O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI ALISHER NAVOIY NOMIDAGI SAMARQAND DAVLAT UNIVERSITETI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI ALISHER NAVOIY NOMIDAGI SAMARQAND DAVLAT UNIVERSITETI"

Transcript

1 O ZBEKISTON RESPUBLIKSI OLIY V O RT MXSUS T LIM VZIRLIGI LISHER NVOIY NOMIDGI SMRQND DVLT UNIVERSITETI XBOROTLSHTIRISH TEXNOLOGIYLRI KFEDRSI «NZRIY MEXNIK» fandan o quv-usluby M J M U Matematka va meanka ta lm yo nalsh talabalar uchun SMRQND-

2 - M RUZ «Statkanng asosy tushuncha va qodalar. Statka aksomalar».. «Statkanng asosy tushuncha va qodalar. Statka aksomalar» mavzusnng tenologk model O quv soat soat Talabalar son: 5 ta O quv mashg ulot shakl Ma ruza (ma ruzal dars).meankanng rvojlanshga Sharq, Yevropa va o zbek olmlarnng qo shgan hssalar. Ma ruza rejas.statkanng asosy tushuncha vaqodalar. 3.Statka aksomalar. O quv mashg ulotnng maqsad: Dnamka fan. Dnamka rvojlanshnng qsqacha tar. Meankanng asosy qonunlar haqda tushuncha bersh. Pedagogk vazfalar: O quv faolyat natjalar: Meanka tardan tushunchalarn takrorlash Statka elementlarn va qodalarn tushuntrsh Statka aksomalarn tushuntrad, zohlayd, msollar keltrad Fannng ahamyat va mohyatn tushunad Statka elementlar va asosy tushunchalar va ta rflar yodlayd, eslab qolad, tasavvurga ega bo lad. Statka aksomalarn yodlayd, zohlashn tushunad, amalyotda qo llashga ko nkma hosl qlad O qtsh vostalar O qtsh usullar O qtsh shakllar O UM, ma ruza matn, rasmlar, plakatlar, doska borotl ma ruza, bls-so rov, tenka-nsert Frontal, kollektv sh

3 O qtsh sharot Montorng va baholash Tenk vostalar blan ta mnlangan, gurularda shlash usuln qo llash mumkn bo lgan audtorya. og zak savollar, bls-so rov.. «Statkanng asosy tushuncha va qodalar. Statka aksomalar» mavzusnng tenologk artas Ish bosqch-lar -bosqch. Mavzuga krsh ( mn) O qtuvch faolyatnng mazmun.. O quv mashg ulot mavzus, rejas, pedagognng vazfas va talabanng o quv faolyat natjalarn aytad... Baolash mezonlar ( lova)..3. Mavzun jonlashtrsh uchun «Blsso rov» savollarn berad. Bls-so rov usulda natjasga ko ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4. Tenka-nsert usulda mavzu bo ycha ma lum bo lgan tushunchalarn faollashtrad. (3-lova ). Tnglovch faolyatnng mazmun Tnglaydlar. Yozb oladlar. Tnglaydlar. Yozb oladlar. nqlashtradlar, savollar beradlar. 3

4 -bosqch. sosy bo lm (5 mn) 3-bosqch. Yakunlovc h ( mn).. Savol yuzasdan ma ruza qlad...ma ruza rejasnng hamma savollar bo ycha tushuncha berad. (4 - lova)... Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5 - lova)..4.tayanch boralarga qaytlad..5. Talabalar shtrokda ular yana br bor takrorlanad. 3.. Mashg ulot bo ycha yakunlovch ulosalar qlad. Mavzu bo ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3.. Mavzu bo ycha blmlarn chuqurlashtrsh uchun adabyotlar ro yatn berad Keyng mazvu bo ycha tayyorlanb kelsh uchun savollar berad. Tnglaydlar. Javob beradlar Yozadlar. UMKga qaraydlar Har br tayanch tushuncha va boralarn muhokama qladlar. Savollar beradlar. UMKga qaraydlar. UMKga qaraydlar. Uy vazfalarn yozb oladlar 4

5 -Ma ruza. STTIKNING SOSIY TUSHUNCH V QOIDLRI. STTIK KSIOMLRI Reja:. Meankanng rvojlanshga Sharq, Yevropa va o zbek olmlarnng qo shgan hssalar..statkanng asosy tushuncha vaqodalar. 3.Statka aksomalar. dabyotlar: 3, 4, 5, 6, 8, 9,,,. Tayanch boralar: meank harakat, absolyut qattq jsm, moddy nuqta, massa, nertlk, kuch, radus-vektor, harakat mqdor statka aksomalar. Belglar: Ms - Muammol savol Mt- Muammol topshrq Mv- Muammol vazyat Mm- Muammol masala 5

6 Baholash mezon: Har br savol javobga - ball Har br qo shmcha fkrga - ball Har br javon to ldrshga - ball -lova -lova Mavzun jonlashtrsh uchun blts so rov savollar.. «Nazary meanka» fan deganda nman tushunasz?. Bu fannng lm-fan-shlab chqarshdag o rn. 3. Nazary meanka fan elementlar qo llanladgan sohalarga anq msol keltrng. 4. Bu fan qays fanlar blan chambarchas bog langan? 5. Bu fannng vazfas nmadan borat? 6.Ushbu fann o qgan talaba nmalarn blsh kerak? Insert tenkas bo ycha mavzun o qb chqng va jadvaln to ldrng. 3-lova sosy tushunchalar Belg. Sharq olmlarnng meanka fan rvojga qo shgan hssalar. Meanka fan asoschlar 3. Meanka fan rvoj uyg onsh davrda 4. Fan rvojnng zamonavy bosqch 5. Statka elementlar Kuch 6

7 Inertlk Moddy nuqta Kuch brlklar 6. -qonun 7. -qonun 8. 3-qonun Insert jadval qodas V- avval olgan blmga to g r kelad. + - yang ma lumot? tushunarsz (anqlansh zarur bo lgan ma lumotlar). 4-lova 7

8 . Meankanng rvojlanshga Sharq, Yevropa va o zbek olmlarnng qo shgan hssalar. Dnamka meankanng bo lm bo lb, unda moddy jsmlarnng harakat unga ta`sr etuvch kuchlarga bog lab o rganlad. Dnamka meankanng ko pgna amaly masalalarn yechshda muhm ahamyatga ega bo lgan umumy bo lm hsoblanad. Buyuk Italan olm Golley (564-64) dnamkanng asoschs hsoblanad. U moddy nuqtanng to g r chzql noteks harakat uchun tezlk va tezlansh tushunchalarn krtd hamda jsmlarnng bo shlqda erkn tushsh qonunlarn yaratd. Galley dnamknng brnch qonun - nersya qonunga ta`rf berd gorzontga burchak ostda otlgan jsmlarnng bo`shlqda parabola bo`ylab harakatlanshn anqlad. Gollandyalk olm Gyuygeus (69-695) nersya moment tushunchasn krtgan, tebrangchlar nazaryasn va soatn yaratgan. U egr chzql harakatdag nuqta uchun tezlanshnng moment tushunchasn umumlashtrb, markazdan qochma kuchn krtgan. Buyuk nglz olm, Nyuton (643-77) Galleynng dnamkanng yaratsh sohasdag shlarn davom ettrd. O`znng buyuk asar phlosophnae naturals prncpa mathematka da klassk meankanng qonunlarga ta`rf bergan va bu qonunlar asosda dnamkanng sstemal bayonn berd. Nyuton butun olam tortlsh qonunn yaratgan. Moddy nuqta dnamkasdan meank sstema dnamkasga o`tshn ta mnlovch Nyuton tomondan yaratlgan ta sr va ansta sr qonun katta ahamyatga ega. Dekartnng harakat mqdorn saqlansh haqdag fkrn rvojlantrb, Nyuton harakat mqdornng o`zgarshn ta sr etuvch kuchga bog lqlgn anqlad. XX asrnng boshlarda nemes fzg lbert Eynshteyn tomondan yaratlgan relyatvstk meanka (nsbylk nazaryas) fazo, vaqt, massa va energya haqdag tasavvurkarn butunlay o zgartrb yubord. Lekn yorug lk tezlgdan kchk tezlklar uchun klassk meanka qonunlar asosda olngan natjalar, relyatvstk 8

9 meanka qonunlar blan olngan natjalar blan mos kelad. Galley-Nyuton qonunlar yordamda hozrg zamon nazarya meankasnng asosn tashkl etuvch teoremalar sbotland va meanka prnsplar asosland. Knetk energyanng o zgarsh qonun Ivan Bernull ( ) va Danl Bernull (3-78) lar tomondan ta rflangan. Harakat mqdornng o zgarsh haqdag teorema deyarl br vaqtnng o zda (746) Eyler va Danl Bernull tomondan tarflangan. 76 yl Peterbur fanlar akademyas akademg Ya. German dnamka tenglamalarn statka tenglamalar ko rnshga keltruvch, umumy metod, meanka (knetostatka metod)n krtgan. 737y Eyler (77-783) bu prnspn umumlashtrd va egluvch jsmlarnng tebranshga qo llad. 743y Dalamber (77-783) German Eyler prnspn qo llanlsh sohasn kengaytrd, yan bu prnspn bog langan jsmlardan tashkl topgan murakkab sstemalarga qo llad. Bu prnsp Dalamber prnsp (yok nachala Dalambera) nom blan yurtlad. Lagranj (736-83) German Eyler - Dalamberprnspn statkanng umumy prnspn mumkn bo lgan ko chsh prnsp blan brlashtrb, amalyotda qo lash uchun qulay bo lgan ko rnshga keltrd. Mumkn bo lgan ko chsh prnsp brnch Stevn (548-6) tomondan krtlgan Galley Stevnnng og ma tekslkdag mulohazalarn davom etkazb meankanng oltn qodasga ta rf bergan: kuchdan yutlsa tezlkdan yutqazlad. kademk M.V Ostrogradsky (548-86) mumkn bo lgan ko chsh prnspn umumlashtrb, meankanng yang masalalarn yechshga qo llagan. Meank sstemanng umumlashgan koordnatalardag tenglamalarn Lagranj tomondan keltrb chqarlgan. Lagranj tenglamalar meank sstema harakatn umumy ko rnshda fodalayd. Bu tenglamalar meank sstemanng amalyotda muhm ahamyatga ega bo lgan kchk tebranshlarn o rganshda qo llanlad. XX asrda meankanng rvojlanshda katta hssa qo shgan o zbek olmlar: M. T. O razboyev, X.. Ramatuln, X. X. Usmonodjayev, T. R. Rashdov, 9

10 Statkanng asosy aksomalar Bu bobda statkanng asosy tushunchalar, aksomalar, bog lanshlar va ularnng turlar, br nuqtada kesshuvch kuchlar sstemas va ularnng muvozanat shartlar, markazga va o qqa nsbatan kuch hamda kuchlar sstemasnng moment, tekslkda kuchlar sstemasnng ossalar, kuchnng va kuchlar sstemasnng nuqtaga hamda o`qqa nsbatan momentga dor masalalarnng yechm keltrlgan.. Statkanng asosy tushunchalar va aksomalar Moddy nuqta, meank sstema, qattq jsm, kuch, kuch-lar sstemas va bog lanshlar. Statka bo lmda kuchlar sstemas ta srdag meank sstemanng yok meank sstemaga qo ylgan kuchlar sstemasnng muvozanat shartlar o rganlad. Statkanng asosy tusgunchalar: moddy nuqta, meank sstema, qattq jsm va kuchlar hsoblanad. Moddy nqta deganda o lchamlar va shakl e tborga olnmaydgan va massas br nuqtaga joylashgan deb qaraladgan jsm tushnlad. Har br nuqtasnng harakat qolgan nuqtalarnng holat va harakatga bog lq bo lgan moddy nuqtalar to plamga mea-nk sstema deylad. Ityory kkta nuqtas orasdag masofa o zgarmas va massas uzluksz taqsmlangan meank sstemaga absolyut qattq jsm deylad. Moddy jsmlarnng o zaro ta srn arakterlovch kattalkka kuch deylad. Nazary meankada kuch tushunchas asosy brlamch tushuncha hsoblanad. Kuch vektor kattalk bo lb, u o znng son qymat (mqdor) yok modul, qo ylsh nuqtas va yo nalsh blan arakterlanad. Kuch vektor blan ustma-ust tushuvch to g r chzqqa, shu kuchnng ta sr chzg deb atalad. Kuchlar sstemas deb qaralayotgan qattq jsmga yok meank sstema nuqtalarga qo ylgan kuchlar to plamga aytlad. Btta nuqtaga qo ylgan kuchlar sstemasn ham qarash mumkn.

11 Jsmga ta sr etuvch F, F,..., F n kuchlar to plamga kuchlar sstemas deylad. Berlgan F, F,..., F n kuchlar sstemas ta srdan qattq jsm yok meank sstema o znng tnch holatn yok nersal harakatn o zgartrmasa, bunday sstemaga nolga ekvvalent yok muvozanatlashgan kuchlar sstemas deylad va quydagcha yozlad: Q F, F,..., F n ~. Qattq jsmga qo ylgan F, F,..., F n kuchlar sstemasnng ta srn boshqa br, Q,..., Q k kuchlar sstemasnng ta sr blan almashtrsh mumkn bo lsa, bunday kuchlar sstemalarga ekvvalent kuchlar sstemalar deylad va quydagcha yozlad: F, F,..., F n ~ Q, Q,..., Q k. Kuchlar sstemasnng jsmga ko rsatadgan ta srn btta kuchnng ta sr blan almashtrsh mumkn bo lsa, bu kuch berlgan kuchlar sstemasnng teng ta sr etuvchs deylad. F, F,..., F n kuchlar sstemasnng teng ta sr etuvchsn R blan belglasak, u holda F F,...,, F n ~ R deb yozlad. Statka aksomalar: -aksoma (Ikk kuchnng muvozanat haqdag aksoma). Qattq jsmnng tyory kkta nuqtasga qo ylgan, mqdorlar teng va shu nuqtalardan o tuvch to g r chzq bo ylab qarama-qarsh tomonga yo nalgan kkta kuch muvozanatlashgan kuchlar sstemasn hosl qlad (-shakl). Xususy holda qattq jsmnng btta nuqtasga qo ylgan, mqdorlar teng va br to g r chzq bo ylab qarama-qarsh tomonga yo nalgan kkta kuch muvozanatlashgan kuchlar sstemasn tashkl etad (-shakl). F B F O F F -shakl -shakl

12 -aksoma (Nolga ekvvalent kuchlar sstemasn qo shsh yok ayrsh haqdag aksoma). Qattq jsmga qo ylgan kuchlar sstemasga nolga ekvvalent kuchlar sstemas qo shlsa yok ayrlsa, kuchlar sstemasnng jsmga ko rsatladgan ta sr o zgarmayd, boshqacha aytganda dastlabk kuchlar sstemasga ekvvalent kuchlar sstemas hosl bo lad. Natja. Qattq jsmnng bror nugtasga qo ylgan kuchn mqdor va yo nalshn o zgartrmasdan jsmnng kuch ta sr chzg da yotuvch tyory nuqtasga ko chrganda kuchnng jsmga ko rsatadgan ta sr o zgarmayd. Isbot. Qattq jsmnng bror nuqtasga F kuch qo yl-gan bo lsn. Jsmnng kuch ta sr chzqda yotgan tyory B nuqtasga shunday F ~, F qo yapmzk, bunda F F F va F F, F F bo lsn (3-shakl). -aksomaga asosan F ~ F F, F,, brnch B aksomaga asosan F, F. F F ~ Natjada 3-shakl F ~ F F, F, F ~. F ssteman 3-aksoma. Ikkta nolga ekvvalent kuchlar sstemas o zaro ekvvalent bolad, ya n F, F,..., Fn ~, P, P,..., Pm F, F,..., F ~ P, P,..., P. n m ~ 4-aksoma (Parallelogram aksomas). Qattq jsmnng btta nuqtasga qo ylgan kkta parallel bo lmagan kuchlar teng ta sr etuvchsnng modul bu kuchlarga qurlgan parallelogram dagonalga teng hamda shu dagonal bo ylab F, F ~ R, R F F yo nal-gan bo lad (4-shakl):, F R R F F F F cos, α F sn F,^F sn R,^F, F R 4-shakl

13 sn. R F sn F,^F R,^F 5-aksoma (Ta sr va aksta sr prnsp). Ikk qatq jsm-nng o zaro ta sr mqdor jhatdan teng va br to gr chzq bo ylab qarama-qarsh tomonga yo nalgan bo lad (5-shakl). B B F F B F F B 5-shakl 6-aksoma (Qotsh prnsp). Qattq bo lmagan jsm kuchlar sstemas ta srdan muvozanatda bo lsa, jsm qattq holatga o tganda ham unng muvozanat buzlmayd. Bog lansh aksomas. Erksz qattq jsmga qo ylgan bog lanshlar ta srn bog lansh reaksyalar blan almashtrb jsmn berlgan aktv kuchlar va bog lansh reaksyalar ta sr-dag erkn qattq jsm deb qarash mumkn. Аsоsy brlklаr sstеmаs. Mехаnk mqdоrlаrn o`lchоv uchun uchtа аsоsy brlklаrn krtsh еtаrl. Bulаrdаn kktаs uzunlk vа vаqt brlklаr bo`lsа, uchnch o`lchоv brlg sfаtdа mаssа yok kuchnng o`lchоv brlg tаnlаnаd. Kuch vа mаssа o`zаrо dnаmkаnng аsоsy tеnglаmаs kuch = mаssа tеzlаnsh blаn bоg lаngаnlg uchun ulаrdаn bttаsn tаnlаsh еtаrl. Shunng uchun hаm kktа аsоsy o`lchоv brlklаr sstеmаsn krtsh mumkn. а) Brnch хl o`lchоv brlklаr sstеmаs. Bu sstеmаdа аsоsy o`lchоv brlklаr: mаsоfа, vаqt vа mаssа; kuch hоslаvy brlk hsоblаnаd. Bundаy brlklаr sstеmаsgа fzk mqdоrlаrnng хаlqаrо o`lchоv brlklаr sstеmаs (SI) krаd. Bungа аsоsаn mехаnk mqdоrlаrnng o`lchоv brlklаr: mеtr, klоg-rаmm mаssа vа sеkund. 3

14 SI sstеmаsdа kuchnng o`lchоv brlg sfаtdа kg mаssаgа m/sеk tеzlаnsh bеruvch kuch mqdоr qаbul qlngаn. Kuchnng bu o`lchоv brlggа n yutоn dеylаd. N sek kg m / sek kg m /. Brnch хl o`lchоv brlklаr sstеmаsgа fzkаdа kеng qo`llаnlаdgаn SGS sstеmаs hаm krаd. Bu sstеmаnng аsоsy o`lchоv brlklаr: sаntmеtr, grаmm mаssа vа sеkund. Kuch brlg dnа. dnа = -5 N. b) Ikknch хl o`lchоv brlklаr sstеmаs. Аsоsy o`lchоv brlklаr: mаsоfа, vаqt vа kuch. Bu sstеmаgа tехnkаdа kеng tаrqаlgаn tехnk o`lchоv brlklаr sstеmаs MKGS krаd. Bundа аsоsy brlklаr: mеtr, klоgrаmm kuch vа sеkund. Massаnng o`lchоv brlg kg sek. m SI vа MKGS o`lchоv brlklаr sstеmаlаrdа kuchnng o`lchоv brlklаr quydаgchа bоg lаngаn: kg kuch 9, 8 N yok N, kg kuch. Nazorat savollar.. Nazary meanka fan nman o rgatad?. Meanka harakat deb nmaga aytlad? 3. Meanka so z qanday manon bldrad? 4. Meanka so z km tomondan fanga krtlgan? 5. Nazary meanka fannng rvojlanshga ulkan hssa qo shgan qanday olmlarn blasz? 6. Kuch deb nmaga aytlad? 7. Statka deb nmaga aytlad? 8. Kuchnng jsmga ta sr qanday faktorlar blan anqlanad? Xulosa Hozrg zamon fan va tenkas taraqqyotda,,nazary meanka fan muhm o rn egallamoqda. Bu fan taraqqyotnng muhm rchaglardan br. 4

15 Fannng rvojlansh tar unng ldzn chuqurroq o rganshga ko maklashsh. Statka o quv rejanng zarury qsm va boshqa fanlar blan uzvy bog lq. Statka tushunchalar, elementlar va aksomalar masalaalrn yechsh blm olshnng asosy tayanch - Mavzu Br nuqtada kesshuvch kuchlar sstemas mavzusnng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Mavzu rejas Ma ruza (aborotl dars). Br nuqtaga qo ylgan kuchlar sstemas. Br nuqtaga kesshuvch kuchlar sstemasnng muvozanat shartlar. 3. Uchta kuch haqdag teorema. O`quv mashg`ulotnng maqsad Br nuqtaga qo ylgan kuchlar sstemas va unng muvozanat shartlar haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Kuch, kuchnng ta sr chzg va Br nuqtaga kesshuvch kuchlar sstemas statka aksomalarn takrorlash. haqda tushunchaga ega. Br nuqtaga kesshuvch kuchlar Muvozanat shartlarn eslab qolad va haqda tushuncha bersh. amalyotga qo llay olad. Uchta kuch haqdag teoreman Uchta kuch haqdag teoreman yoddan sbotlash vamsollar keltrsh. blad vaunga msollar keltrad. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov, Pnbord tenkas, aqly hujum. 5

16 O qtsh shakllar O qtsh sharot Montogng va baholash Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov..,,br nuqtaga kesshuvch kuchlar sstemas mavzusnng tenologk artas Ish bosqchlar - Mavzuga bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Vazfalarn yozb oladlar 6

17 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. -Ma ruza Br nuqtaga kesshuvch kuchlar sstemas. 3.Uchta kuch haqdag teorema. Reja:. Br nuqtaga qo ylgan kuchlar sstemas.br nuqtaga kesshuvch kuchlar sstemasnng muvozanat shartlar. dabyotlar: [],9-96 sah, [5], 6- sah. Tayanch boralar: Kuch, kuchlar sstemas, teng ta sr etuvch kuch, ekvvalent kuchlar. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar: 7

18 . Ekvvalent kuchlar sstemas deb nmaga aytlad?. Kuch deb nmaga aytlad? 3.Teng ta sr etuvch kuch deb nmaga aytlad. 4. Kuchlar sstemas qachon muvozanatda bo lad? 5. Kuchnng ta sr chzg debnmaga aytlad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Kuch va unng brlklar. Kuchlar sstemas. 3 Teng ta sr etuvch kuch. 4 Ekvvalent kuchlar. 5 Kuchlar ko pburchag. 6 Br nuqtaga qo ylgan kuchlar sstemas. 7 Kesshuvch kuchlar sstemasnng muvozanat. 8 Uchta kuch haqda teorema. Insert jadval qodas 8

19 V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 9

20 - Mavzu.Br nuqtada kesshuvch kuchlar sstemas Ta sr chzqlar br nuqtada kesshuvch kuchlar sstemasga br nuqtada kesshuvch kuchlar sstemas deylad. Br nuqtada kesshuvch kuchlar sstemasn teng ta sr etuvchsn topamz. Qattq jsmga ta sr etuvch br nuqtada kesshuvch F, F,..., F n kuchlar sstemas berlgan bo lsn. vval parallelogram aksomasdan foydalanb berlgan kuchlar sstemasnng brnch kktasnng teng ta sr etuvchs-n topamz. Teng ta sr etuvchnng modul R, R F F F F CosF,^ F F F ga teng, yo nalsh esa quydag munosabatlardan toplad sn F F,^ R snf,^ R snf,^ F F R. End R kuch blan F 3 kuchn yok F, F, F3 topamz F, F ~ R, bu yerda Shunga o shash R F F 3 R R 3 F F ; kuchlarnng teng ta sr etuvchsn F F F 3 F n R F n bu yerda va hokazo. bu yerda R 3-shakl R, F R 3~ 3, 3 F F F3 R 3... (n- ) R F,, F ~ R n F F 3... n F n F (.3.) bo lad. Shunday qlb, br nuqtada kesshuvch kuchlar sstemas btta kuchga ekvvalent, ya n teng ta sr etuvchga ega. Bu teng ta sr etuvch berlgan sstemas kuchlarnng geometrk yg ndsga teng.

