 101 36 58 43 / 139 19 06
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle
#$%&'()*+,#//*)'&'#+%#)*0'+)...
! " #$%&'()*+,('-+)... #$%&'()*+,#//*)'&'#+%#)*0'+)... #$%&'()*+,'-*)#//*)'&'#+% +11#''***12*)/... &'*... &23*#/(&3#4&'#+%/+)1&3+5*3 &%5'/663#0&'#+%/ &')#07+,,1&% %/'#'('*,+)#/(&3#4&'#+%&%5*)0*6'#+%*/*&)0-