21 Br nugtada kesshuvch kuchlar sstemasnng teng ta sr etuvchsn kuch ko pburchagn qursh usul blan ham topsh mumkn. Bunng uchun F kuchn kuchlar sstemasnng markaz deb olb, F kuchn o z-o zga parallel ravshda shunday ko chramzk, F kuchnng bosh F kuchnng or blan ustma-ust tushsn. Xudd shunday F 3 kuchn o z-o zga parallel ravshda ko chramz, natjada F 3 kuchnng bosh F kuchnng or blan ustma-ust tushsn va hokazo, shu shn davom ettrb, or F n kuchn kochrganmzda bu kuchnng bosh F n kuchnng or blan ustma-ust tushsn. Kuchlar sstemas markazdan chqb F n kuchnng orn tutashtruvch R kuch berlgan kuchlar sstemasnng teng ta sr etuvchs bo lad. Shunday usul blan qurlgan ko pburchakka kuch ko pburchag deylad (3-shakl). Kuchlar sstemas teng ta sr etuvchsnng modul va yo nalshn analtk usul blan ham topsh mumkn. Geometrya kursdan bzga malumk, vektorlar yg nds-nng koordnata o qlardag proyeksyalar berlgan vektorlarnng mos o qlardag proeksyalar yg ndsga teng, ya n R n F, R y n F, R y z Teng ta sr etuvchnng modl va yonalsh quydagcha toplad R R cos( R,^ ), R R R y R z R cos(, ^ y R y), R, n F z Rz cos( R,^ z). R. Br nuqtada kesshuvch kuchlar sstemasnng muvozanat shartlar Teorema. Br nuqtada kesshuvch kuchlar sstemas muvozanatda bo lsh uchun berlgan kuchlar sstemasnng teng ta sr etuvchs nolga teng bo lsh zarur va yetarl, yan R n F.. (.3.) To g r burchakl Oyz dekart koordnatalar sstemasn tanlab, (.3.) tenglaman koordnata o qlarga proyeksalaymz, natjada uchta skalyar tenglamalar sstemasn hosl qlamz, ya n n R ; R ; R. (.3.3) F n у F у n z F z Muvozanatdag qattq jsm erkn bo lmasa, bog lanshlar aksomasdan foydalanb, bog lanshlarnng jsmga ko rsatad-gan ta srn ularnng reaksya kuch blan almashtramz. Natjada avval ham aytlgandek, bunday jsmn berlgan kuchlar va bog lansh reaksya kuchlar ta srdag erkn jsm deb qarash mumkn. (.3.3) tenglamalardan foydalanb kuchlar sstemasnng muvozanat shartlarn quydagcha fodalash ham mumkn: br nuqtada kesshuvch kuchlar sstemas

22 muvozanatda bo lsh uchun berlgan kuchlarnng mos koordnata o qlardag proyeksyalar yg nds alohda-alohda nolga teng bo lsh zarur va yetarl. gar qattq jsmga qo ylgan kuchlar sstemas br tekslkda joylashgan bo lsa, koordnata o qlardan bttasn, masalan, z o qn kuchlar tekslgga perpendkulyar qlb olsh kerak. U holda (.3.3) tenglamalarnng uchnchs aynan nolga teng bo lad, ya n R n z F z. Natjada quydag tenglamalar sstemas hosl bo lad: n R F ; R F. (.3.4) (.3.4) tenglamalar sstemas br tekslkda joylashgan va br nuqtada kesshuvch kuchlar sstemasnng muvozanat shartlarn fodalayd. 3.Uch kuch haqdag teorema. Br tekslkda yotgan uchta kuchlar sstemas muvozanatda bo lsa, ularnng ta sr chzqlar br nuqtada kesshad. F y n y 3 O R F 3 F 4-shakl Isbot. Br tekslkda yotgan uchta F, F, F3 kuch muvozanatda bo lsn. Berlgan F va F kuchlarn ta sr chzqlar bo ylab kesshsh nuqtasga ko chrb, ularn parallelogram qodasga ko ra qo shamz, natjada F, F, F3 ~ R, F3 ~ ga kelamz, bu yerda R ~ F F, va aytlgandek R, F 3 kuchlar muvozanatlashgan kuchlar sstemasn hosl qlad. -aksomaga asosan bu kk kuch br to gr chzq bo ylab qarama-qarsh tomonga yo nalgan va demak F 3 kuchnng ta sr chzg ham O nuqtadan o tad.

23 Nazorat savollar..qanday kuchlar sstemasga br nuqtada kesshuvch kuchlar sstemas deylad?.qanday ko`pburchakga kuch ko`pburchag deylad? 3.Br nuqtada kesshuvch kuchlar sstemasnng teng ta`sr etuvchs qanday toplad? 4.Kuch ko`pburchagda teng ta`sr etuvchs qanday tasvrlanad? 5.Kesshuvch kuchlar sstemasnng muvozanat tenglamalar qanday yozlad? Xulosa Kesshuvch kuchlar sstemas amalyotda ko`p uchrayd,shunng uchun ham unng fanda alohda o`rn bor.mavzun o`rgansh jarayonda quydag natjalarga e`tbor bershmz kerak: ) Kesshuvch kuchlar sstemasnng muvozanatda bo`lsh uchn unng teng ta`sr etuvchs (t.t.e.) nolga teng bo`lsh zarur va etarldr. ) Yopq kuchlar ko`pburchagda hamma kuchlar ko`pburchaknng kontur bo`ylab br tomonga yo`nalgan bo`lad. 3) Xususy hol. Ta`sr chzqlar kesshuvch uchta kuchlar sstemas muvozanatda bo`lad, agap kuchlar uchburchag yopq bo`lsa. 4) Muvozanat shartlar faqat btta jsmga ta`sr etuvch kuchlar sstemas uchun qo`llanlad. 3

24 3-Ma ruza Parallel kuchlar sstemas. Reja:. Br tomonga yo`nalgan kkta parallel kuchlarn qo`ysh.. Qarama-qarsh tomonlarga yo`nalgan kkta parallel kuchlarn qo`ysh. 3.Parallel kuchlar sstemas. dabyotlar: [], 4- sah; [5], 7-9, sah; [7], 4-43,68-73 sah. Tayanch boralar: Parallel va antparallel kuchlar, t.t.e. kuch, t.t.e.-nng modul va yo`nalsh, kuchnng ta`sr chzg`,kuch yelkas Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Teng ta sr etuvch (t.t.e.)deb nmaga aytlad?. Br nuqtaga qo`ylgan kkta kuch nolga ekvvalent bo`ladm? 3. T.T.E.-nng qo`ylgan nuqtas qanday anqlanad? 4. Parallel kuchlar sstemasnng og`rlk markaz deb qays nuqtaga aytlad? 4

25 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Br tomonga yo`nalgan kkta parallel kuchlar sstemas. Qarama-qarsh tomnlarga yo`nalgan kkta parallel kuchlar sstemas. 3 Br tomonga yo`nalgan kkta parallel kuchlar sstemasnng T.T.E. 4 Qarama-qarsh tomonlarga yo`nalgan parallel kuchlar sstemasnng t.t.e. 5 Teng ta sr etuvchnng nuqtas. 6 Ikkta parallel kuchlar t.t.e.-nng modul 7 Ikkta antparallel kuchlar t.t.e.-nng modul 8 Parallel va antparallel kuchlar t.t.e.-nng yo`nalsh. 9 Parallel kuchlar sstemasnng og`rlk markaz. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 5

26 3 mavzu Parallel kuchlar sstemas. Parallel kuchlar sstema mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Ma ruza (ma ruzal dars) Mavzu rejas. Br tomonga yo`nalgan kkta parallel kuchlarn qo`shsh.. Qarama-qarsh tomonga yo`nalgan kkta parallel kuchlan qo`shsh. 3. Parallel kuchlar sstmas. O quv mashg ulotnng Parallel va antparellel kuchlar sstemas haqda maqsad tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Kuch haqda Mavzunng ahamyat va mohyatn tushunad. tushunchalarn takrorlash Parallel va antparallel kuchlarn qo`shsh Parallel kuchlarn qo`shsh qodalarn yodlayd va eslab qolad. qodalarn tushuntrad. Parallel kuchlar sstemas t.t.e., qo`ylgan nuqtas, Parallel kuchlar sstemasn amalyotda qo`llashga ko`nkma hosl qlad. yo`nalshn anqlash O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,tenka-nsert O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan ta mnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash 6

27 .. Parallel kuchlar sstemas mavzusnng tenalogk artas. Ish bosqchlar - bosqch (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) O qtuvch faolyatnng mazmun.. O quv mashg ulot savollarn tahll qlad va o qo v faolyat natjalarn aytad... Tnglovchlarnng mashg ulotdag faolyatn baholash ko rsatgchlar va mezonlar blan tanshtrad (- lova)..3. Mavzu bo ycha tayyorlangan topshrqlarn tarqatad.(-lova)..4. Savollar berb suhbat tarzda tnglovchlar blmlarn jonlantrlad.. Topshrqlarn anqlayd va guruhda shlashn tashkl etad. Yechmn tekshrad va baholayd.(3- lova)... Topshrqlar mazmunn tushuntrad va bajarsh bo ycha maslahatlar berad. 3.. Mavzu bo ycha yakunlovch ulosalar qlad. 3.. Mavzu maqsadga ershshdag tnglovchlar faolyat tahll qlnad va baholanad Mavzu bo ycha blmlarn chuqurlashtrsh uchun adabyotlar berad. Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Topshrqlar tanshadlar Javob beradlar ta mn guruga ajraladlar. blan Topshrqda keltrlgan savvollarga - javob tayorlayd. Savollar beradlar UMKga qaraydlar. Mustaql sh topshqlar va uy vazfalarn yozb oladlar. 7

28 3-Mavzu. Br tоmоngа yo`nаlgаn kktа pаrаlеl kuchlаr sstеmаs. bsolyut qattq jsmnng kkta har l nuqtalarga qo ylgan kkta P va Q pаrаllеl kuchlar sstemasn qaraymz (4-shakl). Kuchlar qo ylgan nuqtalarn va B blan belglaymz. va B nuqtalarga mqdorlar teng hamda B to g r chzq bo ylab qarama-qarsh tomonga yo nalgan S va S kuchlarn qo yamz. Bunday kkta kuch muvozanatlashgan kuchlar sstemasn hosl qlad, ya n S,S ' ~. P, S va Q, S ' va B nuqtalarga qo ylgan kuchlarn qo shb, ularnng teng ta sr etuvchlar R va R larn hosl qlamz. Ikknch aksomaga asosan P, Q~ P, Q, S, S ' va demak P, Q~ R, R. R va R kuchlarn ta sr chzqlar bo ylab ularn O kesshsh nuqtasga ko chramz (4-shakl). S O S Q R S R P C B S R Q P R R 4-shakl Keyn R va R kuchlarn B to g r chzq va P, Q kuchlarga parallel P va S, Q va S ' tuzuvchlarga ajratamz. Shunday qlb, btta nuqtaga qo ylgan kuchlar sstemasga ega bo lamz. S, S' muvozanatlashgan kuchlar sstemasn tashkl qlad, shunng uchun P Q, S, S ' ~ P, Q,. P va Q kuchlar P va Q kuchlarga parallel to g r chzq bo ylab br tоmоngа yo`nаlgаn uchun ularnng tеng tа sr etuvchs R P Q bo lad. Demak, unng mоdul berlgan kuchlar modullar yg ndsgа tеng, ya n R P Q. (.3.) Tеng tа sr etuvchnng yo nalsh bеrlgаn kuchlаrga paralleldr. Mos uchburchaklarnng o shashlgdan P S Q S',. OC C OC SB 8

29 Bu proporsyalarn brnchsn kknchsga bo lb, quydagn hosl qlamz: P CB P Q, bundan. Q C CB C Org proporsyadan quydag hoslavy proporsyaga kelamz: P Q R va C CB B P Q P C CB CB bo lgan uchun Q C P CB, Q C R B. (.3.) Shunday qlb, br tоmоngа yo`nаlgаn kkta parallel kuch teng ta sr etuvchga ega bo lb, teng ta sr etuvchnng mоdul berlgan kuchlar modullar yg ndsgа tеng, yo nalsh bеrlgаn kuchlаrga parallel va ular blan br l bo lad. Teng ta sr etuvchnng ta sr chzg B kesman berlgan kuchlarnng modullarga nsbatan chk ravshda teskar proportsonal bo laklarga ajratad. End berlgan R kuchn kkta parallel tuzuvchga ajratsh masalasn qaraymz. Bu masalan cheksz ko p usullar blan echsh mumkn, ya n masala umumy holda anqmas masala hsoblanad. Masala anq masala bo lsh uchun tuzuvch kuchlardan C B bttasn modul va qo ylsh nuqtas yok kkala tuzuvchnng P Q ham qo ylsh nuqtas berlsh kerak. Masalan, C nuqtaga 4-shakl qo ylgan R kuchn unga parallel shunday kkta tuzuvchga ajratlgank, ulardan br nuqtaga qo ylgan bo lb, modul P ga teng. Ikknch qo shluvchnng modul Q va qo ylsh nuqtas B quydag munosabatlardan toplad (4-shakl): R P Q R P Q,, CB C bulardan P Q R P, CB C. Q End R kuchn va B nuqtalarga qo ylgan kkta parallel tuzuvchlarga ajratsh talab etlsn. Tuzuvch kuchlarnng modullar quydag munosabatlardan toplad: CB C P R, Q R. B B. Qаrаmа-qаrsh tоmоngа yo`nаlgаn kktа pаrаllеl kuchlar sstemas. Qаrаmа-qаrsh tоmоngа yo`nаlgаn kktа pаrаllеl kuchga antparallel kuchlar deylad. va B nuqtalarga qo ylgan mqdorlar teng bo lmagan kkta antparallel kuchlar berlgan bo lsn (43-shakl). Modul katta bo lgan P Q kuchn kkta R va Q ' tuzuv- C B chga shunday ajratamzk, bu R Q kuchlardan bttas Q ' nng P modul Q nng modulga 43-shakl teng va Q kuch blan br to g r chzq bo ylab qаrаmа-qаrsh tоmоngа yo`nаlgаn bo lsn, ya n Q Q', Q Q'. U holda Q va Q ' kuchlar nol ssteman hosl qlad, 9

30 ya n,q' ~. R kuchnng modul va qo ylsh nuqtas (.3.) va (.3.) Q formulalardan toplad, ya n R kuch P Q P BC R P Q. (.3.3) Q R. C B (.3.4), antparallel kuchlarnng teng ta sr etuvchs bo lad, ya n P Q~ R, Q, Q' ~ R,. Shunday qlb, kkta antparallel kuchlar sstemas teng ta sr etuvchga ega bo lb, unng modul berlgan kuchlar modullar ayrmasga teng, yo nalsh berlgan kuchlarga parallel va katta kuch blan br l bo lad. Teng ta sr etuvchnng qo ylsh nuqtas B kesmanng davomdag C nuqtada bo lb, B kesman tashq ravshda kuchlar modullarga nsbatan teskar proportsonal bo laklarga ajratad. MS:R= bo`lsh mumknm? c 3

31 3. Parallel kuchlar markaz Teng ta sr etuvchga keltrladgan parallel kuchlar sstemasnng markaz tushunchasn krtaylk. Qattq jsmnng,,..., n nuqtalarga qo ylgan F, F,..., F n parallel kuchlar sstemas berlgan bo lsn. vval br tomonga yo nalgan parallel kuchlarn qaraymz (6-shakl). F va F kkta kuchn qo shamz. va nuqtalarnng koordnatalarn mos ravshda, y, z va, y, z blan radus-vektorlarn esa r va r blan belglaymz (6-shakl). F va F kuchlarnng teng ta sr etuvchsn R blan belglaymz. U holda R kuchnng modul R P P. R kuchnng qo ylsh nuqtasn topamz. 6-shaklga asosan C r r C r r (.7.) z C F r F c, c 3 n R C 3 r r C r C3 3 F n r 3 R 3 F 3 O y 6-shakl Ikknch tomondan - dag (..) formulaga asosan C nuqtanng holat quydag munosabatdan toplad: C, C va C P C P. vektorlar kollenarlgdan C C P P yok (.7.) munosabatlarga asosan rc r r rc P P bundan End R va F 3 yok F, F, F3 nuqtalarn topamz R, F 3 F, F,..., R va 3 ta sr etuvchs 3 R R F3 F Teng ta sr etuvchnng qo ylsh nuqtas, Pr P r r c P P. (.7.) kuchlarn teng ta sr etuvchsn qo ylsh ~ F n ~ R 3 F br tomonga yo nalgan parallel kuchlar bo lgan uchun ularnng teng R ham shu yo nalshga ega va unng modul quydagcha toplad: F. 3 F3

32 Rrc F 3r3 rc 3 R F formuladan toplad. (.7.) formulaga asosan F r Fr F3r 3 r c. (.7.3) 3 F F F3 End to la nduksya metoddan foydalanb, (.7.3) formulan n ta kuch uchun ham o rnl ekanlgn sbot qlsh mumkn. Bunng uchun (.7.3) formula k ta kuch uchun o rnl deb k+ ta kuch uchun ham o rnl bo lshn ko ramz. Faraz qlaylk, (.7.3) formula k ta kuch uchun o rnl, ya n k F r F r Fr... Fk rk rc k (.7.4) k F F... Fk F bo lsn. F, F,..., Fk kuchlarnng teng ta sr etuvchs R k shu kuchlar blan br l yo nalgan bo lb, unng modul quydagga teng R k F F... Fk F. End R k va F k kuchlarn teng ta sr etuvchsn topamz. R k va F k br tomonga yo nalgan parallel kuchlar ekanlgdan teng ta sr etuvchs ular blan br l yo nalgan, modul esa quydagcha toplad: R k Rk Fk F F... Fk. R k kuchnng qo ylsh nuqtas (.7.) ko ra Rk Fk rc k Rk Fk bo lad. (.7.4) formulga asosan esa k F r F r Fr... Fk rk rc k. k F F... Fk F Shunday qlb, br tomonga yo nalgan F, F,..., F n parallel kuchlar sstemasnng teng ta sr etuvchsnng yo nalash berlgan kuchlarnng yo nalsh blan br l, modul esa modullar yg ndssga teng, ya n R n F Teng ta sr etuvchnng qo ylsh nuqtas. r c k n n F r. (.7.5) F formula blan toplad. (.7.5) tenglknng kkala tomonn koordnatalar sstemas o qlarga proeksyalab, parallel kuchlar markaznng koordnatalarn topamz 3

33 c n yc, n n n n F F y F z, zc, (.7.6) n F F F bu erda, y, z -lar F kuch qo ylgan nuqtasnng koordnatalar. Berlgan kuchlarn qo ylsh nuqtalar atrofda br l burchakka burganda ularnng teng ta sr etuvchs ham udd shunday burchakka o sha yo nalshda burlad, ammo unng qo ylsh nuqtas o zgarmayd. Demak, teng ta sr etuvch qo ylsh nuqtasnng holat parallel kuchlar yo nalshga bog lq bo lmas ekan. Bu nuqtanng holat berlgan kuchlarnng modullarga va qo ylsh nuqtalarnng holatga bog lqdr. gar bzga qarama-qarsh tomonga yo nalgan parallel kuchlar sstemas berlgan bo lsa, ularn qarama-qarsh tomonga yo nalgan kkta parallel kuchlar sstemasga ajratamz. Hosl bo lgan kuchlar sstemalarn teng ta sr etuvchlarn topamz. Natjada R, R antparallel kuchlar sstemasga kelamz. Bu kk kuchn ham btta teng ta sr etuvchga keltrsh mumkn. Unng modul va qo ylsh nuqtas (..3) va (..4) formulalar blan toplad. Yuqorda keltrlgan formulalardan foydalanshda br tomonga yo nalgan kuchlarnng modullar oldga (+) shorasn, kknch tomonga yo nalgan kuchlarnng modullar oldga (-) shorasn qo ysh lozm. (.7.5) formuladag n F r nsbatan statk moment deylad. fodaga parallel kuchlar sstemasnng O nuqtaga n n n F, F y, F z mqdorlarga parallel kuchlar sstemasnng mos ravshda (yz),(z) va (y) tekslklarga nsbatan statk momentlar deylad. (.7.5) va (.7.6) lardan n munosabatlar kelb chqad. n F r r n n c F, F y y, F z z. F c c, n c Nazorat savollar? ) Br tomonga yo`nalgan kkta parallel kuchlar t.t.e.-nng modul nmaga teng? ) T.T.E.qays nuqtadan o`tad? 3) Qarama-qarsh tomonlarga yo`nalgan kkta parallel kuchlarnng modul nmaga teng? 4) Parallel kuchlar sstemasnng og`rlk markaz qanday toplad? 33

34 Xulosa Parallel kuchlar sstemasn o`rgansh jarayonda bz quydag asosy tushunchalarga duch keldk: br tomonga yo`nalgan kkta parallel kuchlarn qo`shsh, qarama-qarsh tomonlarga yo`nalgan kkta parallel kuchlarn qo`shsh, fazoda jaylashgan n-ta parallel kuchlarn qo`shb, t.t.e.-nng qo`ylgan nuqtasn anqlash. Bu nuqtaga parallel kuchlar sstemasnng og`rlk markaz deylad. Demak, ushbu mavzunng asosy natjasn qsqacha quydag ta rflash mumkn: ) Br tomonga yo`nalgan parallel kuchlar sstemas hech qachon muvozanatga kelolmayd yok bror juft kuchga kelmayd.bunday kuchlar sstemas hamma vaqt t.t.e.-ga ega. ) Parallel kuchlar sstemasnng bosh vektor hamma vaqt kuchlarga paralleldr. 34

35 4-Ma ruza Kuchnng markazga va o`qqa nsbatan moment. Juft kuchlar nazaryas. Reja:. Kuchnng nuqtaga nsbatan moment.. Kuchnng o`qqa nsbatan moment 3.Juft kuchlar nazaryas. dabyotlar: [], 4-34 sah; [5], 9-35, 7-76 sah; [7], 6-37,43-48 sah. Tayanch boralar: Kuchnng algebrak moment, kuch moment-vektor, moment proeksyalar, kuchnng o`qqa nsbatan moment, juft kuch, juftnng yelkas, juft moment. Belglar: MS-muommol savol, MV- muommol vazyat, MT- muommol topshrq, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Kuchnng ta sr chzg` nma?. Kuchnng yelkas deb nmaga aytlad? 3. Kuchnng algebrak moment nmaga teng? 4. O`ng vnt qodas nmadan borat? 5. Juft kuch deb nmaga aytlad? 6. Juftnng moment nmaga teng? 35

36 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Kuch va unng ta sr chzg`. Kuchnng markazga nsbatan moment. 3 Kuch yelkas. 4 Kuch moment-vektor 5 Kuchnng o`qqa nsbatan moment. 6 O`ng vnt qodas. 7 Juft kuchlar. 8 Juftnng yelkas. 9 Juft kuch moment. Juft moment-vektor. Ekvvalent juftlar. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 36

37 4 mavzu Kuchnng markazga va o`qqa nsbatan moment. Juft kuchlar nazaryas.. Kuchnng markazga va o`qqa nsbatan moment. Juft kuchlar nazaryas mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Mavzu rejas O quv maqsad mashg ulotnng Pedagagk vazfalar:.kuch, unng qo`ylsh nuqtas, yo`nalsh tushunchalarn takrorlash..kuchnng nuqtaga va o`qqa nsbatan moment haqda tushuncha bersh. 3. Juft kuchlar nazaryasnng asosy elementlarn tushuntrsh. Ma ruza (ma ruzal dars). Kuchnng nuqtaga nsbatan moment.. Kuchnng o`qqa nsbatan moment. 3. Juft kuchlar nazaryas. Juft kuchlar nazaryas va kuch moment haqda tushuncha bersh. O quv faolyat natjalar: Kuch va unng moment haqda tushunchalarn blad. Juft kuchlar va ularnng moment to`g`rsda yetarl blmga ega. Ekvvalent juftlar haqda Juft kuchlar va ularnng moment to`g`rsda yetarl blmga ega. Ekvvalent juftlar haqda tasavvurga ega O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov,tenka-nsert Frontal,kollektv sh. Tenk vostalar blan ta mnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov 37

38 baholash.. parallel kuchlar sstemas mavzusnng tenalogk artas. Ish bosqchlar - bosqch Mavzuga krsh (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) O qtuvch faolyatnng mazmun.. O`quv mashg`ulot mavzus,savollarn va o`quv faolyat natjalarn aytad... Baholash me zonlar ( lova).3. Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad ( lova).4. Mavzun jonlashtrsh uchun savollar berad (3 lova).. Savol yuzasdan mn ma ruza qlad... Ma ruza rejasnng hamma savollar bo`ycha tuchuncha berad. (4 lova).3. Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad.(5 lova).4. Tayanch boralarga qaytlad..5. Talabalar shtrokda ular yana br bor takrorlanad. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Tngloch faolyatnng mazmun Tnglaydlar Tnglaydlar Tnglaydlar. Tnglaydlar UMKga qaraydlar UMKga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar Savollar beradlar UMKga qaraydlar. UMKga qaraydlar. Vazfalarn yozb oladlar..kuchnng nuqtaga nsbatan algebrak moment. 38

39 Br tekslkda yotadgan kuchlar sstemas qaralganda kchnng nuqtaga nsbatan moment tushunchasdan foydalanlad. Kuchnng nuqtaga nsbatan algebrak moment deb kuch moduln kuch yelkasga ko paytmasnng (+) yok (-) shoras blan olnganga aytlad va quydagcha yozald: mom F M F Fh. (.5.) Bror O nuqtadan kuch ta sr chzg gacha bo lgan eng qsqa h masofaga kuch elkas (5-shakl), O nuqtaga esa kuch markaz deylad. gar kuch jsmn O markaz atrofda soat ml harakat B F φ yo nalshga teskar yo nalshda aylantrshga ntlsa (+) shora, soat ml harakat yo nalshda aylantrshga ntlsa (-) shora olnad. Kuchnng ta sr chzg kuch markazdan o tsa, kuchnng O h bu markazga nsbatan algebrak moment nolga teng. (.5.) 5-shakl formulaga asosan kuchnng nuqtaga nsbatan algebrak momentnng son qymat kuch vektor va O markazga qurlgan uchburchak yuznng kk baravarga teng, ya n M F S. (.5.) j a) Kuchnng nuqtaga nsbatan moment vektor Fazovy kuchlar sstemas qaralganda kuchnng nuqtaga nsbatan vektorl moment tushunchasdan foydalanlad. Kuchnng O markazga nsbatan moment deb shunday vektorga aytladk, bu vektor O nuqtaga qo ylgan bo lb, unng modul kuch vektor va O nuqtaga qurlgan uchburchak yuznng kk baravarga teng, yo nalsh esa kuch vektor va O nuqta orqal o tuvch tekslkka perpendkulyar bo lb, moment vektor uchdan qaralganda kuch jsmn soat ml yo nalshga teskar yo nalshda aylantrsa musbat, aks holda manfy bo lad. Kuchnng O nuqtaga nsbatan moment vektorn mom F yok M F deb belglaymz. Moment vektornng ta rfga asosan mom F M F r F. (.5.3) Haqqatan ham, 6-shaklga asosan: M F r F rf sn Fh S, B F z φ F k (,y,z) M O r r F F, F, F h O y y z OB OB 39

40 6-shakl 7-shakl bu erda h rsn. (.5.3) formuladag r -kuch qo ylgan nuqtanng O nuqtaga nsbatan radus-vektor. r F vektornng yo nalsh, r va F vektorlar tekslgga perpendkular. Demak moment vektorn (.5.3) ko rnshda yozsh mumkn. Kuchn ta sr chzg bo ylab ko chrlganda unng nuqtaga nsbatan moment o zgarmayd. Kuchnng ta sr chzg kuch markazdan o tsa, unng o sha markazga nsbatan moment vektor nolga teng bo lad. gar to g r burchakl dekart koordnatalar sstemasda F kuch o znng F, Fy, Fz proektsyalar blan va kuch qo ylgan nuqta (,y,z) koordnatalar blan berlgan bo lsa (7-shakl), (.5.3) formulan quydagcha yozsh mumkn: j k M F r F y z yf zf zf F j F yf (.5.4) bu erda uchun, z y z y k j, k F F y F z, -lar koordnata o qlarnng brlk vektorlar. M F moment vektornng proektsyalar (.5.4) munosabatlardan foydalanb M M y F F F yf zf z zf y, Fz, (.5.5) M. z Fy yf formulalarn yozsh mumkn. Moment vektornng modul va yo naltruvch kosnuslar quydagcha toplad: M F yfz zfy zf Fz Fy yf ; ^ M F cos, cos ^ M F y M, X M Y (.5.6) M F M F M z F cos M ^ Z. M F b) Kuchlar sstemasnng markazga nsbatan moment F, F,..., F n kuchlar sstemas berlgan bo lsn (8-shakl). O markazga nsbatan bu sstema kuchlarnng moment vektorlar yg ndsn M deb belglaymz, ya n M n mom n F r F. (.5.7) F F F F F n M r O 8-shakl r n r n F n M 9-shakl r O 4

41 M vektorga kuchlar sstemasnng O markazga nsbatan bosh moment deylad. gar hamma kuchlar btta nuqtaga qo ylgan bo lsa, u holda n n M r F r F. (.5.8) Demak, br nuqtaga qo ylgan kuchlar yg ndsnng bror O nuqtaga nsbatan moment kuchlarnng o sha nuqtaga nsbatan momentlar yg ndsga teng (Varnon teoremas). Kuchnng nuqtaga nsbatan algebrak momentn analtk tarzda quydagcha ham fodalash mumkn (3-shakl) M F af y y bf, (.5.9) bu erda va y kuch qo ylgan nuqtanng dekart koordnatalar, a va b nuqtanng koordnatalar, F va F y esa kuchnng koordnata o qlardag proeksyalar (3- shakl). Xususy holda F kuchnng moment koordnatalar boshga nsbatan hsoblansa, (.5.9) quydag ko rnshda yozlad: M F F y yf. (.5.) End btta qo zg almas nuqtaga ega bo lgan qattq jsmnng muvozanat haqdag masalan qaraymz. gar bunday qattq jsm muvozanatda bo lsa, qo zg almas nuqtanng reaktsya kuch jsmga qo ylgan aktv kuchlarnng teng ta sr etuvchs blan muvozanatda bo lsh kerak. Demak, aktv kuchlarnng teng ta sr etuvchsnng ta sr chzg qo zg almas nuqtadan o tsh kerak, aks holda jsmnng ag darlsh yuz berad. y F y j F b B y F O a 3-shakl gar moment markaz sfatda qattq jsmnng qo zg almas nuqtasn olsak, reaktsya kuchnng moment nolga teng va demak, aktv kuchlar teng ta sr etuvchsnng moment ham nolga teng bo lad. Bu holda Varnon teoremasga asosan aktv kuchlarnng qo zg almas nuqtaga nsbatan algebrak momentlar yg nds nolga teng, ya n n M. (.5.) F. Kuchnng o qqa nsbatan moment Kuchnng o qqa nsbatan moment deb kuchnng o q ustda olngan tyory nuqtaga nsbatan momentnng shu o qdag proektsyasga aytlad, ya n mom F r F. (.5.) 4

42 F kuchnng o q ustda olngan bror O nuqtaga nsbatan momentnng shu o qdag proektsyas O nuqtan tanlashga bog lq emaslgn ko tsatamz (3- shakl). Haqqatdan ham (.5.) tenglkn quydag ko rnshda yozsh mumkn: mom F r F r F r F, bu erda - o qnng brlk vektor. r fodanng son qymat (3-shakl) asos va balandlg r sn, r d ga teng bo lgan uchburchak yuznng kk baravarga teng. Uchburchaknng asos ham balandlg ham o zgarmas mqdorlar, demak r F mqdor O nuqtan tanlashga bog lq emas. Kuchnng o qqa nsbatan moment ta rfn boshqacha ko rnshda ham bersh mumkn: kuchnng o qqa nsbatan moment deb kuchnng shu o qqa perpendkulyar tekslkdag proektsyasnng o q blan tekslk kesshgan nuqtaga nsbatan algebrak momentga aytlad (3-shakl), ya n mom F mom F F h (.5.3) F M F r F F O r O h F z F O r 3-shakl 3-shakl (.5.3) formuladag (+) yok (-) shora quydagcha tanlanad: o qnng musbat uchdan qaralganda F kuch tekslkn soat ml harakatga teskar yo nalshda aylantrsa (+) shora, aks holda (-) shora olnad. gar F kuchnng ta sr chzg o qn kesb o tsa yok parallel bo lsa, kuchnng shu o qqa nsbatan moment nolga teng bo lad. gar tyory O nuqta sfatda Oyz koordnatalar sstemasnng bosh tanlansa, kuchnng o qqa nsbat moment ta rfga hamda (.5.5) ga asosan kuchnng koordnata o qlarga nsbatan momentlar uchun quydag formulalarn yozsh mumkn: mom mom mom y z F r F yfz zfy, F r F y zf Fz, F r F z Fy yf. (.5.4) 3.Juftlar nazaryas Qattq jsmnng kkta har l nuqtalarga qo ylgan modullar teng va qaramaqarsh tomonga yo nalgan kk parallel kuchlar sstemasga juft kuch deylad (44- shakl). Kuchlarnng ta sr chzqlar orasdag masofaga juft elkas deylad. 4

43 Juft kuch teng ta sr etuvchga ega emas. Bun teskardan faraz qlb sbotlaymz. Faraz qlaylk, F, F juft kuch R teng ta sr etuvchga ega bo lsn. F, F kuchlar sstemasga mqdor teng ta sr etuvchnng modulga teng va br to g r chzq bo ylab qarama-qarsh tomonga yo nalgan R kuchn qo shamz, natjada F, F, R muvozanatlashgan kuchlar sstemas hosl bo lad, ya n,. F F, R~, R R Uch kuchnng muvozanat haqdag teoremanng zarury shart bajarlmayd. Demak F, F juft kuch teng ta sr etuvchga ega emas. Bundan juft kuch ta srdag jsm muvozanatda bo lmayd degan ulosa kelb chqad. Juft kuch ta srdag jsm aylanma harakat qlad. Juftnng jsmga ko rsatadgan ta sr unng moment blan arakterlanad. Juftnng algebrak moment deb juftn tashkl qluvch kuchlardan brnng modul blan juft elkas ko paytmasnng (+) yok (-) shora blan olnganga aytlad, ya n F, F momf, F F d F d M. (..) Juft kuch yotgan tekslkka juft tekslg deylad. gar juft kuch juft tekslgn soat ml harakat yo nalshga qarama-qarsh yo nalshda aylantrsa (..) formulada (+) shora, soat ml harakat yo nalshda aylantrsa (-) shora olnad (45a,b-shakl). Tekslkdag juft kuchlar haqda teoremalar: -teorema. Juftnng algebrak moment tyory markazga nsbatan juftn tashkl qluvch kuchlarnng algebrak momentlar yg ndsga teng. Isbot. Ityory O nuqtan tanlaymz (46-shakl). O nuqtaga nsbatan va B nuqtalarnng radus-vektorlarn r,r blan F d F 44-shakl F (+) F B (-) a) b) 45-shakl belglaymz. U holda B r r va B F r r F r F r F F F bo lgan uchun momf, F B F r F r F mom F mom F B F -teorema. Juftn o z teks- F lgda br holatdan boshqa br r r holatga ko chrganda juftnng jsmga ko rsatadgan ta sr O 46-shakl 43

44 o zgarmayd. F яя B F F 4 C F 6 K F 4 F R F F B 5 F 3 F D 5 R L 47-shakl Isbot. Yelkas B bo lgan F, F juft berlgan bo lsn (47-shakl). Tekslknng va B nuqtalarga mqdorlar teng va yo nalshlar qarama-qarsh F 3,F 4 va F 5, F 6 kuchlarn qo yamz F3 F4 F5 F6, bu erda B B. F, F, F4 va F 5 kuchlarnng ta sr chzqlar bo ylab K va L nuqtalarga ko chramz. Natjada K va L nuqtalarga qo ylgan F, F 4 va F,F 5 kuchlar sstemasga ega bo lamz. F va F 4 kuchlarn teng ta sr etuvchsn R blan F va F 5 kuchlarn teng ta sr etuvchsn R blan belglaymz, ya n F, F4 ~ R, F, F5 ~ R. F F, F 4 F5 bo lgan uchun R va R kuchlarnng modullar teng va br to g r chzq bo ylab qarama-qarsh tomonga yo nalgan. U holda F, F4, F, F5 ~ R, R' ~. Natjada F, F ~ F, F, F3, F4, F5, F6 ~ F3, F6. Momentlar teng bo lgan kkta juftga ekvvalent juftlar deylad, ya n mom,. F F momp, P F, F~ P, P 3-teorema. Juftnng momentn o zgartrmasdan unng tashkl etuvch kuchlarn va yelkasn har qancha o zgartr-ganda ham juftnng jsmga ko rsatadgan ta sr o zgarmayd. Isbot. P, P juft berlgan bo lsn (48-shakl). P tuzuvchga ajratamz, ya n P ~ Q P Q., Kuchlardan bttas nuqtaga kknchs B kesma yotgan to g r P Q Q chzq davomdag C nuqtaga B C qo ylgan bo lsn. nuqtaga P qo ylgan P va P Q kuchlar- 48-shakl nng teng ta sr etuvchs Q nng modul 44 P kuchn unga parallel kkta

45 P Q Q Q P Natjada elkas C bo lgan yang juftga ega bo lamz. C elka quydag munosabatn qanoatlantrad: Q P bundan Q C P B. (..) B C (..) tenglkdag Q C ko paytma Q, Q juft kuchnng momentn, P B ko paytma esa P, P juftnng momentn fodalayd, ya n momq, Q momp, P.. 4-teorema. Br tekslkda yotgan juft kuchlar sstemas btta juft kuchga ekvvalent bo lb, unng moment berlgan juft kuchlar momentlar yg ndsga teng. Isbot. Br tekslkda yotgan F, F, F, F,..., F n, F n juft kuchlar berlgan bo lsn (49-shakl). 3-teoremadan foydalanb, berlgan juft kuchlarnng momentlarn o zgartrmay btta D elkaga keltramz. Natjada F F, F, F,..., F, F ~ Q, Q, Q, Q,..., Q, Q, n n n n. F F 3 F d d d 3 F F F n d n Q 3 Q F 3 F n Q n Q D B Q Q Q n Q 3 49-shakl va B nuqtalarga qo ylgan kuchlarn qo shb, R, R yang juft kuchn hosl qlamz. 49-shaklga asosan R R Q Q Q3... Q4. R, R juftnng moment momr, R R D Q D Q D Q D... Q. 3 4D (..3) 3-teoremaga asosan Q D F d momf, F Q D F d mom F, F,... Q D F d n n n momf, F. n n, Bu tenglklarn hadma-had qo shb, (..3) ga asosan 45

46 n topamz. mom R n, R, mom F F. (..4) Nazorat savollar. ) Kuchnng nuqtaga nsbatan momentnng ta rfn aytng. ) Kuchnng nuqtaga nsbatan algebrak moment deb nmaga aytlad? 3) Kuchnng nuqtaga nsbatan vektorl moment deb nmaga aytlad? 4) Kuchnung o`qqa nsbatan moment deb nmaga aytlad? 5) Kuchnng koordnata o qlarga nsbatan momentn hsoblash formulalar qanday fodalanad? 6) Juft kuch deb nmaga aytlad? 7) Juft kuchnng moment deb nmaga aytlad? 8) Juft kuchnng moment haqdag teoreman aytng. Xulosa Kuchnng nuqtaga va o qqa nsbatan moment haqdag tushuncha nazary meankanng asosy tushunchalardan br bo lb, amaly masalalarda ko`p shlatlad.kuchnng nuqtaga nsbatan moment blan va bu nuqta orqal o`tuvch o`qqa nsbatan kuch moment orasdag bog lansh mavjudlgn anqladk.fazoda tyory joylashgan kuchlar sstemasnng o qqa nsbatan bosh momentlar va o qqa nsbatan bosh momentlar va ular orasdag bog lansh mavjudlgn ko rb o tdk.juft kuchlar tushunchas ham asosy tushunchalardan br ekanlg ma lum bo ld.juft kuch momentnng vektor mqdor ekanlg va unng fazodag yo nalsh haqdag ma lumotlar aynqsa dqqatga sazovordr.ekvvalent juftlar haqdag 46

47 teoremalarnng natjalar juft kuchlarnng tabat va arakterstkas haqda muhm tushunchalar ekanlg anqlanad. 5-Ma ruza Fazodag kuchlar sstemas. Reja:. Kuchn berlgan markazga keltrsh.. Fazoda tyory joylashgan kuchlar sstemasn btta kuchga va btta juftga keltrsh. 3.Kuchalar sstemasnng muvozanat shartlar. dabyotlar: [], 34-57sah; [5], 8-93 sah; [7], 5-7 sah. Tayanch boralar: Kuch, kuchlar sstemas, kuchnng ta sr chzg`i, teng ta sr etuvch kuch (t.t.e.), bosh vektor, bosh moment, kuch moment, juft kuch, juft kuch momenr. Belglar: MS-muommol savol, MT- muommol topshrq, Baholash mezon : MV- muommol vazyat, MM- muommol masala Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball 47

48 Mavzun jonlantrsh uchun bls-so rov savollar:. Kuch deb nmaga aytlad? Kuch moment nma?. TTTeng ta sr etuvch deb nmaga aytlad? 3. Bosh vektor nma? Bosh moment nma? 4. T.T.E.-nng moment nmaga teng? 5. Juft kuch nma? Unng moment nmaga teng? 6. Juft kuch jsmga qanday ta sr ko`rsatad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Kuch unng ta sr chzg`. Kuchlar sstemas. 3 Teng ta sr etuvch kuch. 4 Bosh vektor. 5 Teng ta sr etuvchnng nuqtas. 6 Kuchn berlgan markazga keltrsh. 7 Juft kuch va unng moment. 8 Fazodag kuchlar sstemasn br markazga keltrsh. 9 Fazoda tyory joylashgan kuchlar sstemasnng muvozanat shartlar. Tekslkda tyory joylashgan kuchlar sstemasnng muvozanat shartlar. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh. 48

49 5 mavzu Fazodag kuchlar sstemas.? tushunarsz,.. Fazodag kuchlar sstemas mavzusnng tenologk model O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Ma ruza (ma ruzal dars) Mavzu rejas. Kuchn berlgan markazga keltrsh.. Fazoda tyory joylashgan kuchlar sstemasn btta kuchga va btta juftga keltrsh. 3. Kuchlar sstemasnng muvozanat shartlar. O quv mashg ulotnng Fazoda tyory joylashgan kuchlar sstemas haqda maqsad tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Kuchlar sstemas va ularn qo`shsh Kuchn berlgan markazga keltrsh masalasn tushunad. tushunchalarn takrorlash. Fazodag kuchlar sstemasn qo`shsh Fazodag kuchlarn qo`shsh haqda mufassal ma lumotlarga ega bo`lad. haqda tushuncha bersh. Kuchlar sstemasnng muvozanat shartlar blan Muvozanat shartlarn yodlab qolad va amalda qo`llay olad. 49

50 tanshtrsh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov,tenka-nsert Frontal,kollektv sh. Tenk vostalar blan ta mnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov.. Fazodag kuchlar sstems mavzusnng tenalogk artas. Ish bosqchlar - bosqch Mavzuga krsh (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun O qtuvch faolyatnng mazmun.. O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad... Baholash me zonlar. (-lova).3. Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad ( lova).4. Mavzun jonlashtrsh uchun savollar berad (3 lova).. Savol yuzasda mn ma ruza qlad... Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad. (4 lova).3. Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5 lova).4. Tayanch boralarga qaytlad..5. Talabalar shtrokda ular yana br bor takrorlanad. 3.. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh 5 Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Tnglaydlar Tnglaydlar UMK ga qaraydlar UMK ga qaraydlar Har br tayanch tushuncha va boralarn muhokama qladlar Savollar beradlar UMKga qaraydlar.

51 lovch (mn) mumknlgn ma`lum qlad. 3.. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. UMKga qaraydlar. Vazfalarn yozb oladlar. 5-Mavzu. Kuchn berlgan markazga keltrsh. Teorema. Qattq jsmnng bror nuqtasga qo ylgan tyory kuch jsmnng boshqa br B nuqtasga qo ylgan udd shunday kuchga va btta juftga ekvvalent bo lb, juftnng moment berlgan kuchnng B nuqtaga nsbatan momentga teng. Qattq jsmnng bror nuqtasga qo ylgan F kuch berlgan bo lsn (- shakl). Qattq jsmnng boshqa br B nuqtasga modullar berlgan kuchnng modulga teng va F F berlgan kuchga parallel to g r B chzq bo ylab qarama-qarsh F tomonga yo nalgan kkta F -shakl va F kuchlarn qo yamz. F, F ~ bo lgan uchun F ~ F, F, F. F va F kuchlar juftn hosl qlganlg sababl F ~ F va F, F, F, F juftnng moment berlgan F kuchnng B nuqtaga nsbatan momentga teng, ya n momf, F mombf. (5.4.). Kuchlar sstemasn berlgan markazga keltrsh. Statkanng asosy teoremas (Puanso teoremas). Qattq jsmga ta sr etuvch tyory kuchlar sstemasn btta kuchga va btta juftga keltrsh mumkn. Kuchlar sstemasn btta kuchga va btta juftga keltrshn kuchlar sstemasn berlgan markazga keltrsh deylad. Qattq jsmga qo ylgan tyory F, F,..., F n kuchlar sstemas berlgan bo lsn. Keltrsh markaz sfatda qattq jsmnng tyory O nuqtasn tanlaymz va berlgan kuchlarn shu O nuqtaga keltramz (-shakl). F z F F 3 5

52 F 4 F F 3 F F O F 4 F y F R 3 F n F n Natjada -shakl, F,..., F n ~ F, F F n F F F F Fn F,..., ;,,,,...,, n F, hosl bo lad Shunday qlb, berlgan n ta kuchlar sstemas boshqa n ta O nuqtaga qo ylgan kuchlar sstemas va n ta F F, F, F,...,,, F n F n juftlar sstemas blan almashtrld. (5.4.) formulaga asosan juftlarnng momentlar quydagga teng: M M F, F M F,,..., n (5.4.) O nuqtaga kesshuvch F F F n,,..., kuchlar sstemasnng teng ta sr etuvchs R berlgan kuchlarnng vektorl yg ndsga teng, ya n F F F n,,..., ~ R bu erda n R F F F n... F. F F F n,,..., kesshuvch kuchlar sstemas uchun R kuch teng ta sr etuvch, F, F,..., F n berlgan kuchlar sstemas uchun esa bosh vector hsoblanad. Berlgan kuchlar sstemas uchun bosh vektor deb kuchlarnng vektorl yg ndsga aytlad. Bu vektor berlgan kuchlarga qurlgan kuch ko pburchagnng yopuvchsn fodalayd (-shakl), ya n 5 R n F. (5.4.3) F F F F F n F n,,,,...,, juftlarn btta M, M ga bosh Juftlarn qo shsh teoremasga asosan, juft blan almashtramz. Natjavy juftnng moment moment deylad. Bosh moment M teng. (5.4.) formulaga asosan juftlar momentlarnng vektorl yg ndsga M M... n F M F M F M n F. (5.4.4) Indeksdag O harf keltrsh markazn bldrad. Berlgan kuchlar sstemasnng O nuqtaga nsbatan bosh moment deb berlgan kuchlarnng o sha O nuqtaga nsbatan vektorl momentlar yg ndsga aytlad. Shunday qlb, statkanng quydag asosy teoremas sbotland: Qattq jsmga qo ylgan tyory kuchlar sstemasn shu kuchlar sstemasnng bosh vektorga

53 teng bo lgan btta kuchga va moment kuchlar sstemasnng bosh momentga teng bo lgan btta juftga keltrsh mumkn. Bu teoreman qsqacha quydagcha ta rflash ham mumkn: Har qanday kuchlar sstemasn btta bosh vektorga va tyory markazga nsbatan btta bosh momentga keltrsh mumkn, ya n F, F,..., F n ~ R,M. Ta sr chzqlar br tekslkda yotuvch kuchlar sstemasga teks kuchlar sstemas deylad. Teks kuchlar sstemas uchun ham statkanng asosy teoremas o rnl. Ityory teks kuchlar sstemasn btta kuchga va btta juftga keltrsh mmkn. Teks kuchlar sstemasnng bosh vektor kuchlar tekslgda yotad, keltrsh markaz sfatda tekslknng bror O nuqtas olnsa, kuchlar sstemasnng bosh moment M kuchlar tekslgga perpendkulyar bo lad. Bosh vektor va bosh momentn hsoblash formulalar Ityory F, F,..., F n kuchlar sstemasnng bosh vektor R shu kuchlarnng vektorl yg ndsga teng, ya n R n F. (5.5.) Bror O markazga nsbatan bosh moment berlgan kuchlarnng o sha markazga nsbatan vektorl momentlar yg ndsga teng, ya n M n M F. (5.5.) (5.5.) tenglknng kkala tomonn koordnata o qlarga proeksyalab, bosh vektornng proeksyalar uchun quydag formulalarn hosl qlamz: R n y n y z n F, R F, R F. (5.5.3) Bosh vektornng modul va yo naltruvch kosnuslar quydag formulalar blan hsoblanad: R R R R ; cos Rz cos z, ^ R. R y ^ R, cos, ^ R y, R y R, R z z R (5.5.4) (5.5.3) tenglknng kkala tomonn koordnata o qlarga proeksyalab, bosh momentnng koordnata o qlardag proeksyalarn topamz 53

54 54. ; ; n y n z z Oz n z n y y Oy n y z n O F y F F M M M F F z F M M M F z F y F M M M (5.5.5) Bosh momentnng modul va yo naltruvch kosnuslar quydag formulalardan toplad: ^, cos, ^, cos, ^, cos ; M M M z M M M y M M M M M M M z y z y (5.5.6) Teks kuchlar sstemas berlgan bo lsa, Oz o qn kuchlar tekslgga perpendkulyar qlb olamz, O va Oy o qlar kuchlar tekslgda yotad. Bosh vektor Oy tekslgda yotad, shu sababl teks kuchlar sstemas uchun, ^, cos, ;,, R R R R R R R F R F R y n z y y n (5.5.7) R R R y y ^, cos. (5.5.7) Teks kuchlar sstemasnng bosh moment bosh vektorga perpendkulyar va demak Oz o qga parallel bo lad. U holda.,, n n z z y F M F M M M M M (5.5.8) 3.Fazoda tyory ravshda joylashgan kuchlar sstemasnng muvozanat shartlar Kuchlar sstemasn br markazga keltrsh teoremasdan foydalanb, qattq jsmga ta sr etuvch kuchlar sstemasn btta kuchga va btta juftga keltrlsh mumkn. Fazoda kuchlar sstemas muvozanatda bo lsh uchun bosh vektor va bosh momentnng nolga teng bo lsh zarur va yetarl, ya n

55 R n F ; M n mom F. (5.8.) Bosh vektornng va bosh momentnng nolga tenglgdan ularnng koordnata o qlardag proeksyalarnng ham nolga tenglg kelb chqad. Shunng uchun (5.8.) tenglamalarnng koordnata o qlarga proeksylab, oltta skalyar tenglamalar sstemasn hosl qlsh mumkn, ya n M M z n n n R F, R y F y, R z F z mom mom z n n F y F z F M y n z mom y y, n n F z F F n F F y F y. z ; (5.8.), (5.8.3) (5.8.) va (5.8.3) tenglamalardan foydalanb, fazoda kuchlar sstemasnnng muvozanat shartlarn boshqacha talqn qlsh ham mumkn: fazoda kuchlar sstemas muvozanatda bo lsh uchun sstema kuchlarnng koordnata o qlardag proeksyalar yg nds va koordnata o qlarga nsbatan momentlar yg nds alohda-alohda nolga teng bo lsh zarur va etarl. Nazorat savollar. ) Kuchlarn br markazga keltrsh deganda nman tushnasz? ) Kuchlar sstemasnng teng ta`sr etuvchs (t.t.e.) deb nmaga aytlad? 3) T.T.E. blan bosh vektornng nma farq bor? 4) Kuchlar sstemasnng nvarantlar nma? 5) Kuchlar sstemasn keltrshn ususy hollarn aytb berng. 6) T.T.E.-nng moment haqdag teoreman ta`rflang. 7) Fazodag kuchlar sstemasnng muvozanat tenglamalarn yozng. 8) Bosh vektor va bosh moment qanday hsoblanad? Xulosa Fazoda tyory yo`nalgan kuchlar sstemasn br markazga keltrb qo`shsh, bosh vektor va bosh momentn anqlash va bu asosda mazkur kuchlar sstemasnng muvozanat shartlarn keltrb chqarsh nazary meankanng asosy masalalardan br bo`lb, amalyotda ko`p shlatlad.ushbu mavzun o`rgansh jarayonda br qator ulosalarga ega bo`lamz.masalan, tekslkda tyory yo`nalgan kuchlar sstemas muvozanatda bo`lmasa, ularn yok btta bosh 55

56 vektorga yok br bosh momentga keltrsh mumkn.fazodag kuchlar sstemasnng muvozanat tenglamalar oltta bo`lb, tekslkda esa uchta bo`lar ekan. 6-Mavzu sosy tushunchalar.nuqta harakatnng berlsh usullar. Nuqta tezlg.. sosy tushunchalar. Nuqta harakatnng berlsh usullar.nuqta tezlg mavzusnng tenologk model. O quv soat soat Talabalar son: O quv mashg ulot shakl Ma ruza (aborotl dars) Mavzu rejas. sosy tshnchalar.. Nuqta harakatnng berlsh usullar. 3. Nuqta tezlg. O`quv mashg`ulotnng maqsad: Nuqta harakatnng tenglamas va knematk elementlar haqda tushunchqa bersh. Pedagagk vazfalar: Nuqta harakatnng berlsh usullar blan tanshtrsh. O quv faolyat natjalar: Nuqta harakatnng berlsh usullarn blad. 56

57 Knematkanng asosy tushunchalar Knematka haqda asosy tushunchalar haqda ma lumot bersh. haqda tasavvurga ega bo`lad va eslab qolad. To`g`r va egr chzql harakatdag Nuqta tezlgn topshn blad va nuqta tezlgn topshn o`rgatsh va amalyotga qo`llay olad, msollar amalyotga tadbq etsh uchun echaolad. ko`nkma hosl qlsh. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,tenka-nsert O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash.. sosy tushunchalar. Nuqta harakatnng berlsh usullar.nuqta tezlg mavzusnng tenalogk artas. Ish bosqchlar - bosqch (mn) - bosqch O qtuvch faolyatnng mazmun. O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad.. Baholash me zonlar (-lova).3 Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4 Mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar 57 Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar.

58 sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhakama qladlar. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 6-Ma ruza sosy tushunchalar. Nuqta harakatnng berlsh usullar.nuqta tezlg. Reja:. sosy tushunchalar.. Nuqta harakatnng berlsh usullar. 3. Nuqta tezlg. dabyotlar: [, 5, 6], [7,8-bob], [5,8-bob] Tayanch boralar: Nuqta, to`g`r va egr chzql harakatlar, trayektorya, harakat tenglamalar, ko`chsh, nuqtanng tezlg, tezlk vektor, tezlk modul, tezlk vektornng proyeksyalar. Belglar: 58

59 MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:.geometrk nuqta deb nmaga aytlad?.nuqtanng trayektoryas nma? 3.Nuqtanng harakat qonun deganda nman tushunasz? 4.Nuqtanng tezlg qanday toplad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng. sosy tushunchalar Belg Geometrk nuqta.moddy nuqta. Nuqtanng to`g`r chzql harakat. 3 Nuqtanng egr chzql harakat. 4 Nuqta harakatnng berlsh usullar. 5 Nuqta tezlg, unng modul. 6 Nuqtanng tezlk vektor, unng yo`nalsh. 7 Tezlk vektornng proyeksyalar. 8 ylana bo`ycha harakat etuvch nuqtanng tezlg. 9 Burchak tezlk. 59

60 Nuqtanng to`g`r chzql teks harakat. Nuqtanng trayektoryas. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 6

61 . sosy tushunchalar Moddy ob yektlarnng yok moddy nuqtanng harakat fazoda vaqt o tsh blan sodr bo lad. Knematka geometryadan shu blan farq qladk, knematkada ob yektlarnng fazoda ko chshda un ko chsh vaqt ham e tborga olnad. Demak, knematkada ob yektlarnng tyory paytdag holat unng geometrk koordnatalardan tashqar vaqtga ham bog lq bo lar ekan. Shunng uchun ham knematkan ba zan to tr o lchovl fazodag geometrya deb ham atash mumkn. To rtnch koordnata sfatda vaqt olnad. Vaqt bu shunday o zgaruvchk, u fazoda ham va shu fazoda harakatlanuvch ob yektga ham bog lq emas, ya n fazon hamma joyda br l o zgarad. Moddy ob yektnng harakat boshqa br ob yektga, ya n sanoq ob yektga nsbatan kuzatlad. Sanoq ob yektga bror koordnalar sstemasn mahkamlab, moddy ob yektnng harakat shu sanoq sstemasga nsbatan o rganlad. Vaqtnng harakatdan bog lqmaslg shundan boratk, har l sanoq sstemalarga nsbatan harakatlanuvch jsmlar uchun vaqt br l o zgarad. Meank masalalarn yechshda vaqtnng hsob bosh har safar kelshb olnad. Tenk masalalarn yechshda, odatda, Yerga qo zg almas qlb mahkamlangan sanoq sstemas olnad. Yerga nsbatan qo zg almas bo lgan sanoq sstemasga asosy yok qo zg almas sanoq sstemas deylad. Tanlangan sanoq sstemasga nsbatan jsmnng vazyat vaqt o tsh blan o zgarmasa, jsm tanlangan sanoq sstemasga nsbatan tnch holatda deylad. gar tanlangan sanoq sstemasga nsbatan vaqt o tsh blan jsmnng vazyat o zgarb tursa, jsm shu sanoq sstemasga nsbatan harakatda deylad. Tanlangan sanoq sstemasga nsbatan tyory paytda jsmnng vazyatn anqlash mumkn bo lsa, unng harakat shu sanoq sstemasga nsbatan berlgan deylad. Qattq jsmnng harakat un tashkl qluvch nuqtalarnng (zarrachalarnng) harakat blan anqlanad. Shunng uchun ham dastlab nuqta knematkas, undan keyn qattq jsm knematkas o rganlad. 6

62 Ko chsh va harakat knematkanng asosy tushunchalar hsoblanad. Bror sanoq sstemasga nsbatan nuqtanng t vaqt oralg da fazoda br holatdan boshqa br holatga tyory ravshda o tshga unng ko chsh deylad. Nuqtanng ko chsh unng boshlang ch va org holatlar hamda o tgan vaqt oralg blan anqlanad. Qattq jsmnng yok moddy nuqtanng holat fazoda masus parametrlar (koordnatalar) blan anqlanad. Jsmnng harakat esa bu parametrlar blan vaqt orasdag bog lanshn fodalovch tenglamalar blan berlad. Knematkanng asosy masalas: absolyut qattq jsmnng (moddy nuqtanng) berlgan harakat tenglamalarga qarab, unng barcha knematk arakterstkalarn (barcha nuqtalarnng trayektoryalar, tezlklar, tezlanshlar va h.k.) topshdan borat. Nuqta knematkasda harakatnng berlsh usullarga qarab, nuqtanng knematk arakterstkalarn topsh o rganlad. Nuqta knematkasda trayektorya tushunchas asosy hsoblanad. Trayektoryanng ko rnshga qarab, nuqtanng harakat to g r yok egr chzql harakatlarga bo lnad. t. Nuqta harakatnng berlsh usullar. Nuqtanng harakat br necha l usullar blan berlgan bo lsh mumkn. gar nuqtanng harakat bror usulda berlgan bo lsa, tanlangan sanoq sstemasga nsbatan tyory paytda nuqtanng holatn anqlash mumkn... Taby usul. Bror sanoq sstemasga nsbatan nuqtanng trayektoryas berlgan bo lsa, unng harakat taby usulda berlgan deylad. Nuqtanng trayektoryas Oyz koordnatalar sstemasga nsbatan berlgan bo lsn (7-shakl). Trayektoryanng bror O nuqtasn sanoq bosh deb qabul qlb, trayektorya bo ylab musbat O M S yo nalshn tanlaymz. Nuqtanng boshlang ch O holat blan keyng M holat orasdag S yoy vaqtnng funksyas ko rnshda berlgan 6

63 bo lsa, bu qonunga asosan nuqtanng tyory paytda trayektorya ustdag holatn br qymatl anqlash mumkn (7-shakl). gar vaqtnng har br payt uchun nuqtanng holatn tasvrlovch masofa anqlangan bo lsa, ya n S f(t) (6..) bog lansh berlgan bo lsa, nuqtanng harakat taby usulda anqlangan deylad. (6..) tenglamaga nuqtanng harakat tenglamas deylad. nqlanshga ko ra S=f(t) funksya qo ydag shartlarn qanoatlantrad: br qymatl, chunk nuqta br vaqtnng o zda fazonng turl joyda bo la olmayd; uzluksz, bu degan harakat uzluksz, ya n t vaqtnng cheksz kchk o zgarshga, S masofanng cheksz kchk o zgarsh mos kelad; dfferensallanuvch. Bu shartlarnng zarurylg knematka va dnamkanng asosy talablardan kelb chqad. gar S=C=const bo lsa, bu nuqtanng berlgan sanoq sstemasga nsbatan tnch holatda ekann bldrad... Koordnatalar usul. Nuqtanng holat koordnatalar usulda berlgan bo lsh uchun: sanoq ob yektga mahkamlangan bror koordnatalar sstemasga nsbatan harakatlanuvch nuqtanng koordnatalar vaqtnng funksyas ko rnshda berlsh kerak. Uch o lchovl fazoda nuqtanng holat q,q,q 3 koordnatalar blan anqlanad. Bu koordnatalarga egr chzql koordnatalar deylad. Demak, nuqtanng koordnatalar q =q (t), q = q (t), q 3= q 3 (t) (6..) tenglamalar blan berlgan bo lsa, nuqtanng harakat koordnatalar usulda berlgan hsoblanad. Oldng holdagdek, bu yerda ham hamma funksyalar br qymatl, uzluksz va dfferensallanuvch deb qaralad. gar nuqtanng holat to g r burchakl dekart koordnatalar sstemasda berlgan bo lsa, nuqtanng tyory paytdag holat 63 O z O S 7-shakl M y

64 tenglamalar blan anqlanad. =(t), y=y(t), z=z(t) (6..3) (6..3) tenglamalar br tomondan nuqtanng harakat qonunn fodalayd, ya n vaqtnng tyory paytda,y,z koordnatalarn va demak M nuqtanng holatn anqlash mkonn berad, kknch tomondan trayektoryanng parametrk tenglamalarn fodalayd. Bu tenglamalardan t parametrn yo qotsh mumkn bo lsa, qo ydag tenglamalar sstemalarn hosl qlamz: (, y) ; (, z), ( y, z) ; (, z), 64 (, z) ; ( y, z). (6..4) Bu sstemalarnng har br nuqta trayektoryasn kkta srtnng kesshsh ko rnshda tasvrlayd. Nuqta harakatn o rganshda boshqa kooodnatalar sstemalardan ham foydalansh mumkn. Masalan, slndrk, sferk va qutb koordnatalar sstemalar..3. Vektor usul. Nuqtanng tyory paytdag holatn bror markazga nsbatan unng radus-vektor blan anqlash mumkn bo lsa, ya n nuqtanng holatn anqlovch radus-vektor t vaqtnng funksyas ko rnshda berlgan bo lsa, nuqtanng harakat vektor usulda berlgan deylad. Ta rfga asosan bror O markazga nsbatan nuqtanng holatn anqlovch radus-vektor vaqtnng funksyas bo lad, ya n r r. (6..5) t gar nuqtanng dekart koordnatalar,y,z bo lsa, unng koordnatalar boshga nsbatan radus-vektornng proyeksyalar ham,y,z bo lad, ya n r yj zk. 3.Nuqta tezlg. (6..6) 3.. Egr chzql harakatdag nuqtanng tezlg. gar nuqtanng harakat trayektoryas egr chzqdan borat bo lsa, unng bunday harakatga egr chzql harakat deylad. Nuqta harakatnng asosy z O z r 8-shakl M r r 3-shakl M(,y,z) M y y

65 araterstkalardan br unng tezlg hsoblanad. Harakatlanuvch nuqtanng qaralayotgan koordnatalar sstemasga nsbatan t paytdag M holat r radusvektor blan, t+ t paytdag holat r radus-vektor blan anqlansn (3-shakl). t vaqt oralg da harakatlanuvch nuqtanng radus-vektor r r r ga o zgarsn (3-shakl). * r t nsbatga nuqtanng t vaqt oralg dag o rtacha tezlk deylad. Demak, nuqtanng o rtacha tezlg yo nalshdag vektor bo lar ekan. r vector yo nalshdag, ya n harakat O rtacha tezlknng t vaqt oralg nolga ntlgandag (ba zan ony tezlk deb ham atalad) lmtk holat nuqtanng tyory t paytdag tezlkn fodalayd, ya n r dr lm t t dt. (6.4.) Shunday qlb, nuqtanng tyory paytdag tezlg vektor kattalk bo lb, nuqtanng radus-vektordan vaqt bo ycha olngan brnch tartbl hoslaga teng. vektornng t dag lmtk holat trayektoryanng urnmas blan ustma-ust r t tushad, demak, tezlk vektor trayektoryanng urnmas bo ylab, harakat yo nalsh tomonga qarab yo nalgan vektordr. Tezlk vektorn quydagcha almashtramz: dr dr ds dr S dr ds dt ds dr (6.4.) tenglknng o ng tomondag ko paytman ds qaraymz. mqdorlar ekanlgdan. (6.4.) S va r mqdorlar br l tartbl kchk r lm S bo lad (3-shakl). Demak, r / s mqdornng S (yok) t dag lmtk holat nuqtanng urnmas bo ylab yo nalgan brlk vektorn fodalayd, ya n 65 O r M r r 3-shakl S M

66 lm S t r S, bu yerda -urnmanng musbat yo nalsh bo ylab yo nalgan brlk vektor. Shunday qlb, (6.4.) tenglkn quydagcha yozsh mumkn: ds dt S. (6.4.3) mqdor tezlknng algebrak qymat moduln bldrad, yok tezlk trayektoryanng M nuqtasda o tkazlgan urnmadag proyeksyasn bldrad, ya n ds dt. (6.4.4) Nuqtanng radus-vektorn unng proyeksyalar orqal yozamz: Tezlknng ta rfga asosan: r yj zk dr d dy dz j k yj zk dt dt dt dt. (6.4.5) Tezlk vektorn kordnata o qlardag proyeksyalar orqal yozamz: j k. (6.4.6) (6.4.5) va (6.4.6) fodalarn solshtrb, tezlknng proyeksyalar uchun quydag formulalarn hosl qlamz: d dy dz, y y, z z dt dt dt y z. (6.4.7) Shunday qlb, tezlknng koordnata o qlardag proyeksyalar nuqtanng mos koordnatalardan vaqt bo ycha olngan brnch tartbl hoslalarga teng bo lar ekan. Tezlk vektornng koordnata o qlardag proyeksyalar ma lum bo lsa, unng modul va yo nalshn topsh mumkn: y z y z ; cos(, ^ ), y y cos( ^ y), (6.4.8) y y z z cos(, ^ z). 66

67 gar nuqtanng harakat trayektoryas to g r chzqdan borat bo lsa, bunday harakatga to g r chzql harakat deylad. Nuqta to g r chzql harakatda bo lsa, koordnatalar o qlardan bttasn masalan, O o qn harakat to g r chzg bo ylab yo naltramz. U holda tezlknng qolgan o qlardag proyeksyalar aynan nolga teng bo lad (33-shakl). Natjada nuqtanng tezlg uchun quydag formulan hosl qlamz: d,. dt Shunday qlb, to g r chzql harakatdag nuqtanng tezlg masofadan vaqt bo ycha olngan brnch tartbl hoslaga teng ekan. d dt gar harakatnng berlgan qsmda tezlk va koordnata br l shoraga ega bo lsa, nuqtanng bu holdag harakatga to g r harakat deylad. gar va lar har l shoral bo lsa nuqtanng bunday harakatga teskar harakat deylad. gar nuqtanng tezlg vaqtnng bror paytda nolga teng bo lsa, shu paytda masofa o znng statsonar qymatga ega bo lad. o znng maksmum yok mnmum qymatga ershgan paytda nuqtanng tezlg nolga teng bo lb, shu payt tezlk o znng yo nalshn uzgartrad va harakat agar teskar bo lsa, to g r harakatga o tad. gar nuqtanng tezlg qandaydr vaqt oralg da nolga teng bo lsa, shu vaqt oralg da =const bo lb, nuqta tnch holatda bo lad. Tezlknng o lchov brlg: sm/sek, m/sek, km/soat olnad. uzunlk. Tezlknng o lchov brlg sfatda: vaqt gar butun harakat davomda nuqtanng tezlg o zgarmas, ya n bo lsa, nuqtanng bunday harakatga to g r chzql teks harakat deylad. d. dt O M 33-shakl const Bundan t, (6.4.9) 67

68 bu yerda -nuqtanng boshlang ch koordnatas. (6.4.9) tenglama to g r chzql teks harakat tenglamasn fodalayd. 3.. ylana bo ylab harakatlanayotgan nuqtanng tezlg Burchak tezlk. Nuqtanng R radusl aylana bo ylab harakatn qaraymz. Bu holda M nuqta tezlgnng son qymat quydagga teng bo lad: bu yerda ds Rd. ds d R, (6.4.) dt dt ω O τ dφ ds M d (6.4.) dt mqdorga R radusnng aylansh burchak tezlg deylad. Shunday qlb, aylana bo ylab harakatlanuvch nuqta tezlgnng mqdor quydagcha toplad: R. (6.4.) Tezlk vektor aylana urnmas bo ylab, harakat yo nalsh tomonga yo nalgan bo lad. 34-shakl 68

69 Nazorat savollar.knematkanng asosy tushunchalar nmaga.nuqta knematkasnng asosy masalas nmalardan borat? 3.Nuqtanng harakat qanday usullar orqal berlad? 4.Nuqta tezlgnng modul va yo`nalsh nday toplad? 5.ylana bo`ylab harakat etuvch nuqtanng tezlg nmaga teng? Xulosa Hozrg zamon nazary meankasda nuqta knematkasnng elementlar, nuqta tezlgn anqlash masalas asosy o`rn egallayd. Ushbu mavzu o`quv rejasng muhm qsm bo`lb, meankanng boshqa bo`lmlar blan uzvy bog`langan. Nuqta knematkas tushunchalar, harakat trayektoryas, harakatnng berlsh usullar, tezlkn anqlash amaly masalalarn echshda keng tadbq etlad. Qayd etsh joyzk, knematkanng taraqqyot G.Galley (564-64) va L.Eylernng (77-783) lmy shlar blan chambarchas bog`langan.tenkanng taraqqyot (9-asrnng boshlarda) natjasda knematka alohda bo`lmga aylanad. 69

70 7-Mavzu Nuqtanng tezlansh. Nuqtanng murakkab harakat.. Nuqtanng tezlansh. Nuqtanng murakkab harakat mavzusnng tenologk model. O quv soat soat Talabalar son:5 O quv mashg ulot shakl Ma ruza (aborotl dars) Mavzu rejas 4. Nuqtanng tezlansh. 5. Normal va urnma tezlanshlar. 6. Nuqtanng murakkab harakat. O`quv mashg`ulotnng maqsad: Br nuqtada kesshuvch kuchlar sstemas va unng muvozanat shartlar haqda tushuncha bersh. Pedagagk vazfalar: Nuqtanng tezlansh,normal va urnma tezlanshlar blan tanshtrsh. Nuqtanng murakkab harakat blan tanshtrsh. O quv faolyat natjalar: Nuqtanng tezlg va tezlanshn, normal va urnma tezlanshlarn blad. Nuqtanng murakkab harakat haqda tushunchalarga ega bo`lad. Nuqta tezlklar va tezlanshlarn Nuqta tezlklarn qo`shsh teoremasn qo`shsh (korols th) teoremalarn blad. sbotlash va ularn amalda qo`lashn Nuqta tezlanshlarn qo`shsh haqda o`rgatsh. Korols teoremasn blad. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,tenka-nsert O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash 7

71 .. Nuqtanng tezlansh. Nuqtanng murakkab harakat mavzusnng tenologk artas. Ish bosqchlar - bosqch (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) O qtuvch faolyatnng mazmun.5 O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad..6 Baholash me zonlar (-lova).7 Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..8 Mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhakama qladlar. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 7

72 7-Ma ruza Nuqtanng tezlansh. Nuqtanng murakkab harakat. Reja:. Nuqtanng tezlansh. Normal va urnma tezlanshlar. 3. Nuqtanng murakkab harakat. dabyotlar: [], 68-76,58-68 sah, [5], 3-47, -8 sah, [7], 36-48,7-78 sah. Tayanch boralar: Nuqta, trayektorya, to`g`r chzql harakat, egr chzql harakat, tezlk, tezlansh, normal va urnma tezlanshlar, nsby, ko`chrma tezlk, korols tezlansh. Belglar: MS-muommol savol, MV- muommol vazyat, MT- muommol topshrq, MM- muommol masala Baholash mezon Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Nuqtanng tezlg qanday toplad?. Nuqtanng tezlansh nma? 3. Normal tezlansh nmaga teng? 4. Urnma tezlansh nma? 5. Nsby, ko`chrma, absalyut tezlanshlar nma? 6. Korols tezlansh nmaga teng? 7

73 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng. sosy tushunchalar Belg Nuqta trayektoryas. Nuqtanng tezlg. 3 Nuqtanng tezlansh. 4 Normal tezlansh. 5 Urnma tezlansh. 6 Nsby, ko`chrma tezlklar. 7 bsalyut tezlk. 8 Nsby, ko`chrma, absalyut tezlanshlar. 9 Korols tezlansh. Korols teoremas. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - - olgan blmga qarama-qarsh.? tushunarsz, 73

74 7-Mavzu. Nuqtanng tezlansh. Nuqtanng murakkab harakat..nuqtanng tezlansh. Moddy nuqtanng harakat qonun vektor yok koordnata usulda berlgan bo lsn, ya n r r (t) yok =(t), y=y(t), z=z(t). (6.6.) Moddy nuqta (6.6.) qonun bo ycha harakatlanb, vaqtnng bror t paytda M holatda va tezlg (t), t t paytda M holatda va tezlg ( t t) 74 bo lsn (4-shakl). vektorn o z-o zga parallel ravshda M nuqtaga ko chramz (4-shakl). U holda - =, bu yerda -tezlknng t vaqt oralg da ershgan orttrmas. nng t ga nsbat nuqtanng t vaqt oralg dag o rtacha tezlansh deylad va quydagcha yozlad: * W o rtacha tezlanshnng tezlansh deylad, ya n yok tezlknng ta rfga asosan: *. (6.6.) W t t dag lmtga nuqtanng berlgan t paytdag d W lm, t t dt (6.6.3) d d r W. (6.6.4) dt dt Shunday qlb, nuqtanng tezlansh vektor kattalk bo lb, tezlk vektordan vaqt bo ycha olngan brnch tartbl hoslaga yok radus-vektordan olngan * kknch tartbl hoslaga teng bo lar ekan. W yok vektor M urnman qays tomonda yotsa, W tezlansh vektor ham o sha tomonda yotad, shunng uchun u hamma vaqt trayektoryanng botq tomonga qarab yo nalgan bo lad. Nuqta trayektoryasnng M urnmas va M nuqta orqal o tuvch tekslknng M nuqta M nuqtaga ntlgandag lmtk holatga trayektoryanng M nuqtasdag yopshma tekslg deylad. Egr chzq teks egr chzqdan borat bo lsa, unng yopshma tekslg egr chzq tekslgnng o z bo lad. M M W * r W r 4-shakl

75 (6.6.3) tenglkka asosan W vektor vektor yotgan tekslgnng t dag t lmtk tekslgda yotad. Demak tezlansh vektor W yopshma tekslkda yotb, trayektoryanng botq tomonga qarab yo nalgan bo lad. Nuqta radus-vektorn quydag ko rnshda yozamz: r yj zk. Bu tenglknng kkala tomonn kk marta vaqt bo ycha dfferensallaymz: d r d d y d z W j k. dt dt dt dt Bundan W d ; dt tezlansh vektornng modul d y d z W y y ; W z z dt dt (6.6.5) W yo naltruvch kosnuslar W cos( W,^ ) W W Wy Wz y z, (6.6.6) Wy, cos( W,^ y), W Wz W,^ z) W cos(. (6.6.7) (6.6.5) tenglkka asosan, tezlanshnng koordnata o qlardag proyeksyalar mos ravshda nuqta koordnatalardan vaqt bo ycha olngan kknch tartbl hoslalarga teng bo lar ekan. gar nuqta to g r chzql harakatda bo lsa, koordnata o qlardan bttasn, masalan o qn harakat to g r chzg bo ylab yo naltramz u holda nuqta tezlanshnng proyeksyalar W, W, W. y bo lad. Tezlansh vektor o q bo ylab yo harakat yo nalsh blan br l yok harakat yo nalshga qarama-qarsh yo nalgan bo lad. gar W vektornng yo nalsh vektor blan br l bo lsa, harakat tezlashuvchan, qarama-qarsh yo nalgan bo lsa, harakat seknlashuvchan bo lad..normal va urnma tezlanshlar. z 75

76 .. Taby uchyoq. Nuqta trayektoryasnng M va M nuqtalardan o tuvch to g r chzqnng M nuqta M nuqtaga ntlgandag lmtk holatga trayektoryanng M nuqtasdag urnmas deylad. M nuqtada egr chzq urnmasga perpendkulyar to g r chzqqa egr chzqnng M nuqtadag normal deylad. Bu ta rfga asosan M nuqtada egr chzqqa cheksz ko p normallar o tkazsh mumkn. Bu normallarnng hammas M nuqtadan o tuvch urnmaga perpendkulyar tekslkda yotad. Bu tekslkka egr chzqnng M nuqtasdag normal tekslg deylad. Egr chzqnng M nuqtasdag yopshma tekslgda yotuvch normalga unng bosh normal deylad. Shunday qlb, M nuqtadag yopshma tekslk blan normal tekslk egr chzqnng bosh normal bo ylab kesshar ekan. Egr chzqnng M nuqtasdan o tuvch yopshma tekslkka perpendkulyar bo lgan normalga M nuqtadag bnormal deylad. Egr chzqnng M nuqtasdag urnma bo ylab yo nalgan brlk vektorn blan, bosh normal bo ylab yo nalgan brlk vektorn n blan va bnormal b yopshma tekslk n 4-shakl bo ylab yo nalgan brlk vektorn b blan belglaymz (4-shakl). Bu vektorlar orqal quydag tekslklar o tad: (, n ) yopshma tekslk, ( n, b ) normal tekslk va ( b, ) urnma tekslk., n va b vektorlar uchta o zaro perpendkulyar to g r burchakl uchyoqn hosl qlad. Bu uchyoqqa taby uchyoq deylad. Bu taby uchyoq M nuqta blan brgalkda harakatlanad. Taby uchyoqdan tashql topgan koordnatalar sstemasga taby koordnatalar sstemas deylad... Egr chzqnng egrlg va egrlk radus. M nuqta trayektoryasnng br-brga juda yaqn M va M nuqtalardan M M 4-shakl М va M urnmalarn o tkazamz. Urnmalar orasdag burchakn (4-shakl). Quydag blan, ММ yoy uzunlgn S blan belglaymz 76

77 nsbatga egr chzqnng MM * S k qsmdag o rtacha egrl deylad. O rtacha egrlknng S dag lmtga (agar mavjud bo lsa) egr chzqnng M nuqtadag egrlg deylad, ya n d lm lm k. (6.7.) S S S S ds burchakka egr chzqnng sljsh burchag deylad. Sljsh burchag egr chzqnng har l nuqtalarda har l bo lad. Egr chzqnng berlgan nuqtasdag egrlg, elementar sljsh burchagn elementar yoy uzunlgga nsbatga teng, ya n R radusl aylananng egrlgn topamz. (43-shakl).M va M nuqtalardag urnmalar orasdag sljsh burchag d, aylananng unga mos markazy burchagga teng, shunng uchun bo lad. U holda ds Rd d k=. (6.7.) ds d d k ds Rd R Demak, aylananng egrlg o zgarmas bo lb, aylana radusga teskar mqdor ekan. Ityory egr chzqnng egrlg umuman olganda o zgaruvch mqdordr. Egr chzqnng berlgan nuqtasdag egrlgga teskar mqdorga egr chzqnng shu nuqtasdag egrlk radus deylad va quydagcha yozlad: ds k (6.7.3) d.3. Brlk vektornng dfferensal. а brlk vektornng dffernsaln qaraymz. Bu vektorn o z-o zga skalyar ko paytramz, ya n а а Tenglknng kkala tomonn vaqt bo ycha dfferensallaymz: da da da a a yok a. dt dt dt. 77 M a d 43-shakl a ( t t) a 44-shakl d M S

78 Demak, brlk vektornng dfferensal vektornng o zga perpendkulyar bo lar ekan. 44-shakldag S va a mqdorlar br l tartbl cheksz kchk mqdorlar bo lgan uchun S a. Bunga asosan: 44-shakldag uchburchakdan: а bundan S a a (6.7.3) sn sn. Bu tenglknng kkala tomonn t ga bo lb, t nda ( a sn ) lmtga o tamz: lm lm, da dt d dt yok t t t t.4.harakat taby usulda berlgan nuqtanng tezlansh. da d (6.7.4) gar nuqtanng harakat taby usulda berlgan bo lsa, (6.4.3) va (6.4.4) formulalarga asosan unng tezlg, (6.8.) ko rnshda tasvrlanad, bu yerda S tezlk vektornng M o qdag proyeksyas. (6.8.) tenglknng kkala tomonn vaqt bo ycha dfferensallaymz: d d d W. (6.8.) dt dt dt (6.8.) formulanng o ng tomondag brnch d qo shluvch dt trayektoryanng urnmas bo ylab yo nalgan vektorn fodalayd, shunng uchun unga tezlanshnng urnma (tangensal) tuzuvchs deylad va quydagcha yozlad: M W n W 46-shakl W 78

79 d dt W (6.8.3) Ikknch qo shluvchn qaraymz. Bz blamzk, brlk vektornng dfferensal unng o zga perpendkulyar. d Demak, dt vektor vektorga perpendkulyar bo lb, bu vektor n bosh normal bo ylab yo nalgan va yopshma tekslkda yotad. (6.7.4) formulaga asosan d d va d d n, natjada bu yerda qlb, dt d ds dt, d dt d dt n, d d ds dt ds dt d, egr chzqnng M nuqtadag egrlk radus. Shunday ds trayektoryanng bosh normal bo ylab yo nalgan vektorn fodalayd. Unga tezlanshnng normal tuzuvchs deylad va quydagcha yozlad: W n n (6.8.4) (6.8.3) va (6.8.4) fodalarga asosan (6.8.) formula quydag ko rnshga kelad: W d dt W Wn n. (6.8.5) (6.8.3) va (6.8.4) formulalarga asosan tezlansh vektornng taby koordnatalar sstemas o qlardag proyeksyalar W d dt d S dt, bo lad. Tezlansh vektornng modul quydagcha toplad: W n, W в (6.8.6) d W W Wn. (6.8.7) dt W tezlansh vektor blan bosh normal orasdag burchak quydagga teng: tg W M W (6.8.8) W n d M W n 45-shakl 79

80 Shunday qlb, agar nuqtanng harakat taby usulda berlgan bo lsa, (6.8.6), (6.8.7) va ] (6.8.8) formulalar yordamda nuqta tezlanshnng proyeksyalar, modul va yo nalsh toplad. 3. Nuqtanng murakkab harakat 3.. sosy ta rflar. Vektornng absolyut va nsby hoslalalr. yrm holatlarda nuqtanng harakatn br vaqtda kkta koordnatalar sstemasga nsbatan o rgansh maqsadga muvofqdr (7-shakl). Bu koordnatalar sstemasdan bttasn qo zg almas (asosy), kknchsn nuqta blan brgalkda qo zg almas koordnatalar sstemasga nsbatan harakatlanuvch deb qaraymz. Nuqtanng harakatn har br koordnatalar sstemasga nsbatan o rgansh -bobda yortlgan usullar blan o tkazlad. Bu paragrafda kkala koordnatalar sstemasga nsbatan harakatlanayotgan nuqtanng asosy knematk arakterstkalar orasdag munosabatlarn o rganamz. Bu munosabatlarn anqlash muhm ahamyatga ega, chunk ko p hollarda nuqtanng O yz qo zg almas koordnatalar sstemasga nsbatan harakatn kkta oddyroq harakatga ajratsh mumkn: bttas harakatlanuvch koordnatalar sstemasga nsbatan va kknchs nuqtang harakatlanuvch koordnatalar sstemas blan brgalkda qo zg almas koordnatalar sstemasga nsbatan harakat. Nuqtanng asosy (qo zg almas) koordnatalar sstemasga nsbatan harakatga murakkab yok absolyut harakat va nuqtanng harakatlanuvch koordnatalar sstemasga nsbatan harakatn nsby harakat deb aytalad. Nuqtanng absolyut va nsby harakatlar blan nuqtanng harakatlanuvch koordnatalar sstemas blan brgalkdag harakat o rtasdag munosabatlarn anqlash quydag masalalarn echshga mkonyat yaratad: 8

81 . Nuqtanng berlgan nsby harakat va harakatlanuvch koordnatalar sstemas harakat orqal murakkab harakatn anqlash;. Berlgan murakkab harakatn tarkby (yasovch) harakatlarga ajratsh. Ityory ravshda harakatlanayotgan koordnatalar sstemasda anqlangan vektordan hosla olsh masalasn ko rb chqamz. Shu maqsadda vektornng absolyut va nsby hoslas tushunchalar krtlad. sosy koordnatalar sstemas O yz va tyory ravshda harakatlanayotgan koordnatalar sstemas Oyz berlgan bo lsn. Qandaydr a a(t) vektor harakatlanuvch koordnatalar sstemasda anqlangan bo lsn, ya n vektornng harakatlanuvch koordnatalar sstemas o qlardag a, a, a y z proyeksyalar t vaqtnng funksyalar bo lad. gar harakatlanuvch koordnatalar sstemasnng brlk vektorlar quydagcha yozsh mumkn: j, k, bo lsa, u holda (t) a vektorn a a a j a k. (.3.) y z End a vektordan harakatlanuvch koordnatalar sstemasga nsbatan hoslasn (absolyut hoslasn) topsh qodasn topamz. Harakatlanuvch koordnatalar sstemasnng harakat tufayl j, k, vektorlar o z yo nalshlarn o zgartrb turad, ya n t vaqtnng funksyalar bo ladlar. (.3.) tenglknng kkala tomondan vaqt bo ycha hosla olb, a vektornng absolyut (to la) hoslasn topamz: da da da da y z d dj dk j k a a y a (.3.) z dt dt dt dt dt dt dt (.3.) formulanng o ng tomondag brnch uchta qo shluvch a vektornng harakatlanuvch koordnatalar sstemasga nsbatan o zgarshn arakterlayd, shunng z z k O j y 8 O 7-shakl y

82 uchun ular a vektornng nsby hoslasn fodalayd, ya n ~ da dt da dt da dt y da j dt z k. (.3.3) r formuladag va r vektorlarn ketma-ket mos ravshda, j, k vektorlar blan almashtrb, quydag munosabatn topamz: d dj dk, j, k, dt dt dt bu yerda Oyz koordnatalar sstemasnng O nuqta atrofda aylanma harakat burchak tezlg (8-shakl). Bularn (.3.) formulaga qo yamz: da dt ~ da ( a ay j azk ), dt yok da dt ~ da a dt. (.3.4) (.3.4) formulaga Bur formulas deylad. Shunday qlb, vektornng absolyut hoslas shu vektornng nsby hoslas va harakatlanuvch koordnatalar sstemasnng burchak tezlg blan shu vektornng vektorl ko paytmasnng yg ndsga teng. Oyz koordnatalar sstemasnng harakat erkn qattq jsmnng harakat kab, unng O qutb blan brgalkdag lgarlanma harakat va qutb atrofdag aylanma harakatlardan borat. gar Oyz koordnatalar sstemas faqat lgarlanma harakat qlsa, Bur formulasga asosan, a vektornng absolyut hoslas unng nsby hoslasga teng bo lad. Quydag ususy hollarn ko rb o tamz :. gar a vektor harakatlanuvch koordnatalar sstemasga nsbatan ~ o zgarmas bo lsa, unng nsby hoslas da / dt bo lad va (.3.4) formulaga asosan: 8

83 da dt a. Bu formula avval sbotlangandek, modul o zgarmas vektornng hoslasn bldrad.. gar a vektor asosy koordnatalar sstemasga nsbatan qo zg almas bo lsa, u holda da / dt bo lb, (.3.4) formuladan: da ( a). dt 3. gar a vektor burchak tezlk vektorga kollnear bo lsa, u holda a va (.3.4) formuladan quydag munosabat kelb chqad: da da ~. dt dt 3.. Tezlklarn qo shsh haqdag teorema. Bu yeda quydag masalana hal qlamz: tanlab olngan koordnatalar sstemasga nsbatan nuqta tezlklar orasdag munosabatn anqlaymz. M nuqtanng O unng absolyut tezlg deb ataymz. y z asosy koordnatalar sstemasga nsbatan tezlgn M nuqtanng Oyz harakatlanuvch koordnatalar sstemasga nsbatan tezlg unng nsby tezlg deb aytlad. Nuqtanng ko chrma tezlg degan tushuncha krtamz. Nuqtanng ko chrma tezlg deb harakatlanuvch koordnatalar sstemasnng shunday nuqtasnng tezlgga aytladk, berlgan onda (momentda) u nuqta harakatlanayotgan nuqtaga mos kelsn. gar r ( ) t - harakatlanuvch koordnatalar sstemas bosh bo lgan O nuqta (qutb)nng qo zg almas koordnatalar sstemasga nsbatan radus vektor, (t) - tyory M nuqtanng harakatlanuvch koordnatalar sstemasga nsbatan radus vektor, r (t) - M nuqtanng qo zg almas koordnatalar sstemasga nsbatan radus vektor bo lsa, u holda 8-shaklga asosan r r. (.33.) r e 83

84 Harakatlanuvch koordnatalar sstemasda nuqtanng koordnatalar, y, z bo lsa, u holda bu yerda j, k yj zk,, -harakatlanuvch koordnatalar sstemasnng brlk vektorlar. Ta rfga asosan radus vektornng vaqt bo ycha absolyut hoslas nuqtanng absolyut tezlg bo lad. z z M r r e y O r O y Demak, (.33.) tenglkn vaqt bo ycha dfferensallab, nuqtanng absolyut tezlgn topamz dr dr d. (.33.) dt dt dt vektor harakatlanuvch koordnatalat sstemasda anqlanganlg uchun unng absolyut hoslasn topsh uchun (.3.4) formuladan foydalanamz: ~ d d. (.33.3) dt dt Bu yerda - harakatlanuvch koordnatalar sstemasnng burchak tezlg, d yj zk dt foda bo lsa, vektornng vaqt bo ycha nsby hoslasdr. Ta rfga asosan bu foda nuqtanng nsby tezlg bo lad, ya n r 8-shakl yj zk. (.33.4) (.33.3) va (.33.4) fodalarn (.33.) tenglamaga qo yb,quydag munosabatn hosl qlamz: 84

85 bu yerda dr dt, (.33.5) r - harakatlanuvch koordnatalar boshnng qo zg almas koordnatalar (asosy) sstemasga nsbatan tezlg. Nuqtanng e ko chrma tezlgn topsh uchun un harakatlanuvch koordnatalar sstemasga mahkamlaymz, ya n (.33.5) formulada n qo yamz, u holda quydagn hosl qlamz: e. (.33.6) Bu formulan quydagcha o qsh mumkn: Ozod qattq jsm (harakatlanuvch koordnatalar sstemas)nng stalgan M nuqtasnng tezlg tyory ravshda tanlangan nuqtas (qutb)nng tezlg blan o sha M nuqtanng qattq jsmnng qutb atrofdag aylanma harakatdag tezlgnng geometrc yg ndsga teng. Shunday qlb, quydag tasdqn sbotladk: e r. (.33.7) Teorema. Moddy nuqtanng absolyut tezlg k ochrma va nsby tezlklarnng geometrc yg ndsga teng. r 3.3. Tezlanshlarn qo shsh haqdag teoremas (Korols teoremas). Nuqtanng absolyut tezlanshn topsh uchun, ya n unng asosy koordnatalar sstemasga nsbatan tezlanshn topsh uchun (.33.5) tenglknng kkala tomonn vaqt buycha dfferesallaymz: d d d r d d Wa ( ) dt dt dt dt dt. (.34.) d d r. dt dt topamz: r nsby tezlk vektornng absolyut hoslasn (.3.4) formula orqal d r dt ~ d r dt. (.34.) r 85

86 Bu tenglamada d ~ r foda r hoslas bo lad, demak u nsby tezlansh dt vektornng vaqt bo ycha olngan nsby W r n fodalayd, ya n nuqtanng harakatlanuvch koordnatalar sstemasga nsbatan tezlansh bo lad W r d ~ r yj zk. (.34.3) dt (.33.3), (.33.4), (.34.) va (.34.3) tenglklardan foydalanb, (.34.) formulan quydag ko rnshga keltramz: W W r ( ) Wr ( r ) (.34.4) W ( ) Wr r, bu yerda W - harakatlanuvch koordnatalar sstemas boshnng tezlansh, - unng burchak tezlansh. W - ko chrma tezlanshn topsh uchun harakatlanuvch koordnatalar e sstemasga nuqtan mahkamlab qo yamz, ya n,. r W Bu holda (.34.4) formulaga asosan, quydag munosabatga ega bo lamz: W e W ( ), (.34.5) ya n ko chrma tezlansh harakatlanuvch koordnatalar sstemas blan mahkamlangan ozod qattq jsm nuqtasnng tezlanshdan borat. Shunday qlb, quydag formulaga kelamz: W W W, (.34.6) r a e r r foda blan anqlanadgan tezlanshga burlsh yok korols tezlansh r deb aytlad va W c orqal belglanad, ya n W. (.34.7) c r Shunday qlb, quydag formulaga ega bo lamz: W W W W. (.34.8) a e r c r va r lar uchun (.33.) formulan qo llab quydag formulan hosl qlamz: d d d d r Wa ( ). dt dt dt dt Bu yerda 86

87 d dt W -harakatlanuvch koordnatalar sstemasnng O nuqta blan brgalkdag harakatnng tezlansh, d -harakatlanuvch koordnatalar sstemasnng dt d aylanma harakat burchak tezlansh, -nsby harakat tezlg. (.34.8) tenglk dt tezlanshlarn qo shsh teoremasn fodalayd. Korols teoremas. Murakkab harakatdag nuqtanng tezlansh ko chrma, nsby va korols tezlanshlarnng geometrk yg ndsga teng. (.34.8) formula orqal nuqtanng tezlanshn topsh uchun quydaglarn hsobga olsh talab etlad:. Ko chrma tezlanshn topshda qattq jsm nuqtasnng tezlanshn topsh qodasga roya qlsh kerak.. Wr nsby tezlanshn topsh uchun harakatlanuvch koordnatalar sstemasn qo zg almas deb qarab, VI-bobda tasvrlangan qodadan foydalansh kerak. W Korols tezlanshnng modul c r Wc sn(, ) (.34.9) r r formula orqal anqlanad. va r vektorlarnng vektorl ko paytmasnng yo nalshga qarab, W c korols tezlanshnng yo nalsh anqlanad (8,a-shakl): W korols tezlansh П tekslgga perpendkulyar bo lad, c W c 9-shakl yo nalsh dan r ga eng qsqa o tsh soat mlnng aylanshga teskar bo lgan tomonga yo nalgan bo lad. bo lad: (.34.9) formulaga asosan korols tezlansh quydag hollarda nolga teng r 87

88 ., ya n harakatlanuvch koordnatalar sstemasnng harakat lgarlanma harakat bo lsa.. Harakakatlanuvch koordnatalar sstemasnng burchak tezlg r nsby tezlkka parallel bo lsa. 3. Nuqtanng r nsby tezlg nolga teng bo lganda, ya n nuqta qo zg aluvch koordnatalar sstemasga nsbatan tnch bo lganda. Nazorat savollar..nuqtanng tezlansh dekart koordnatalar sstemasda qanday toplad?.qanday tekslkka yopshma tekslk deylad? 3.Qanday tekslkka normal tekslk deylad? 4.Trayektoryanng bosh normal deb nmaga aytlad? 5.Nuqta trayektoryas qays tekslkda yotad? 6.Taby koordnatalar sstemasda nuqtanng tezlansh qanday fodalanad? 7.Nuqtanng murakkab harakat deb qanday harakatga aytlad? 8.Nuqtanng nsby, ko`chrma va absalyut tezlklarnng ta rfn berng. 9.Nuqta tezlanshnng nsby, ko`chrma va korols tuzuvchlar qanday toplad? Xulosa Nuqtanng tezlansh nazary meankanng boshqa tushunchalar blan uzvy bog`lq bo`lb, fan va tenkanng amaly masalalarda keng shlatlad. Tezlansh vektorng normal va urnma tuzuvchlar qo`zg`almas o`q atrofda aylanuvch a.q.j.nuqtasnng tezlansh anqlashda kerak bo`lad. Nuqtanng murakkab harakat davomda jsm (nuqta) br necha harakatlarda qatnashad. Masalan, harakatdag eskalator bo`ycha ko`tarlayotgan (yok tushayotgan) odamnng harakat, daryoda suzayotgan qayqnng harakat va hokazo bunga msol bo`laolad. 88

89 8-Ma ruza Qattq jsmnng lgarlanma va qo`zg`almas o`q atrofdag aylanma harakat. Reja:. sosy tushunchalar va ta rflar. Meank sstema va qattq jsmnng erknlk darajas.. Qattq jsmnng lgarlanma harakat. 3. Qattq jsmnng qo`zg`almas o`q atrofdag aylanma harakat. dabyotlar: [],94- sah, [5], 47-6 sah,[7], 8-88 sah. Tayanch boralar: bsolyut qattq jsm (a.q.j), meank sstema, bog`lanshlar, aylanma harakat, burchak tezlk, burchak tezlansh, erknlk darajas. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:..q.j. deb nmaga aytlad?. Meank sstema deb nmaga aytlad? 3. ylanma harakardag nuqtanng tezlg nmaga teng? 4. Burchak tezlk nma? 5. Burchak tezlansh nma? 89

90 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Meank sstema. bsolyut qattq jsm. 3.Q.J.- nng aylanma harakat. 4.Q.J.- nng qo`zg`almas o`q atrofdag aylanma harakat. 5 Burchak tezlk. 6 Burchak tezlansh. 7 Eyler formulas. 8 Teks aylanma harakat. 9 Teks o`zgaruvchan aylanma harakat..q.j. nuqtasnng tezlg. ylanma harakatdag a.q.j. nuqtasnng tezlansh. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 9

91 . sosy tushunchalar va ta rflar. Meank sstema va qattq jsmnng erknlk darajas. Har br nuqtasnng harakat qolgan nuqtalarnng holat va harakatga bog lq bo lgan moddy nuqtalar to plamga meank sstema deylad. Meank sstema n ta moddy nuqtadan tashkl topgan bo lsn. Tanlangan sanoq sstemasga nsbatan har br М nuqtasnng fazodag holat uchta х, y, z koordnatar blan anqlanad, shunng uchun meank sstemanng o sha sanoq sstemasga nsbatan holat 3n ta. х,...,, y, z, y, z y,, y, z n n n koordnata blan anqlanad. Sstema nuqtalarnng holat va harakatga chek qo yuvch sabablarga bog lanshlar deylad. Sstema nuqtalarnng faqat holatga chek qo yuvch bog lanshga geometrk yok chekl bog lansh deylad. Sstema nuqtalarnng nafaqat holatga, balk tezlkgga ham chek qo yuvch bog lanshga knematk yok dfferensal bog lansh deylad. Bog lanshlar analtk usulda sstema nuqtalarnng koordnatalar, tezlklar va vaqt orasdag bog lanshn fodalovch tenglamalar blan berlad. Geometrk bog lansh tenglamalarda sstema nuqtalarnng koordnatalar va vaqt qatnashad, ya n 9 f y, z,...,, y, z ; t, n n n (7.7.) Knematk bog lansh tenglamalarda sstema nuqtaarnng koordnatalar va tezlklarnng proyeksyalar hamda vaqt qantashad, ya n y, z,...,, y, z,, y, z,...,, y, z ; t (7.7.), n n n n n n Sstemaga ta geometrk boqg lansh qo ylgan bo lsn, ya n, y, z,..., n, yn, zn; t,,...,k f (7.7.3) 3n ta koordnata k ta tenglama blan o zaro bog langan, demak o zaro bog lanmagan koordnatalar son 3n-k ga teng. Bu o zaro bog lanmagan koordnatalarga sstemasnng umumlashgan koordnatalar deylad. O zaro bog lanmagan koordnatalar songa sstemanng erknlk darajas deylad. Ityory kkta nuqtas orasdag masofa o zgarmas bo lgan meank ssemaga absolyut qattq jsm yok qattq jsm deylad. Qattq jsmnng erknlk darajas oltga teng. Masalan, qattq jsmnng br to g r chzqda yotmaydgan uchta nuqtasn olamz (58-shakl). To qqzta koordnata bu nuqtalar orasdag masofanng o zgarmaslgn fodalovch uchta tenglama blan bog langan, ya n M 4 M M shakl 3 M 3

92 y y z z cost, 3 y3 y z3 z cons t, y y z z const. 3 3 O zaro bog lq bo lmagan koordnatalar son Demak, uchta nuqtanng holat 6 ta koordnata blan anqlanad. gar bu nuqtalarga to rtnch М 4 nuqtan qo shb olsak, ta koordnata hosl bo lad. Har kktasn orasdag masofan o zgarmaslgn fodalovch tenglamalar son 6 ta, ya n М М, М М, М М, М М, М М, М М сonst Demak ta koordnatalar 6 ta tenglama blan o zaro bog langan, o zaro bog lanmagan koordnatalar son ga teng. Bundan shunday ulosa qlsh mumknk, fazoda qattq jsmnng holat br to g r chzqda yotmaydgan uchta nuqtasnng holat blan anqlanad. Qattq jsmnng har qanday harakatn kkta asosy harakatga keltrsh mumkn: lgarlanma va aylanma harakatlar..qattq jsmnng lgarlanma harakat Tayanch boralar: harakat, harakat tenglamas, harakat trayektoryas, tezlk va tezlansh. Qattq jsmnng harakat davomda unga mahkamlangan to g r chzq kesmas tyory paytda o znng boshlang ch holatga parallelgcha qolsa, unng bunday harakatga lgarlanma harakat deylad. Ilgarlanma harakatdag qattq jsm nuqtalarnng trayektoryalar umumy holda parallel egr chzqlar bo lsh mumkn. Ilgarlanma harakat ossalarn quydag teorema blan arakterlash mumkn. Teorema. Ilgarlanma harakatdag qattq jsm hamma nuqtalarnng trayektoryalar, tezlk va tezlanshlar br l bo lad. Qattq jsmnng tyory kkta va B nuqtalarn harakatn qaraymz (59-shakl). 59-shaklga asosan quydag munosabatga ega Qattq jsmnng ta rfga asosan r B r B bo lamz: (7.8.) B vektornng modul o zgarmas, lgarlanma harakatnng ta rfga asosan bu vektornng yo nalsh ham o zgarmas bo lad. Ilgarlanma harakatnng ta rfdan yana shunday ulosa O z r B r B W B W 59-shakl y qlsh mumknk, nuqtanng trayektoryasn o zga parallel ravshda АВ masofaga ko chrsa, B nuqta trayektoryas blan ustma-ust tushad. 9

93 drb dt (7.8.) tenglknng kkala tomonn vaqt bo ycha dfferensallaymz, ya n drb dt, dr B. B dt dr d B dt dt Natjada (7.8.) tenglk quydag ko rnshga kelad. d B dt (7.8.) vektornng ham modul, ham yo nalsh o zgarmas bo lgan uchun B (7.8.3) d B d (7.8.3) tenglknng kkala tomonn vaqt bo ycha dfferensallab, WB, W dt dt larn e tborga olb, quydag tenglkn hosl qlamz: W B W (7.8.4) va B nuqtalar qattq jsmnng tyory nuqtalar bo lgan uchun (7.8.3) va (7.8.4) tenglklardan quydag ulosa kelb chqad: Qattq jsmnng lgarlanma harakat vaqtda unng hamma nuqtalarnng trayektoryalar, tezlk va tezlanshlar br bo lad. gar qattq jsm nuqtalarnng tezlklar vaqtnng faqat btta paytda teng bo lb, qolgan paytlarda teng bo lmasa, jsmnng shu paytdag harakatga ony lgarlanma harakat deylad. Ony lgarlanma harakatdag jsm nuqtalarnng tezlanshlar umumy holda teng bo lmaslg mumkn. Qattq jsmnng lgarlanma harakatn unng tyory btta nuqtasnng harakat blan to lasncha arakterlash mumkn. Jsmnng lgarlanma harakat unng btta nuqtasnng harakat qonun blan berlad, ya n f t, y f ( t), f t (7.8.5) z 3 (7.8.5) tenglamalar qattq jsmnng lgarlanma harakat tenglamalarn fodalayd.. 3. Qattq jsmnng qo zg almas o q atrofdag aylanma harakat ) Burchak tezlk va burchak tezlansh Qattq jsmnng butun harakat davomda unng kkta nuqtas qo zg almasdan qolsa, unng bunday harakatga qo zg almas o q atrofda aylanma harakat deylad. Qo zg almas nuqtalardan o tuvch to g r chzqqa aylansh o q deylad (6-shakl). va B nuqtalar qattq jsmnng qo zg almas nuqtalar bo lsa, Oz o q jsmnng aylansh o q bo lad. Qattq jsmnng aylansh o q fazoda tyory yo nalshga ega bo lsh mumkn. ylansh o qn ustda yotgan hamma nuqtalar qo zg almas bo lad. Qo zg almas o q atrofda aylanuvch qattq jsm nuqtalarnng trayektoryalar aylansh o qga perpendkulyar tekslklarda yotuvch aylanalardan borat bo lad. Bu aylanalarnng markazlar aylansh o q ustda yotad. 93

94 Qattq jsmnng aylansh o q orqal qo zg almas П tekslg va jsmga mahkamlangan П tekslklarn o tkazamz. Boshlang ch paytda bu tekslklar ustma-ust tushsn. ylanuvch jsmnng tyory t paytdag holatn bu tekslklar orasdag kk yoql burchak blan anqlash mumkn. burchakka jsmnng aylansh burchag deylad. gar burchak t vaqtnng kk marta dfferensallanuvch t f (7.9.) funksyas ko rnshda berlgan bo lsa, qattq jsmnng tyory paytdag holatn anqlash mumkn. (7.9.) tenglama qattq jsmnng qo zg almas o q atrofdag aylanma harakat tenglamasn fodalayd. Qo zg almas o q atrofda aylanuvch qattq jsmnng erknlk darajas brga teng, chunk unng tyory paytdag holatn btta aylansh burchag blan anqlash mumkn. Qattq jsmnng qo zg almas o q atrofdag aylanma harakatn arakterlash uchun burchak tezlk va burchak tezlansh tushunchalarn krtamz. Qattq jsm mqdorga jsmnng burchakka burrlsn (6-shakl). t vaqt oralg da * (7.9.) t t vaqt oralg dag o rtacha burchak tezlg deylad. O rtacha burchak tezlk * nng t dag lmtga qattq jsmnng t paytdag algebrak burchak tezlg deylad, ya n d lm (7.9.3) t t dt Umuman olganda jsmnng burchak tezlg vaqtnng dfferensallanuvch funksyas bo lsh mumkn. Bror t vaqt oralg da jsmnng burchak tezlg mqdorga jsmnng mqdorga o zgarsn. * (7.9.4) t t vaqt oralg dag o rtacha burchak tezlansh deylad. * nng t dag lmtga jsmnng t paytdag algebrak burchak tezlansh deylad va quydagcha yozlad: d d lm t dt dt t Burchak radanda o lchansa, burchak tezlk va burchak tezlanshlarn o lchamlar quydagcha bo lad: бурчак / вакт рад / с c бурчак /( вакт) рад / с c E O z П 6-shakl П (7.9.5) 94

95 lgebrak burchak tezlk va burchak tezlanshlar musbat ham, manfy ham bo lsh mumkn. gar jsm soat strelkas yo nalshda aylansa, bo lad. gar jsmnng aylansh tezlanuvchan bo lsa, ; seknlanuvchan bo lsa, bo lad. gar, bo lsa, jsmnng harakat musbat yo nalshdag tezlanuvchan harakat; va bo lsa, harakat musbat yo nalshdag seknlanuchan harakat; va bo lsa, harakat manfy yo nalshdag tezlanuvchan harakat bo lad. va mqdorlarnng shoralar va mqdorlarga qarab jsmnng harakat yo nalshn anqlash mumkn, shunng uchun ham jsmnng burchak tezlg va burchak tezlansh vektor kattalklar bo lad. burchak tezlk vektor jsmnng aylansh o q bo ylab, bu vektor uchdan qaraganda jsm soat strelkasga qarama-qarsh yo nalshda aylansa vektornng yo nalsh musbat, soat strelkas bo ycha aylansa, nng yo nalsh manfy bo lad. Burchak tezlk va burchak tezlansh vektorlarnng modul algebrak burchak tezlk va algebrak burchak tezlanshlarnng absolyut qymatlarga teng. Burchak tezlk vektor aylansh o qnng tyory nuqtaga qo ylsh mumkn, ya n bu vektor ozod vektor hsoblanad (6-shakl). Burchak tezlansh vektor ham jsmnng aylansh o q bo ylab yo nalgan bo lb, agar harakat tezlanuvchan bo lsa, burchak tezlk vektor blan br l, harakat seknlanuvchan bo lsa, burchak tezlk vektorga qarama-qarsh yo nalagan bo lad. Burchak tezlansh vektor aylansh o qnng tyory nuqtasga qo ylgan bo lsh mumkn, ya n burchak tezlansh vektor ham ozod vektor. gar jsmnng butun harakat davomda сonst bo lsa, unng bunday harakatga teks aylanma harakat deylad. gar boshlang ch (t=) paytda bo lsa, teks aylanma harakat gar jsmnng butun harakat davomda tenglamas quydag ko rnshda bo lad: t (7.9.6) const o zgaruvchan aylanma harakat deylad. Teks harakat qonun bo lsa, unng bu holdag harakatga teks t t (7.9.7) ko rnshda bo lad. -jsmnng boshlang ch burchag tezlg. Teks o zgaruvchan harakatda burchak tezlgnng o zgarsh qonun t (7.9.8) ko rnshda bo lad. ) Qo zg almas o q atrofda aylanuvch qattq jsm 95

96 nuqtalarnng tezlk va tezlanshlar Qo zg almas o q atrofda aylanuvch jsm nuqtalar markazlar aylansh o qda bo lgan aylanalar bo ylab harakatlanad, shunng uchun tyory N-nuqtasnng tezlg aylana bo ylab bu yerda N O harakatlanuvch nuqtanng tezlg kab toplad, ya n N O N, (7.9.9) -jsmnng aylansh o qdan N-nuqtagacha bo lgan eng qsqa masofa (6-shakl). Jsm nuqtalarnng tezlklar trayektoryalarnng (aylanalarnng) urnmalar bo ylab yo nalgan bo lad va demak aylansh radusga perpendkulyar bo lad. Ko rsatsh mumknk, tezlk vektornng modul va yo nalsh r (7.9.) vektornng modul va yo nalsh blan br l bo lad. Haqqatdan ham N vektor ham, r N vektor ham va r vektorlar tekslgga perpendkulyar va nuqta trayektoryasnng urnmas bo ylab aylansh tomonga qarab 6-shaklga asosan: Demak, yo nalagan bo lad. r r sn(, r), sn(, r ) O N. r Bunga asosan: O N. r Bunga asosan N va r vektorlarnng modullar ham teng. O nuqta aylansh o qnng tyory nuqtas bo lsn va r ON. U holda r N mom N ( ) NO ON r r yok r (7.9.) N (7.9.) formulaga Eyler formulas deylad. modul va yo nalsh bo ycha N nuqta tezlgn to la anqlayd. O nuqtan Oyz koordnatalar sstemasn bosh deb olb, Z o qn aylansh o q bo ylab yo naltramz (6-shakl). U holda y, z va (7.9.) formulan quydag ko rnshda yozsh mumkn: j r o o. (7.9.) y z 96 O O O z r 6-shakl N y N

97 Bundan y, y,. (7.9.3) formulalar jsm nuqtalar tezlklarnng koordnatalarn topsh formulalarn 97 z (7.9.3) fodalayd. (7.9.3) formulalarnng ko rnsh Oyz koordnatalar sstemas qo zg almas bo lganda ham, jsmga mahkamlangan bo lganda ham o zgarmayd. Demak, tezlknng proyeksyalar qo zg almas koordnatalar sstemasdan qo zg aluvch koodnatalar sstemasga o tshga nsbatan kovarant bo lar ekan. (7.9.) formulanng kkala tomonn vaqt bo ycha dfferensallaymz: d d d dr W ( r ) r. dt dt dt dt d dr ; larn e tborga olb, quydag formulan hosl qlamz: dt dt W r. (7.9.4) (7.9.4) tenglknng o ng tomondag brnch qo shluvchnng modul r r sn, r h ga teng, bu esa aylana bo ylab harakatlanuvch nuqta urnma tezlanshnng modul blan br l. r vektornng yo nalsh ham urnma tezlanshnng yo nalsh blan br l (6-shakl). Demak, r vektor N nuqtanng urnma tezlanshn fodalayd, ya n W r (7.9.5) (7.9.4) tenglknng o ng tomondag kknch qo shluvchn qaraymz: sn,. va vektorlar o zaro perpendkulyar va h bo lgan uchun yuqordag tenglkn quydag ko rnshda yozsh mumkn: h. vektornng yo nalsh normal tezlanshn yo nalshga parallel va N nuqtadan aylansh o qga qarab yo nalgan, shunng uchun h, (7.9.6) W n bu yerda h vektor aylansh o qdan N nuqtaga tomon yo nalagan. Demak, (7.9.4) formula nuqtanng to la tezlanshn fodalayd. W n O O z h 6- shakl r N W y

98 Urnma va normal tezlanshlarnng modullar quydagcha hsoblanad: W h, W n h. (7.9.7) Tanlangan sanoq sstemasga nsbatan (6-shakl) y, r ( -algebrak burchak tezlansh) va W n O N deb olsak (7.9.5) va (7.9.6) formulalarga asosan: j k r O N o o O N. (7.9.8) W y z Bundan tezlanshnng koordnata o qlardag proyeksyalarn topamz: y, W y y, W. W (7.9.9) Bu formulalar ham qo zg almas koordnatalar sstemasdan o zg aluvch koordnatalar sstemasga o tshga nsbatan kovarant. z Nazorat savollar.qattq jsmnng qanday harakatga lgarlanma harakat deylad?.ilgarlanma harakatdag qattq jsm nuqtalarnng tezlk tezlanshlar qanday bo`lad? 3.Qattq jsmnng qanday harakatga qo`zg`almas o`q atrofda aylanma harakat deylad? 4.ylanma harakatdag qattq jsmnng burchak tezlg va burchak tezlansh deganda nman tushunasz? 5.Burchak tezlk va burchak tezlansh vektorlar qanday yo`nalgan bo`lad? 6.Qattq jsm nuqtasng tezlg qanday toplad? 7.Qattq jsm nuqtasnng tezlansh nmaga teng? 8.Qattq jsm nuqtasnng urnma, normal va to`la tezlansh vektorlar qanday yo`nalgan? Xulosa Mazkur ma ruzada qattq jsmnng eng oddy harakatlardan bo`lgan lgarlanma a o`q atrofdag aylanma harakatlar haqda to`la ma lumot berld; Bunday meank harakatlarn hayotmzda ko`p uchratamz: mashna va meanzmlar, osmon jsmlarnng harakatlarda va hokazo.qo`zg`almas o`q atrofda aylanuvch jsm harakatn boshqa jsmlarga uzatsh (tshl g`ldrak, tasmalar yordamda) katta amaly ahamyatga ega.shunng uchun ham ma ruzada bayon qlngan nazarya meankanng ko`pgna amaly masalalarn echshga mkon berad. 98

99 99

100 9- mavzu Qattq jsmnng teks-parallel harakat. Qattq jsmnng teks-parallel harakat mavzusnng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Ma ruza (ma ruzal dars) Mavzu rejas 7. sosy tushunchalar va teoremalar. O`quv mashg`ulotnng maqsad Pedagagk vazfalar: Qattq jsmnng eng oddy harakatlar tushunchasn takrorlash. sosy tushunchalar blan tanshtrsh hamda Shal va Dalamber teoremalarn sbotlash. Teks shakl nuqtas tezlgn topsh bo`ycha tushuncha bersh. Teks shakl nuqtasnng tezlanshn topsh haqda mufassal ma lumot bersh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash 8. Teks shakl nuqtalarnng tezlklar. 9. Teks shakl nuqtalarnng tezlanshlar. Qattq jsmnng teks-parallel harakat haqda to`lq tushuncha bersh. O quv faolyat natjalar: Qattq jsmnng eng oddy harakatlarn tushunad va ta rflarn aytb beraolad. sosy tushunchalarn blad va teoremalarn sbotlab beraolad. Teks shakl nuqtas tezlgn topshn blad va amalda qo`llayolad. Teks shakl nuqta tezlanshn topaolad va masalalar yechshda tadbq etaolad. O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov,tenka-nsert Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov

101 .. Qattq jsmnng teks-parallel harakat mavzusnng tenologk artas. Ish bosqchlar - bosqch (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) O qtuvch faolyatnng mazmun.9 O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad.. Baholash me zonlar (-lova). Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova).. Mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhakama qladlar. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 9-Ma ruza

102 Qattq jsmnng teks-parallel harakat. Reja:. sosy tushunchalar va teoremalar.. Teks shakl nuqtalarnng tezlklar. 3. Teks shakl nuqtalarnng tezlanshlar dabyotlar: [],-3 sah, [5], 6-88 sah,[7], 7- sah. Tayanch boralar: bsolyut qattq jsm (a.q.j),lgarlanma harakat, aylanma harakat, ony aylansh markaz, teks shakl, qutb, teks shakl nuqtasnng tezlg va tezlansh. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. bsolyut qattq jsm deb nmaga aytlad?. Ilgarlanma harakat deb qanaqa harakatga aytlad? 3. ylanma harakat deb qanaqa harakatga aytlad? 4. ylanma harakatdag nuqtanng tezlg nmaga teng? 5. Normal va urnma tezlanshlar nma? 6. Ony aylansh markaz qanday toplad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng

103 sosy tushunchalar Belg bsolyut qattq jsm (a.q.j.)..q.j.-nng lgarlanma harakat. 3.Q.J.-nng aylanma harakat. 4 Teks shakl. 5 Qutb. 6 Ony aylansh markaz. 7 Tezlklarnng ony markaz. 8 Tezlanshlarnng ony markaz. 9 Teks shakl nuqtasnng tezlg. Teks shakl nuqtasnng tezlansh. Tezlanshlarnng ony markaz. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz,. sosy tushunchalar. 3

104 Qattq jsm nuqtalar bror qo zg almas tekslkka parallel tekslklarda harakatlansa, unng bunday harakatga teks parallel harakat deylad. Bu ta rfdan shunday ulosa qlsh mumknk, qattq jsmga qo zg almas tekslkka perpendkulyar qlb mahkamlangan tyory to g r chzq kesmas lgarlanma harakat qlad, ya n o zo zga parallel kuchad. Haqqatdan ham, qattq jsmnng qo zg almas tekslkka perpendkulyar B kesmas bror t vaqt oralg da B holatga o tsn. Qattq jsmnng ta rfga asosan B B, va BB ko chshlar esa qo zg almas tekslkka parallel bo lsh kerak, bundan Demak, BII B (68-shakl). 4 BB shakl parallelogramm ekan kelb chqad. Bundan shunday ulosa qlsh mumknk, qattq jsmnng asosy tekslkka perpendkulyar to g r chzqda yotuvch nuqtalarnng harakat unng btta nuqtasnng harakat blan anqlanad. Butun jsmnng harakat qattq jsmn qo zg almas tekslkka parallel tekslk blan kesshdan hosl bo lgan S kesmnng o z tekslgdag harakat blan anqland. Shunday qlb, qattq jsmnng teks parallel harakat teks shaklnng o z tekslgdag harakatga keltrlad. O zgarmas teks shaklnng o z tekslgdag holat unng kkta nuqtasnng holat blan yok kkta nuqtasn tutashtruvch kesmanng holat blan to lq anqlanad. Teks shaklnng o z tekslgdag harakat lgarlanma va aylanma harakatlardan borat bo lad. Teks shaklnng lgarlanma harakat deb shunday harakatga aytladk, unng harakat tekslgda yotgan tyory to g r chzq kesmas o z-o zga parallel ko chad. Teks shaklnng o z tekslgdag harakat davomda unng aylansh markaz deb ataluvch btta nuqtas qo zg almasdan qolsa, bunday harakatga aylanma harakat deylad. Qattq jsmnng bunday harakat davomda nuqtalarnng trayektoryalar markaz qo zg almas nuqtada bo lgan konsentrk aylanalardan borat bo lad. Nuqtalarnng tezlk va tezlanshlar aylansh markazgacha bo lgan masofalarga proporsonal bo lad, ya n bu yerda va Q OQ, (8..) 4 W Q OQ, (8..) lar aylansh burchak tezlg va burchak tezlansh. Qattq jsmnng aylanma harakatda nuqtalarnng tezlanshlar OQ aylansh radusdan burchakka og gan bo lad. Bu burchak hamma nuqtalar uchun br l qymatga ega. U faqat va larga bog lq, ya n W tg. (8..3) W n -teorema. Qattq jsmnng o z tekslgdag har qanday chekl ko chshn br lgarlanma ko chsh va tyory markaz (qutb) atrofda br marta bursh blan hosl qlsh mumkn. Isbot. Teks shaklnng B va B kesmalar blan anqlangan tyory kkta П va П holat berlgan bo lsn (B kesma П teks shaklga mahkamlangan) (69-shakl). Ilgarlanma harakat blan teks shakl П holatdan П 3 holatga o tsn, bu holda B kesma B holatdan B 3 holatga o tad va bu ko chsh B vektor blan anqlanad (69-shakl). B B 68-shakl S B

105 Ilgarlanma harakat ta rfga asosan 3BII B. End teks shakln B markaz atrofga 3 B burchakka buramz, natjada B 3 kesma B holatga П В B П o tad va П shakl П 3 holatdan П holatga o tad. Bz tyory markaz sfatda B nuqtan tanladk. Bu holda shaklnng lgarlanma ko chsh B B vektor blan, aylanma ko chsh esa 3 B burchak blan anqlanad. gar qutb sfatda nuqta olnganda ed shaklnng lgarlanma ko chsh vektor blan, aylanma ko chsh B3 B burchak blan anqlanar B ed. Osonlk blan ko rsh mumknk, lekn B, ya n lgarlanma ko chsh qutbn o zgartrsh blan o zgarad, chunk bu burchaklar parallel kesmalardan tashkl topgan. Demak, fguranng aylanma ko chsh qutbn tanlanshga bog lq emas. Shunday qlb, lgarlanma ko chsh qutbn tanlansh blan o zgarar ekan, un tanlash yo l blan lgarlanma ko chshn yo qotsh ham mumkn. -teorema. Teks shaklnng o z tekslgdag lgarlanma bo lmagan har qanday chekl ko chshn chekl aylansh markaz deb ataluvch markaz atrofda br marta bursh blan hosl qlsh mumkn. Isbot. Teks shaklnng tyory kkta B va B kesmalar blan anqlangan П va П holatlar berlgan bo lsn (7-shakl). gar O chekl aylansh markaz mavjud bo lsa, bu shunday nuqta bo ladk, bu nuqta va nuqtalardan br l uzoqlashgan bo lad, ud shunday B va B nuqtalardan ham br l uzoqlashgan bo lad (7-shakl), ya n O O ; OB OB. Demak, O aylansh markaz va B B kesmalar o rtalardan chqarlgan perpendkulyarnng kesshsh nuqtas bo lar ekan. O nuqta aylansh markaz ekann ko rsatamz. Haqqatdan ham, B B bo lgan uchun O BOB O BOB burchakka bursh blan teks B holatga o tkazsh mumkn. Shun aytsh kerakk O O, B O BO,. Demak, B kesmas O markaz atrofda burchak teoremaga asosan qutbn tanlanshga bog lq emas. mumkn: B va B holatga va demak shakln П holatdan П kesmalar orasdag burchakka teng va bu burchak - Isbotlangan kkta teoremadan teks shaklnng o z tekslgdag harakat haqda quydag ulosaga kelsh ) -teoremaga asosan teks shaklnng o z tekslgdag har qanday harakatn qutb deb ataluvch nuqta blan brgalkdaga chekl lgarlanma ko chshlar va qutb atrofdag chekl burshlarnng uzluksz ketma-ketlgdan borat deb qarash mumkn. П В 69-shakl O 7-shakl П 3 3 B П 5

106 ) -teoremaga asosan teks shaklnng har qanday lgarlanma bo lmagan elementar ko chshn ony aylansh markaz deb ataluvch markaz atrofda br marta elementar burchakka bursh blan hosl qlsh mumkn. Bundan quydagcha ulosa qlsh mumkn: teks shaklnng o z tekslgdag tyory lgarlanma bo lmagan harakatn ony aylansh markazlar atrofdag elementar burshlar ketma-ketlgdan borat deb qarash mumkn. Teks shaklnng harakat davomda ony aylansh markaznng holat qo zg almas tekslkda ham, shaklga mahkamlanga tekslkda ham uzluksz o zgarb borad. z 3 3 Ony aylansh markaz atrofdag aylanma harakat burchak tezlg ga ony burchak tezlk, burchak tezlansh ga ony burchak tezlansh deylad. Tezlk vektor aylansh raduslarga perpendkulyar bo lad (aylansh radus nuqtadan aylansh markazgacha bo lgan masofa) (7-shakl). Teks shaklnng ony aylansh markaz P nuqtanng qaralayotgan ondag tezlg nolga teng bo lad. P 7-shakl n n Teks shaklnng ony aylansh markazn topsh uchun unng kkta nuqtas tezlgnng yo nalshn blsh yetarl. Bu nuqtalar tezlklardan chqarlgan perpendkulyarlarnng kesshsh nuqtas ony aylansh markaz bo lad. O Ony aylansh markaznng qo zg almas tekslkda qoldrgan zga qo zg almas sentroda, shaklga 7- shakl P mahkamlangan tekslkda qoldrgan zga qo zg aluvch sentroda deylad (7-shakl). blan qo zg almas P sentroda, blan qo zg aluvch sentrodan belglaymz, ony aylansh markazn blan belglaymz. Qaralayotgan onda ony aylansh markaznng qo zg almas tekslkdag o rn blan qo zg aluvch P tekslkdag o rn ony aylansh markaz blan ustma-ust tushad (7-shakl). Cheksz kchk t vaqtdan keyn ony aylansh markaz boshqa nuqtaga o tad, va nuqtalar ajralad. Qo zg almas sentorda qo zg almas O tekslgga nsbatan qo zg amas egr chzq bo lad. Qo zg aluvch sentroda shaklga mahkamlangan tekslkka nsbatan qo zg almas, O tekslkka nsbatan qo zg aluvch tekslk blan brgalkda qo zg aluvch yegr chzq bo lad. Qo zg aluvch va qo zg almas sentrodalarnng urunsh nuqtas qaralayotgna onda ony aylansh markaz bo lad. Teks shaklnng harakat vaqtda qo zg aluvch sentroda qo zg almas sentroda ustda srpanmasdan yumalayd va ularnng urunsh nuqtas qaralayotgan onda ony aylansh markaz bo lad. Masalan, D dsk d to g r chzq bo ylab srpanmasdan yumalayotgan bo lsa, d to g r chzq qo zg almas sentroda, D dsk aylanas qo zg aluvch sentroda bo lad, ularnng urunsh nuqtas ony aylansh markaz bo lad.. Teks shakl nuqtalarnng tezlklar D 73-shakl d 6

107 Teks shaklnng harakatn qutb nuqtas P va tyory nuqtas M nng qo zg almas koordnatalar sstemasga nsbatan qaraymz. Shaklnng koordnatalar sstemasga nsbatan holat P va M P, M radusvektorlar blan anqlansn (74-shakl). U holda va r vektorlar orasda quydag munosabat o rnl: r. (8..) M p Bu tenglknng kala tomonn vaqt bo ycha dferensallaymz: d d M p dr. (8..) dt dt dt PM r const bo lgan uchun r vektor shaklnng harakat vaqtda faqat dr r, bundan dt d M d P M, P. Natjada (8..) tenglkdan quydag dt dt yo nalsh bo ycha o zgaradl. Eyler formulasga asosan tashqar formulaga kelamz: r M P yok M P MP M M P r 74-shakl P. (8..3) Tezlklarn qo shsh teoremasga asosan teks shakl tyory M nuqtasnng tezlg qutb nuqtasnng tezlg, ya n lgarlanma harakat tezlg blan qutb atrofdag aylanma harakat yg ndsga teng. MP MP r p tezlklarnng vektor MP kesmaga perpendkulyar bo lb, shaklnng aylansh tomonga qarab yo nalgan bo lad (75-shakl) va modul PM ga teng. MP Demak, teks shakl brorta P nuqtasnng tezlg va bu nuqta atrofda aylanma harakat burchak tezlg berlgan bo lsa, unng tyory nuqtasnng tezlgn topsh mumkn (75-shakl). Tezlklarn topshnng boshqa usul quydag teoremadan kelb chqad. -teorema. gar teks shakl btta nuqtasnng tezlg va boshqa btta nuqtas tezlgnng yo nalsh berlgan bo lsa, ony aylansh markazdan foydalanb, teks shakl tyory nuqtasnng tezlgn topsh mumkn. Isbot. Teks shakl btta nuqtasnng tezlg va boshqa btta B nuqtas tezlgnng yo nalsh berlgan bo lsn (76-shakl). va B nuqtalardan ularnng tezlklarga perpendkular to g r chzqlar chzamz. Bu to g r chzqlarnng kesshsh nuqtas P shaklnng ony aylansh markaz bo lad. P nuqtaga nsbatan nuqtanng tezlg quydagcha bo lad (76-shakl): Bundan, ony burchak tezlk n topamz: P. P M M p 9 M M B MP p P 75-shakl 76-shakl 7

108 End tyory M nuqtanng tezlgn topamz: M tezlknng yo nalsh PM vektorga perpendkulyar bo lad.. (8..4) P PM M PM. (8..5) P (8..5) tenglkdan ko rnb turbdk, teks shakl nuqtalarnng tyory paytdag tezlg ony aylansh B B B p 77- shakl markazdan nuqtagacha bo lgan masofaga proporsonal bo lar ekan. gar teks shakl berlgan nuqtalarnng tezlklar va B ma nosn yo qotad. Bunday holda quydag kkta holdan bttas o rnl bo lad. ) B lar parallel bo lsa, yuqordag teorema II bo lb, va B nuqtalar btta umumy perpendkulyarda yotmasn (77-shakl). Shakldan ko rnb turbdk bu holda ony aylansh markaz chekszlkda bo lad va (8..4) tenglkdan. Demak, shakl bu holda ony lgarlanma harakatda bo lar ekan. II bo lb, va B nuqtalar btta umumy B perpendkulyarda yotsn (78-shakl). Bu holda ony va B tezlklarnng modullarn ham blsh kerak bo lad. va B ) B aylansh markazn topsh uchun vektorlarnng uchlar orqal to g r chzq o tkazamz. Bu to g r chzq blan B to g r chzqnng kesshsh nuqtas ony aylansh markaz bo lad (78-shakl). (8..5) formuladan: Demak, bu holda teks shakl tyory P tezlklarnng ham yo nalsh, ham modul berlgan bo lsh kerak. gar o zaro teng. B B PB. nuqtasnng tezlgn topsh uchun kkala va B nuqtalar bo lsa, bu holda yana teks shakl ony lgaranma harakatda bo lad. -teorema. Teks shakl o zgarmas kesmas uchlarnng tezlklarn kesma yo nalshdag proeksyalar Isbot. B kesma uchlarnng tezlklar va B bo lsn (79-shakl). va B nuqtalardan ularnng tezlklarga perpendkulyarchzqlar chzamz, ularnng kesshsh nuqtas P ony aylansh markaz bo lad. gar B kesmanng ony aylansh burchak tezlg bo lsa, va B nuqtalarnng tezlklar bo lad. Ularnng B kesmadag proyeksyalar quydagcha bo lad: 78-shakl P, B PB 8

109 ( ) BB ( ) B B B cos Pcos h, cos PB cos h, bu yerda h 79-shakldan ko rnb turbdk P nuqtadan B kesmagacha bo lgan masofa. Demak, ( ) B ( B ) B. 3. Teks shakl nuqtalarnng tezlanshlar Teks shakl tyory M nuqtasnng tezlg (8..3) formulaga asosan quydagcha toplad: bu yerda r PM M M P r, B nuqtanng P nuqtaga nsbatan radus-vektor (74-shakl). Bu tenglknng kkala tomonn vaqt bo ycha dfferensallaymz: d M d P d dr ( r ) ( ). (8.3.) dt dt dt dt d mqdor shaklnng burchak tezlansh vektor bo lb, bu vektor shakl tekslgga perpendkulyar yo nalgan dt dr bo lad. r Eyler formulas, r va r larn e tborga olb, quydagn hosl qlamz: dt dr ( r) ( r ) r ( ) r. dt Natjada (8.3.) tenglk quydag ko rnshga kelad: WM WP ( r ) r. (8.3.) ( ) ( r va W n ) r (8.3.3) W MP mqdorlar shaklnng P nuqta atrofdag aylanma harakatnng urnma va markazga ntlma (normal) tezlanshlarn fodalayd. Shunday qlb, (8.3.) tenglk quydag ko rnshga kelad: ( ) ( n) W W W W yok bu yerda W MP W W ( ) ( n) MP MP. M P W M MP P MP MP MP (8.3.4) W W, (8.3.5) Shunday qlb, teks shakl tyory nuqtasnng tezlansh qutb nuqtasnng tezlansh blan qutb nuqtas r va r PM atrofdag aylanma harakatlar tezlanshlarnng geometrk yg ndsga teng. bo lgan uchun ( ) ( ) W MP MP, W n 4 MP PM, W M PM (8.3.6) bo lad. W vektor blan PM radus orasdag burchak quydagcha toplad: MP W W ( ) MP ( n) MP B tg. (8.3.7) B P h B 79-shakl 9

110 Nazorat savollar.qattq jsmnng teks-parallel harakat deb qanday harakatga aytlad?.ylanma harakatdag nuqtanng tezlg nmaga teng? 3.Normal va urnma tezlanshlar qanday yo`nalad va ularnng modullar nmaga teng? 4..Q.J. deb qanaqa jsmga aytlad? 5.Dalamber teoremas nma haqda? 6.Shal teoremas nma deyd? 7.Ony aylansh markaz qays nuqtada joylashgan? 8.Tezlklarnng ony markaz qanday toplad? 9.Tezlanshlarnng ony markaz qayerda joylashgan?.teks shakl nuqtasnng tezlg nmaga teng? Xulosa Qattq jsmnng teks-parallel harakat meank harakatlarnng br tur bo`lb, amaly masalalarda, fzk va tenkada ko`p uchrayd.bunday harakat murakkab harakatlar qatorga krad va unng knematk arakterstkalarn o`rgansh amalyotda o`ta muhm rol o`ynayd.o`zgarmas teks shaklnng harakatn knematk nuqta nazardan qaraganda qo`zg`aluvchan tekslknng qo`zg`almas tekslkka nsbatan harakatn o`rgansh kerak bolad.bu masala nazary meankanng asosy masalalrdan br bo`lb, amalyotga bevosta aloqas mavjud. -Mavzu Nuqta dnamkas. sosy tushunchalar. Nuqta harakatnng dfferensyal tenglamalar.nuqta dnamkasnng asosy

111 masalalar...mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Ma ruza (aborotl dars) Mavzu rejas. Dnamka fan. Dnamka rvojlanshnng qsqacha tar.. Meankanng asosy qonunlar. 3. Meank kattalklar sstemas. 4. Moddy nuqtanng harakat dfferensal tenglamalar. 5. Nuqta dnamkasnng kk asosy masalas. O`quv mashg`ulotnng maqsad Nuqta dnamkasnng asosy qonunlar va kkta asosy masalas haqda, nuqta harakatnng dfferensal tenglamalar haqda tushuncha bersh. Pedagagk vazfalar: Nuqta dnamkasnng asosy qonunlar haqda tushuncha bersh. Nuqta harakatnng dfferensal tenglamalar haqda ma lumot bersh. Nuqta dnemkasnng asosy masalalar haqda tushuncha bersh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash.. Nuqta dnamkas. Nuqta harakatnng dfferensal tenglamalar. Nuqta dnamkasnng asosy masalalar mavzusnng tenologk artas. Ish Tngloch faolyatnng O quv faolyat natjalar: Nuqta dnamkasnng asosy qonunlar haqda tushunchaga ega. Nuqta harakatnng dfferensal tenglamalarn eslab qolad va amalyotga qo`llay olad. Nuqta dnamkasnng asosy masalalarn yoddan blad. O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov, Pnbord tenkas,aqly hujum. Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov

112 bosqchlar - bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun. O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad.. Baholash me zonlar (-lova).3 Pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4 Mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tnglaydlar. Tnglaydlar mazmun Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhakama qladlar. 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. -Ma ruza Nuqta dnamkas. Nuqta harakatnng dfferensal tenglamalar. Nuqta dnamkasnng asosy masalalar.

113 Reja:. Dmamka fan. Dnamka rvojlanshnng qsqacha ta rf.. Meankanng asosy qonunlar. 3. Meank kattalklar sstemas. 4. Moddy nuqtanng harakat dfferensal tenglamalar. 5. Nuqta dnamkasnng kk asosy masalas. dabyotlar: [],39-34 sah, [5], sah. Tayanch boralar: Moddy nuqta, Dnamka, harakat, kuch, tezlansh, massa, dfferensal tenglama, harakat ntegrallar, boshlang`ch shartlar, absolyut qattq jsm. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Moddy nuqta deb nmaga aytlad?. Kuch deb nmaga aytlad? 3. Tezlansh deb nmaga aytlad? 4. Massa deb nmaga aytlad? 5. Nyutonnng uchta qonunlarn ta rflang? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng 3

114 sosy tushunchalar Belg Kuch va unng brlklar. Moddy nuqta, absolyut qattq jsm. 3 Dnamkanng asosy qonunlar. 4 Dfferensal tenglama. 5 Harakat ntegrallar, boshlahg`ch shartlar. 6 Massa, unng o`lchov brlg. Og`rlk kuch. 7 bsolyut qattq jsm. 8 Nuqta dnamkasnng brnch masalas. 9 Nuqta dnamkasnng kknch masalas. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz,. Dnamka fan. Dnamka rvojlanshnng qsqacha tar. 4

115 Dnamka meankanng bo lm bo lb, unda moddy jsmlarnng harakat unga ta`sr etuvch kuchlarga bog lab o rganlad. Dnamka meankanng ko pgna amaly masalalarn yechshda muhm ahamyatga ega bo lgan umumy bo lm hsoblanad. Buyuk Italan olm Golley (564-64) dnamkanng asoschs hsoblanad. U moddy nuqtanng to g r chzql noteks harakat uchun tezlk va tezlansh tushunchalarn krtd hamda jsmlarnng bo shlqda erkn tushsh qonunlarn yaratd. Galley dnamknng brnch qonun - nersya qonunga ta`rf berd gorzontga burchak ostda otlgan jsmlarnng bo`shlqda parabola bo`ylab harakatlanshn anqlad. Gollandyalk olm Gyuygeus (69-695) nersya moment tushunchasn krtgan, tebrangchlar nazaryasn va soatn yaratgan. U egr chzql harakatdag nuqta uchun tezlanshnng moment tushunchasn umumlashtrb, markazdan qochma kuchn krtgan. Buyuk nglz olm, Nyuton (643-77) Galleynng dnamkanng yaratsh sohasdag shlarn davom ettrd. O`znng buyuk asar phlosophnae naturals prncpa mathematka da klassk meankanng qonunlarga ta`rf bergan va bu qonunlar asosda dnamkanng sstemal bayonn berd. Nyuton butun olam tortlsh qonunn yaratgan. Moddy nuqta dnamkasdan meank sstema dnamkasga o`tshn ta mnlovch Nyuton tomondan yaratlgan ta sr va ansta sr qonun katta ahamyatga ega. Dekartnng harakat mqdorn saqlansh haqdag fkrn rvojlantrb, Nyuton harakat mqdornng o`zgarshn ta sr etuvch kuchga bog lqlgn anqlad. XX asrnng boshlarda nemes fzg lbert Eynshteyn tomondan yaratlgan relyatvstk meanka (nsbylk nazaryas) fazo, vaqt, massa va energya haqdag tasavvurkarn butunlay o zgartrb yubord. Lekn yorug lk tezlgdan kchk tezlklar uchun klassk meanka qonunlar asosda olngan natjalar, relyatvstk meanka qonunlar blan olngan natjalar blan mos kelad. Galley-Nyuton qonunlar yordamda hozrg zamon nazarya meankasnng asosn tashkl etuvch teoremalar sbotland va meanka prnsplar asosland. Knetk energyanng o zgarsh qonun Ivan Bernull ( ) va Danl Bernull (3-78) lar tomondan ta rflangan. Harakat mqdornng o zgarsh haqdag teorema deyarl br vaqtnng o zda (746) Eyler va Danl Bernull tomondan tarflangan. 76 yl Peterbur fanlar akademyas akademg Ya. German dnamka tenglamalarn statka tenglamalar ko rnshga keltruvch, umumy metod, meanka (knetostatka metod)n krtgan. 737y Eyler (77-783) bu prnspn umumlashtrd va egluvch jsmlarnng tebranshga qo llad. 743y Dalamber (77-783) German Eyler prnspn qo llanlsh sohasn kengaytrd, yan bu prnspn bog langan jsmlardan tashkl topgan murakkab sstemalarga qo llad. Bu prnsp Dalamber prnsp (yok nachala Dalambera) nom blan yurtlad. 5

116 Lagranj (736-83) German Eyler - Dalamberprnspn statkanng umumy prnspn mumkn bo lgan ko chsh prnsp blan brlashtrb, amalyotda qo lash uchun qulay bo lgan ko rnshga keltrd. Mumkn bo lgan ko chsh prnsp brnch Stevn (548-6) tomondan krtlgan Galley Stevnnng og ma tekslkdag mulohazalarn davom etkazb meankanng oltn qodasga ta rf bergan: kuchdan yutlsa tezlkdan yutqazlad. kademk M.V Ostrogradsky (548-86) mumkn bo lgan ko chsh prnspn umumlashtrb, meankanng yang masalalarn yechshga qo llagan. Meank sstemanng umumlashgan koordnatalardag tenglamalarn Lagranj tomondan keltrb chqarlgan. Lagranj tenglamalar meank sstema harakatn umumy ko rnshda fodalayd. Bu tenglamalar meank sstemanng amalyotda muhm ahamyatga ega bo lgan kchk tebranshlarn o rganshda qo llanlad. XX asrda meankanng rvojlanshda katta hssa qo shgan o zbek olmlar: M. T. O razboyev, X.. Ramatuln, X. X. Usmonodjayev, T. R. Rashdov,.Meankanng asosy qonunlar. (Galley N`yuton qonunlar) Dnamka knetkanng br qsm bo`lb, unda moddy jsmlarnng (yok meank sstemanng) harakatn unga ta`sr etuvch kuchga bog`lab o`rganlad. Moddy jsmlarnng harakat un tashkl etuvch nuqtalar (zarachalar)nng harakat blan anqlanad. Bzga ma`lumk moddy nuqta deganda o`lchamlar yetarlcha kchk va un tashkl etuvch zarralarnng harakat br brdan deyarl farq qlmaydgan moddy jsm tushunlad. Dnamkanng asosda N`yuton tomondan brnch bo`lb tartbga solngan qonunlar yotad. -Irersya qonun. Moddy nuqtaga (moddy jsmga) tashqardan hech qanday ta`sr bo`lmasa, u o`znng tnch holatn yok to`g`r chzql teks harakatn saqlayd. Bu qonun Galley tomondan ta rflangan bo`lb unga asosan har qanday jsm agar unga hech qanday tashq ta`sr bo`lmasa, u o`znng tnch holatda turad yok to`g`r chzql teks harakatn (o`zgarmas tezlkl harakatn) davom etrshn arakterlayd. Jsmlarnng bu osasga unng ntertlg deylad. -kuch va tezlanshnng proporsonallk qonun. Moddy nuqtanng tezlansh unga ta`sr etuvch kuch blan br l yo`nalgan bo`lad. Ikknch qonunn boshqacha ko`nshga ham ta`rflash mumkn: moddy nuqta harakat mqdornng o`zgarsh unga ta`sr etuvch kuchga proporsonal bo`lb, yo`nalsh ta`sr etuvch kuch yo`nalshda sodr bo`lad. N`yutonnng ta`rfga ko`ra harakat mqdor nuqta massas blan tezlg ko`paymasga teng. Natjada harakat mqdornng o`zgarshn harakat mqdordan dm vaqt bo`ycha olngan brnch tartbl hoslaga teng, yan deb olsh dt 6

117 mumkn. Proporsonallk koefftsentn brga teng deb olb, kknch qonunn quydag ko`rnshda yozsh mumkn: d m F dt yok massan o`zgarmas deb olsak, d m F (.) dt d formulaga kelamz. W dt Nuqtanng tezlansh bo lgan uchun (.) formuladan F mw (.) formulaga kelamz. Moddy nuqta massas, tezlansh va unga ta`sr etuvch kuchlar orasdag bo`g`lanshn fodalovch (.) tenglama klassk meankada katta ahamyatga ega va unga dnamkanng asosy tenglamas deylad. 3. Ta`sr va aksta`sr qonun. Har qanday ta`srga mqdor jhatdan teng va qarama qarsh tomonga yo`nalgan aksta`sr mos kelad. Jsmlarnng massas ularnng nertlgn fodalovch o`lchov brlg hsoblanad, yan jsmlarnng tashq ta`srga berluvchanlgn harakatlovch kattalk. (.) formuladan massan quydag formula blan anqlash mumkn: F m. (.3) N (.3) formulan og`rlg G ga teng bo`lgan erkn tushayotgan moddy nuqta uchun qo`llaymz. G m, (.4) g g-erkn tushsh tezlansh. Bundan moddy nuqta massasnng mqdor unng og`rlgn erkn tushsh tezlanshga nsbatga teng. G mg. (.5) Yer sharnng har l nuqtalarda erkn tushsh tezlansh har l bo`lgan uchun jsmlarnng og`rlg ularnng massasdan shu blan farq qladk og`rlk yer shar nuqtalarnng joylashshga qarab o`zgarad. 4. Kuchlar tag`rnng o`zaro bog`lqmaslk qonun. Moddy nuqtaga br vaqtnng o`zda br nechta kuch ta`sr etayotgan bo`lsa, nuqtanng har br kuch ta`srdan ershadgan tzlansh qolgan kuchlarnng ta`srdan bog`lq bo`lmayd va nuqtanng to`la tezlansh alohda kuchlar ta`srdan ershlgan tezlanshlarnng geometrk yg`ndsga teng. Moddy nuqtaga F, F,...,Fn kuchlar sstemas ta`sr etayotgan bo`lsn. U holda bu qonunga asosan har br kuch ta`srdan ershladgan tezlanshlar (.) tenglamaga asosan quydagcha toplad. 7

118 mw F,,..., mw F mw n Fn. (.6) Hamma kuch br vaqtda ta`sr etsa, bu kuchlar ta`srdan ershladgan to`la tezlansh alohda kuchlar ta`srdan ershladgan tezlanshlar yg`ndsga teng, ya`n w n (.7) F n n (.6) tenglklarn hadma had qo`shb, (.7) tenglkka asosan quydag tenglaman hosl qlamz: n mw w... wn mw F (.8) Kuchlar ta`srnng o`zaro bog`lqmaslg degan br nuqtaga qo`ylgan kuchlanng o`zaro bog`lqmaslg degan emas. Masalan ta`sr etuvch kuchlar orasda bog`lansh reaksyalar ham bo`lsa, bu kuchlar hamma vaqt aktv kuchlardan bog`lq. 3. Meank kattalklarnng brlklar sstemas. Meank kattalklarn o`lchashda kkta brlklar sstemas qo`lanlad! Fzk va tenk brlklar sstemas. Fzk fzklar sstemasda asosy brlklar sfatda uzunlk brlg, massa va vaqt brlklar qabul qlngan, kuch brlg hoslvy brlk sfatda toplad. Dnamkanng asosy tenglamasdan: Kuch massa tezlansh Kuch massa tezlansh Uzunlk massa bundan F L M T. olnad. vaqt Bunday o`lchov brlklar sstemasga SI alqaro olchov brlklar: metr, klogramm massa va sekund. Kuchnng o`lchov brlg N kg m / sek kgm/ sek. Ikknch brlklar sstemasda asosy brlklar sfatda uzunlk, kuch va vaqt qabul qlngan, massa hoslavy brlk sfatda toplad. Bunday brlklar sstemasga tenkada ko`p tarqalgan MKGS (tenk brlklar sstemas) sstemas krad. Bunda asosy brlklar: metr, klogram kuch va sekund. Bu sstemada massanng o`lchov brlg kg, sek, yan kg kuch ta`srdan m / sek tezlansh oladgan massa m SI va MKGS sstemalarda kuch brlklar orasda quydag munosabatlar o`rnl: kg, massa 9, 8N yok N, kg, massa. 8

119 Chekl yok cheksz sondag moddy nuqtalar to`plamga moddy nuqtalar sstemas deylad. Moddy nuqtalar sstemas har br nuqtasnng harakat qolgan nuqtalarnng holat va harakatga bog`lq bo`lsa, bunday sstemaga meank sstema deylad. Qandaydr usul blan o`zaro bog`langan moddy jsmlar to`plam ham meank ssteman hosl qlad. Moddy nuqtalar sstemas nuqtalarnng o`zaro joylashsh hamma vaqt o`zgarshsz qolsa, bunday sstemaga absolyut qattq jsm deylad. Meank sstema yok qatq jsm chekl yok cheksz sondag moddy nuqtalardan zarrachalardan tashkl topganlg uchun dnamkan o`rganshn moddy nuqta dnamkasn o rganshdan boshlash kerak bo lad. 4. Moddy nuqtanng harakat dfferensal tenglamalar. Moddy nuqta, massa, kuch, radus, vektor, trayektorya, tezlk va tezlashsh. Moddy nuqtanng fazodag holat bror koordnatalar sstemasda o znng radus- vektor r blan anqlanad. Nuqtaga ta sr etuvch F kuch nuqtanng holatga, tezlgga va vaqtga bog lq bo lsh mumkn. Moddy nuqtaga br vaqtnng o zda br necha kuchlar sstemas F, F,..., F n ta sr etayotgan bo lsa, kuchlar ta srnng bog lqmaslk qonunga asosan harakatn kuchlar sstemasnng geometrk yg nds F F kuch ta srdan hosl bo ladgan harakat deb qarash mumkn. (-shakl). Shunday qlb, umumy holda dnamkanng asosy tenglamasn quydag ko rnshda yozsh mumkn: d r dr m Fr,, t (4.) dt dt Nuqta massas, radus-vektor va ta`sr etuvch kuchlar orasdag bog`lanshn fodalovch bu tenglama nuqta harakat dfferensal tenglamasnng vektor ko rnshn fodalayd. (4.) tenglama uchta skalyar tenglamalar sstemasga ekvvalent bo`lad. Koordnatalar sstemasn tanlab (4.) tenglaman tanlangan koordnatalar sstemas o`qlarga proyesyalab, har l ko`rnshdag skalyar tenglamalar sstemasnhosl qlsh mumkn. Masalan (4.) tenglaman qo zg almas dekarat koordnatalar sstemas o`q-larga proyeksyalaymz: m F, my F y, mz 9 F z, O z F n y W F F F z -shakl M ( ; y; z) (4.) Bu yerda, y, z -lar tezlanshnng koordnata o`qlardag proyeksyalar, F, Fy, Fz -lar ta`sr etuvch kuchn o`sha o`qlardag proyeksyalar. gar moddy nuqtanng harakat taby koordnatalar sstemasga nsbatan qaralayotgan bo lsa, (4.) tenglaman taby koordnatalar sstemas o`qlarga proyeksyalaymz: y

120 mw F,, mwn F n mwb F b, (4.3) F, F, F n b -lar kuchnng urnma, bosh narmal va benormaldag proyek- Bu yerda syalar. w n d s Knematkadan bzga ma lumk: w, dt ds, dt w. ularn (4.3) tenglamamalarga qo`yamz u holda b d S m ds m F, F n, F b (4.4) dt dt Bu erda -traektoryanng berlgan nuqtasdag egrlk radus. (4.4) tenglamalarnng orgsdan ko rsh mumknk, F -kuch urnma tekslkda yotad. gar nuqtanng harakat tekslkda qaralayotgan bo`lsa, qutb koordnatalardan foydalansh mumkn. Bunng uchun (4.) tenglaman qutb koordnatalarga proyeksyalaymz: m d mr r F r, r F (4.5) r dt Bu yerda F r, F -lar kuchnng radus-vektor yo`nalsh va ungaper pendkulyar yo`nalshlardag proeksyalar. (4.) tenglaman tyory egr c hzql koordnatalar sstemas (slndrk, sferk va h.k ) o`qlarga proyeksyalash ham mumkn. 5. Nuqta dnamkasnng kk asosy masalas. Nuqta dnamkas masalalarn nuqtanng harakat dfferensal tenglamalar yordamda yechlad.. Nuqta dnamkas brnch masalasnng yechm. Nuqta dnamkasnng brnch masalas nuqtanng massas va harakat tenglamalarn blgan holda unga ta sr etuvch kuchn topshdan borat. Nuqtanng harakat tenglamalar dekarat koordnatalar sstemasda. f t, f t f t (5.) y z 3 Ko`rnshda berlgan bo`lsn. (5.) tenglamalardan vaqt bo`ycha kk marta hosla olb, (4.) tenglamalarga qo`yamz va nuqtaga ta`sr etuvch kuchnng proeksyalarn topamz ya`n. m, my, mz, (5.) F X F Y F Z Kuchnng modul F m y z (5.3)

121 formuladan toplad. Nuqtaga ta`sr etuvch kuchnng yo`nalsh. ^ FX F,, Cos (5.4) F y z F ^ y y ^ Fz z CosF, y, CosF, z, F y z F y z formulalardan toplad.. Nuqta dnamkasnng kknch masalas moddy nuqtaga ta`sr etuvch F kuch, nuqtanng massas m shunngdek nuqtanng boshlang`ch holat va boshlang`ch tezlg berlganda unng harakat qonunn topshdan borat. Bu masalan to`g`r burchakl dekarat koordnatalar sstemasga yechamz. Ushbu holda nuqtaga ta`sr etuvch kuch nuqtanng holatga, tezlgga, vaqtga va h.k. ga bog`lq bo`lsh mumkn. Bz kuchn nuqtanng holatga, tezlgga va vaqtga bog`lq hol blan chegaralanamz. Bu holda nuqta harakat dfferensal tenglamalar (4.) quydag ko`rnshda bo`lad: d m FX t;, y, z,, y, z dt d y m FX t;, y, z,, y, z (5.5) dt d z m FX t;, y, z,, y, z dt (5.) tenglamalar t, y yt, z zt noma`lum funksyalarga nsbatan kknch tartbl dfferensal tenglamalar sstemasn fodalayd. Bu tenglamalarn ntegrallaganda har bttasda kktadan, oltta ntegrallash o`zgarmalar qatnashad, ya`n t; C, C, C3,... C6, y yt; C, C, C3,... C6, (5.6) z zt; C, C, C3,... C6. (5.3) Tenglamalardag,,3,4,5,6 C larnng har br qymatga btta egr chzq mos kelad ya`n bu tenglamalar cheksz ko`p egr chzqlar olasn fodalayd. Bunng meank ma nos shundan boratk nuqta br vaqtnng o`zda br nechta egr chzq bo`ylab harakatlansh keak. Bunday bo`lsh mumkn emas. Bu anqmaslknng ochsh uchun nuqtanng boshlang`ch holat va boshlang`ch tezlgn blsh kerak. Kosh masalas yechmnng mavjudlg va yagonalg teoremasga asosan nuqtanng berlgan boshlang`ch tezlk blan sodr bo`ladgan harakatga yagona egr chzq mos kelad. Boshlang`ch t t paytda nuqtanng koordnatalar va tezlknng boshlang`ch proyeksyalar berlgan bo`lsn, ya`n

122 t, t,, y y, z z, y y, z z (5.7) (5.7) Munosabatlarga boshlang ch shartlar deylad. (5.6) tenglamalarnng kkala tomonlardan vaqt bo ycha br marta hosla olamz:.,..., ;,,..., ;,,..., ; C C C t z z C C C t y y C C C t (5.8) (5.7) boshlang`ch shartlar (5.6) va (5.8) tenglamalarga qo`ysak,,...,6 C o`zgarmaslarga nsbatan oltta algebrak tenglamalar sstemasn hosl qlamz. Bu tenglamalar sstemasn yechb,,,...,6 C larnng qymatn topamz ya`n.,,,,, z y z y f C,,...,6 C (5.9) O`zgarmaslarnng toplgan qymatlarn (5.6) umumy yechmga qo`yb, masalanng berlgan boshlang`ch shartlarn qanoatlantruvch yechmn topamz ya`n. ;.,,,,, ;,,,,, ; ;,,,,, ; 3 z y z y t z z y z y t y z y z y t (5.) (5.) tenglamalar nuqtanng berlgan boshlang`ch holatdan berlgan boshlang`ch tezlk blan sodr bo`ladgan harakat tenglamalarn fodalayd.

123 Nazorat savollar..dnamkanng asosy qonunlar qanday ta rflanad?.kuch va massa nma? Ularnng o`lchov brlklarn aytb berng. 3.Nuqta harakatnng dfferensal tenglamalar qanday tuzlad? 4.Tezlansh nma? Unng o`lchov brlg qanday fodalanad? 5.Nuqta dnamkasnng brnch masalas nma deyd? 6.Nuqta dnamkasnng kknch masalasn ta rflang. Xulosa Dnamka nazary meankanng eng asosy qsm bo`lb, moddy jsmlarnng (umuman meank sstemanng ) harakatn o`rganad; Dnamkanng asosy qonun Nyutonnng kknch qonun hsoblanad; Nuqta dnamkasnng kkta asosy masalalar bor; Nuqta harakatnng dfferensal tenglamalar harakatdag nuqtanng koordnatalarn ta`sr etuvch kuch blan bog`layd. Harakatnng brnch ntegrallarn anqlash masalas meankanng asosy masalalardan brdr. 3

124 - mavzu Erkn moddy nuqta dnamkas... Mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Ma ruza (aborotl dars) Mavzu rejas. Moddy nuqtanng to`g`r chzql harakat. O`quv mashg`ulotnng maqsad Pedagagk vazfalar: Nuqtanng to`g`r chzql harakat haqda tushuncha bersh. Gorzontga qya qlb otlgan jsmnng harakat haqda tushuncha bersh. Nuqtanng qarshlk ko`rsatuvch muhtdag erkn harakat to`g`rsda tushuncha bersh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash. Gorzontga burchak ostda otlgan jsmnng qarshlksz muhtdag harakat. 3. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag harakat. Moddy nuqtanng to`g`r chzql va egr chzql harakat haqda tushuncha bersh. O quv faolyat natjalar: To`g`r chzql harakat va unng dnamk arakterstkas haqdag tushunchaga ega. Gorzontga qya otlgan jsmnng harakat haqda blmga ega, un amalyotga qo`llay olad. Jsmnng br jnsl og`rlk maydondag erkn harakat haqda tushunchaga ega. O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov, Pnbord tenkas, aqly hujum. Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov.. Erkn moddy nuqta dnamkas mavzusnng tenologk artas. 4

125 Ish bosqchlar - bosqch Mavzuga krsh (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhakama qladlar. 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 5

126 -Ma ruza Erkn moddy nuqta dnamkas. Reja:. Moddy nuqtanng to`g`r chzql harakat.. Gorzontga burchak ostda otlgan jsmnng harakat. 3. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag harakat. dabyotlar: [], sah, [7], 3-7 sah, [8], -4 sah. Tayanch boralar: Moddy nuqta, absolyut qattq jsm, massa, og`rlk, to`g`r chzql harakat, egr chzql harakat, trayektorya muht qarshlg, parabolk trayektorya, avfszlk trayektoryas. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Moddy nuqta deb nmaga aytlad?..q.j. deb nmaga aytlad? 3. Massa nma? Og`rlk nma? Ular orasda qanday bog`lansh bor? 4. Trayektorya deb nmaga aytld? 5. Dnamkanng asosy qonun qanday ta rflanad? 6

127 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Moddy nuqta. bsolyut qattq jsm (a.q.j.). 3 Massa. 4 Og`rlk. 5 Erkn tushsh tezlansh. 6 Trayektorya, parabolk trayektorya. 7 Xavfszlk parabolas. 8 Dnamkanng asosy tenglamas. 9 Nuqta harakatnng dfferensal tenglamalar. To`g`r chzql harakat. Egr chzql harakat. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 7

128 . Moddy nuqtanng to`g`r chzql harakat. Faraz qlaylk moddy nuqta to`g`r chzq bo`ylab harakatlansn. Nuqta harakatlanuvch to`gr chzqn o`q deb olamz, u holda nuqtanng butun harakat davomda y z bo`lad. (4.) tenglamaga asosan kuchnng y va z o`qlardg proyeksyalar aynan nolga teng bo`lad, ya`n F, F. (6.) y z Demak nuqta to`g`r chzql harakatda bo`lsa, unga ta`sr etuvch kuchnng ta`sr chzg` hamma vaqt harakat to`g`r chzg` blan ustma-ust tushad. Lekn (6.) shart harakatnng to`g`r chzql bo`lsh uchun yetarl emas. Masalan nuqta br jnsl og`rlk kuchlar maydonda harakatlaganda, unga ta`sr etuvch kuch hamma vaqt vertkal yo`nalshga ega, ya`n F, Fz lekn nuqta parabola bo`ylab harakatlanad. Erkn moddy nuqtanng harakat to`g`r chzql bo`lsh uchun unga ta`sr etuvch kuchnng yo`nalsh o`zgarmas va unng boshlang`ch tezlg kuch bo`ylab yo`nalgan yok nolga teng bo`lsh zarur va etarl Faraz qlaylk nuqta o`q bo`ylab harakatlansn, u holda. y z va y z Demak nuqtanng tezlg hamma vaqt o`q bo`ylab yo`nalgan va nuqtanng boshlang`ch tezlg ham o`q bo`ylab bo`lad y z bo`lgan uchun (4.) tenglamalardan F F, demak nuqtaga ta`sr etuvch kuch o`q y z bo`ylab yo`nalgan. End etarllgn sbotlaymz. Faraz qlaylk nuqtaga ta`sr etuvch kuch o`q bo`ylab yo`nalgan bo`lsn. U holda harakat tenglamalardan y, z bundan y c, z c. gar nuqtanng boshlang`ch tezlg o`q bo`ylab yo`nalgan bo`lsa, y c, z. natjada y, z. bundan y c 3, z c4 agar boshlang`ch paytda nuqta o`qnng ustda bo`lsa, y c3 z c4 va demak y, z bundan esa nuqtanng proyektoryas o`q bo`lmsh kelb chqad.. Moddy nuqtanng faqat vaqtdan bog`lq bo lgan kuch ta`srdan to`g`r chzql harakat. Bu holda nuqtanng harakat dfferensal tenglamas quydagcha bo`lad m F X t yok (6.) d X dt (6.) tenglaman br marta ntegrallaymz: S F t dt C. m 8

129 Bu tenglaman ya`na br marta ntegrallab, nuqtanng harakat tenglamasn topamz, ya`n S SF t dtdt Ct C, (6.3) m Bu yerda C,C lar boshlang`ch shartlardan toplad.. Moddy nuqtanng faqat holatdan bog`lq bo lgan kuch ta`srdag to`g`r chzql harakat. Bu holda nuqtanng harakat dfferensal tenglamas. m F (6.4) ko rnshda bo lad. d d d d dt d dt d n etborga olb (6.4) tenglaman quydag ko`rnshda yozamz: d F d. m Bun ntegrllaymz: S F d C, m bundan, S F d C, m yok, d d S F d dt. dt m SF d C m Bundan d t S C. SF d C m Bu tenglaman ga nsbatan echb, n vaqtn va ntegrallash o`zgarmaslarn funksya ko`rnhda topamz ya`n, t, cc (6.5) 3. Moddy nuqtanng faqat tezlkdan bog`lq bo`lgan kuch ta`srdag to`g`r chzql harakat. Bu holda nuqtanng harakat dfferensal tenglamas quydag ko`rnshda bo`lad: m F (6.6) d d, n etborga olb, (6.6) tenglaman dt dt F m ko`rnshda yozamz. Org tenglamadan: 9

130 d S C t. (6.7) F m Bu tenglaman ga nsbatan yechb, ya`na br marta ntegrallaymz, natjada quydag tenglaman hosl qlamz: t c dt. S f (6.8), C gar (6.7) tenglaman ga nsbatan yechsh mumkn bo lmasa, oddy dfferensal tenglamalar kursdan ma`lum bo`lgan metodlar blan ntegrallash kerak. 4. Moddy nuqtanng qarshlksz muhtdag erkn tushsh. Og`rlga P ga teng moddy nuqtanng. Yer srtdan (gorzontal tekslkdan) H balandlkdan qarshlksz muhtda erkn tushshn qaraymz. Nuqtanng boshlang`ch holatn koordnatalar bosh deb olb, u o`qn vertkal pastga yo`naltramz (-shakl). gar nuqtanng boshlang`ch tezlg nolga teng bo`lsa, u holda boshlang`nch shartlar quydagcha bo`lad: t o;, y, (6.9) O Bu to`g`r chzql harakatnng dfferensal tenglamas quydagcha bo`lad: M m y p mg y g, Bu yerda g erkn tushsh tezlansh. Yuqordag tengalaman kk marta ntegrallaymz: P y gt C, y g t C t C (6.) Bu tenglamalarga (6.9) boshlang`ch shartlarn qo yb, C va -shakl y C larn topamz, ya`n, C. C va C larn toplgan qymatlarn (6.) tenglamarga qo`yamz: y gt, (6.) Y gt / (6.) Moddy nuqtanng (6.) va (6.) tenglamalar blan anqlangan erkn tushsh qonunn brnch bo`lb Galley tajrba yo`l blan topgan. Nuqtanng harakat vaqt t gat eng bo`lsn, ya`n t t bo`lsn. U holda (6.) va (6.) tenglamalardan: H H H t H, H gh (6.3) g. Gorzontga burchak ostga otlgan jsmnng qarshlksz muhtdag harakat. Gorzontga bror burchak ostda boshlang`ch tezlk blan otlgan jsmnng qarshlksz muhtdag harakatn qaraymz. H y 3

131 Koordnata boshn nuqtanng boshlang`ch holatga joylashtrb, o`qn gorzont bo`ylab o`ng tomonga, y o`qn vertkal bo`ylab yuqorga o`naltramz (3-shakl). Nuqta Oy vertkal tekslkda harakatlanad. Boshlang`ch shartlar quydagcha bo`lad: y t ;, y, cos, y sm. (7.) y O M P 3-shakl M Moddy nuqta br jnsl og`rlk kuchlar maydonda harakatlanad. Nuqtanng harakat dfferensal tenglamalarn, (4.) tenglamalarn tuzamz m F, my F y mg Bu tenglamalarnng kkala tomonn m ga bo`lb, quydag tenglamalarn hosl qlamz:, y g. (7.) tenglamalarn vaqt bo`ycha kk marta tegrallaymz: C, y gt ; C z gt Ct C 3, y Ct C 4.. (7.3) (7.) boshlang`ch shartlarn (7.3) tenglamalarga qo`yb, C,,3,4. o`zgarmaslarn topamz, ya`n C cos, C sn, C 3 C 4 Natjada: cos, t cos ; (7.4) y sn gt, y t sn gt /. (7.5) (7.4) tenglamalardan ko`rnb turbtk, nuqta tezlgnng o`qdag proyeksyas o`zgarmas, ko`chsh esa chzql qonun blan, ya`n teks harakat qonun blan o`zgarar ekan. (7.5) tenglamalardan shun aytsh mumknk nuqta tezlgnng y o`qdag proyeksyas chzql qonun blan ko`chsh esa teks o`zgaruvch harakat qonun blan sodr bolar ekan. Jsm yuqorga harakatlanganda unng tezlg blan erkn tushsh tezlansh qarama-qarsh yo`nalganlg uchun harakat seknlanuvchan, pastga qarab harakatlaganda nuqta tezlg va erkn tushsh tezlansh br l yo`nalganlg uchun harakat tezlanuvchan bo`lad. t cos, y t sn gt /. Tenglamalardan vaqt t n yo qotb, traektorya tenglamasn topamz: y tg g / cos. (7.6) 3

132 (7.6) tenglamadan ko rnb turbdk nuqtanng harakat trayektoryas sholar pastga qaragan paraboladan borat bo kar ekan. End jsmnng uchsh uzoqlgn, eng katta ko tarlsh balandlgn va uchsh vaqtn topamz: Nuqta yerga tushganda o`qn ustda, ya`n M nuqtada bo`lad va y M. Bun (7.5) tenglamalarn kknchsga qo`yb hosl bo`lgan. t sn gt / tenglamadan t n topamz. t, t sn /. M g t, nuqtanng boshlang`ch holatga, t nuqtanng yerga tushgan holatga mos kelad. t nng M M toplgan qymatn (7.4) tenglamalarn kknchsga qo`yb, uchsh masofasn topamz: L M cos sn / sn. (7.7) (7.7) formuladan ko rnb turbtk nuqtanng uchsh uzoqlg boshlang`ch tezlk o`zgarmaganda otsh buchag dan bog`lq bo`lar ekan. Nuqtanng eng katta uchsh uzoqlg sn holga mos kelad, bundan 45. Demak garzontga 45 burchak ostda otlganda eng katta uzoqlkka uchar ekan. End nuqtanng ko`tarlsh balandlgn topamz. Nuqta eng katta balandlkka ko`tarlganda, ya`n M holatda tezlknng y o`qdag proeksyas nolga teng bo`lad ya`n. sn, y Y gt Bundan: t sn / g. t nng bu qymatn (7.5) tenglamalarn kknchsga qo`yb, nuqtanng ko`tarlsh balandlgn topamz: H Y sn g Nuqtanng eng katta ko`tarlsh balandlg sn ga mos kelad, bundan 9. Demak otsh burchag 9. Bo lganda boshlang`ch tezlk blan otlgan jsm eng katta balandlkka ko`tarlar ekan. 3. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag tushsh. Og`rlg ga teng bo`lgan jsmnng (moddy nuqta) qarshlk ko`rsatuvch muhtdag tushshn qaraymz. M nuqta og`rlk va qarshlk kuch ta`srdan tushshn qaraymz. O nuqtan koordnatalar bosh deb y o`qn vertkal pastga (4-shakl). U holda boshlang`ch shartlar qo`ydagcha bo`lad: 3

133 t ; y, y, (8.) Muhtnng qarshlk kuch jsmnng o`lchamlarga va shaklga, muhtnng ossalarga va jsmnng tezlgga bog`lq. Tajrbalar shun ko`rsatdk kchk tezlklar uchun muhtnng qarshlk kuchn tezlknng brnch darajasga proporsonal deb olsh mumkn. Tovsh tezlgga yaqn tezlklar uchun qarshlk kuchn tezlknng kvadratga proporsonal deb olsh mumkn. Tovsh tezlgdan yuqor tezlklar uchun muhtnng qarshlk kuch murakkab araktrda bo`lad. yrodnamkada muhtnng qarshlk kuch R CSV ko`rnshda olnad. -havonng zchlg, S -jsmnng unng tezlgga perpendkulyar tekslkdag proyeksyasnng yuz, C X - jsmnng shaklga bog`lq bo`lgan o`lchovsz koeffsent. Tovsh tezlgdan kchk tezlklar uchun C X koeffsentn o`zgarmas deb olsh mumkn. Jsmnng og`rlk va muhtnng qarshlk kuchlar ta`srda pastga tushshda qarshlk kuchn tezlknng brnch darajasga proporsonal deb O olsh mumkn, ya`n R, (8.) Bu yerda -proporsonal koeffsent. Jsnmnng Oy o`qga nsbatan harakat dfferensal tenglamasn tuzamz: m y P R mg mk, bu yerda mk deb olngan.yuqordag tenglamadan. Y g k tengalaman hosl qlamz: dy y, Y dt larn e`tborga olb, yuqordag tenglaman quydag ko`rnshda yozamz. d d g k dt. dz g k Bu tenglaman ntegrallaymz: R M y P y 4-shakl g k kt C. ln Boshlang`ch shartlardan foydalanb C o`zgarmasn topamz, ya`n Bun yuqordag tenglamaga qo`yamz, natjada: C ln g. g k ln kt. g 33

134 Bu tenglamadan tezlkn topamz, ya`n g kt e (8.3) k kt g t bunda e, demak jsmnng tushsh tezlg o`sb g / k ga k ntlad, ya`n k g / k. Bundan shunday ulosa qlsh mumknk, ma`lum vaqtdan keyn nuqta teks harakat qla boshlayd. Tezlk k g / k bo`lganda qarshlk kuch jsmnng og`rlk kuchga teng bo`lad, ya`n R mk k mkg / k P. (8.3) tenglaman quydag ko`rnshda yozb olamz: dy g kt g kt e yok dy e dt. dt k k bundan: g g kt y t e C k k Boshlang`ch shartlardan foydalanb, C n topamz, ya`n C g / k. C nng toplgan qymatn yuqordag tenglamaga qo`yb, nuqtanng qarshlk ko`rsatuvch muhtdag harakat tenglamasn topamz: g g kt y t e. (8.4) k k Nazorat savollar.. Moddy nuqta deb nmaga aytlad? 34

135 . Massa nma? Og`rlk nma? 3. Erkn tushsh tezlansh nmaga teng. 4. Dnamkanng asosy tenglamas qanday yozlad? 5. Nuqta harakatnng dfferensyal tenglamalar qanday yozlad? 6. To`g`r chzql harakat deb qanday harakatga aytlad? 7. Egr chzql harakat nma? 8. Xavfszlk parabolas deb nmaga aytlad? Xulosa Erkn moddy nuqta dnamkas meankanng asosy bo`lmlardan br hsoblanad va unng amalyotdag o`rn katta ahamyatga ega. Dnamkanng asosy tenglamas I.Nyutonnng kknch qonundr. Harakatnng dfferensal tenglamalar yordamda moddy nuqtanng dnamk arakterstkalarn anqlash mumkn. Xavfszlk parabolas tushunchas ballstkanng asosy tushunchalardan brdr. 35

136 - mavzu Nuqta dnamkasnng umumy teoremalar...mavzusnng tenologk model. O`quv soat - soat Talabalar son: 5 ta O quv mashg ulot shakl Ma ruza (aborotl dars) Mavzu rejas 4. Nuqta harakat mqdornng o`zgarsh haqdag teorema. 5. Nuqta harakat mqdor momentn o`zgarsh haqdag teorema. 6. Kuchnng sh. Kuch maydon. Potensal enersya. 7. Nuqta knetk energyasnng o`zgarsh haqdag teorema. O`quv mashg`ulotnng Moddy nuqta dnamkasnng umumy teoremalar va maqsad ularnng nazary meankada tutgan o`rn haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Nuqtanng harakat mqdor, harakat Nuqtanng harakat mqdor, harakat mqdornng moment va knetk mqdornng moment, knetk energyas energyas haqda tushuncha bersh. haqdag tushunchalarn eslab qoladlar. Nuqta dnamkasnng umumy Nuqta dnamkasnng uchta umumy teoremalar haqda tushuncha bersh. teoremalarn yodlab qolad. Kuchnng sh, kuch maydon, Kuchnng sh, kuch funksyas, kuch maydon, potensal va knetk energya haqda potensal va knetk energyalar, to`la energya, tushuncha bersh. energyanng saqlansh qonun haqda blmga ega. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov, Pnbord tenkas, aqly hujum. O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash 36

137 .. Erkn moddy nuqta dnamkas mavzusnng tenologk artas. Ish bosqchlar - Mavzuga bosqch (mn) - bosqch sosy bo lm. (5mn) 3- bosqch Yakun lovch (mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Vazfalarn yozb oladlar Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. -Ma ruza Nuqta dnamkasnng umumy teoremalar. Reja: 37

138 . Nuqta harakat mqdornng o`zgarsh haqdag teorema.. Nuqta harakat mqdor momentnng o`zgarsh haqdag teorema. 3. Kuchnng sh. Kuch maydon. Potensal energya. 4. Nuqta knetk energyasnng o`zgarsh haqdag teorema. dabyotlar: [],34-35 sah, [5], 35-4 sah. Tayanch boralar: Moddy nuqta, nuqtanng harakat mqdor, nuqta harakat mqdornng moment, nuqtank knetk energyas, kuch maydon, kuch funksyas, potensal energya, knetk energya. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Nuqtanng harakat mqdor deb nmaga aytlad?. Nuqta harakat mqdornng moment deb nmaga aytlad? 3. Potensal energya, knetk energya ta rfn berng. 4. Kuch funksyas nma? Potensall kuch maydon nma? 5. To`la energya nmaga teng? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng 38

139 sosy tushunchalar Belg Moddy nuqta. Moddy nuqtanng harakat mqdor. 3 Moddy nuqtanng harakat mqdornng moment. 4 Nuqtanng knetk energyas. 5 Kuchnng elementar va to`la sh. 6 Potensall kuch maydon. 7 Potensal energya. 8 To`la energya. Energyanng saqlansh qonun. 9 Nuqta harakat mqdornng o`zgarsh haqdag teorema. Nuqta harakat mqdor momentnng o`zgarsh haqdag teorema. Nuqta knetk energyasnng o`zgarsh haqdag teorema. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, -Mavzu. Nuqta dnamkasnng umumy teoremalar. 39

140 Ushbu bobda nuqta dnamkasnng umumy teoremalar: harakat mqdor, harakat mqdor momentnng o zgarsh haqdag teorema. Kuchnng sh, kuch maydon, potensall kuch, knetk energyanng o zgarsh haqdag teorema va energya ntegral tushunchalar o rganlad. Dnamkanng umumy teoremalardan asosy qonunng (kknch qonun) natjas sfatda hosl qlnad. Nuqtaga ta sr etuvch kuchnng arakterga qarab ko p hollarda bu teoremalar yordamda harakatnng brnch ntegrallarn hosl qlsh mumkn.. Nuqta harakat mqdornng o zgarsh haqdag teorema. Moddy nuqta, massa, kuch tezlk, tezlansh, harakat mqdor,harakat mqdor moment, kuchnng sh, quvvat, knetka va potensal energya. Nuqtanng massas blan tezlgnng ko paytmas m ga nuqta harakat mqdor deylad. Nuqta tezlg vektor kattalk bo lgan uchun unng harakat mqdor ham vektor kattalk hsoblanad. Dnamkanng asosy tenglamasn olamz: mw F (4.) Bu yerda m nuqta massas, w - tezlansh, F - unga ta sr etuvch kuch. Nuqtanng massas o zgarmas mqdor va w d t bo lgan uchun (4.) tenglaman quydag ko rnshda yozsh mumkn: d m F, dt bundan dm F dt. (4.) Kuchnng elementar vaqt oralg ga ko paytmasga kuchnng elementar mnuls deylad. (4.) tenglama nuqta harakat mqdornng o zgarsh haqdag teoremanng dfferensal ko rnshn fodalayd. Teorema. Moddy nuqta harakat mqdornng defferensal unga ta sr etuvch kuchnng elementar mpulsga teng. End moddy nuqtanng harakatn chekl vaqt oralg da qaraymz. Nuqtanng t paytdag tezlg tyory t paytdag tezlg bo lsn. (4.) tenglamanng kkala tomonn o; t vaqt oralg da ntegrallaymz: m m S t F dt, yok m m, Bu yerda S S S t Fdt (4.3) 4

141 S mqdorga nuqtaga ta sr etuvch kuchnng o; t vaqt oralg dag to la mpuls deylad. (4.3) tenglama nuqta harakat mqdornng o zgarsh haqdag teoremanng chekl ko rnsh yok ntegral ko rnshn fodalayd. Teorema. Nuqta harakat mqdornng chekl vaqt oralg da o zgarsh, nuqtaga ta sr etuvch kuchnng shu vaqt oralg dag to la mpuls deylad. Moddy nuqtanng harakatn dekart koordnatalar sstemasda qaraymz. U holda r yj zk; yj zk ; F F F j F k, bu yerda, y, z -nuqtanng koordnatalar,, y, z -nuqta tezlgnng proyeksyalar, F, F, F -kuchnng proyeksyalar,, j, k -koordnata o qlarnng brlk vektorlar. y z (4.3)tenglamanng dekart koordnatalar sstemas o qlarga proyeksyalab, uchta skalyar tenglamalar sstemasn hosl qlamz: t m m S FX dt; my my S FY dt; mz mz S Fz dt, (4.4) Bu yerda X, Y, Z va X, Y, Z - nuqta tezlg proyeksyalarnng mos ravshda boshlang ch va keyng paytlardag qymat. Bz blamzk nuqtaga ta sr etuvch F kuch nuqta koordnatalarnng tezlgnng va vaqtnng funksyas bo lsh mumkn, ya n F F, y, z,, y, z ; t gar nuqtaga ta sr etuvch F kuch faqat vaqt t nng funksyas bo lsa, (4.4) tenglamalarnng o ng tomondag ntegrallarn hsoblash mumkn va bu tenglamalardan brnch ntegrallarn hosl qlsh mumkn, ya n Bu yerda t t ; my my S t mz mz S t m m S ; 3 (4.5) t S FX, S t S FY dt, S3t S FZ dt, S dt t t (4.5) tenglamalarn ya na br marta ntegrallab, nuqtanng harakat tenglamalarn hosl qlsh mumkn: X X X t S t Stdt Y Y Y t S t S t dt m m Z Z Z t S t S3t dt. m Bu yerda X, Y, Z nuqtanng t boshlang ch paytdag koordnatalar. gar kuch juda kchk vaqt oralgda ta sr etsa, u holda (4.3) dan m m Fdt. S Integralnng o rta qymat haqdag teoremaga asosan: t S Fdt * * F yok F Fdt X t y S z t 4

142 Bunga asosan yuqordag tenglkn quydag ko rnshda yozsh mumkn: * m m F Faraz qlaylk cheksz kchk vaqt oralg da harakat mqdor chekl mqdorga o zgarsn F * mqdor chekl bo lsh uchun cheksz kchk bo lganda F * cheksz katta bo lsh zarur: demak cheksz katta kuch nuqtanng harakat mqdorn cheksz kchk vaqt oralg da chekl mqdorga o zgartrar ekan. Bunday kuchga zarbal kuch deylad. Moddy nuqta harakat mqdornng o zgarsh haqdag teorema ba z hollarda harakatnng brnch ntegraln, ya n tenglamanng tartbn btaga pasaytrad. ) nuqtaga ta sr etuvch kuchlarnng teng ta sr etuvchs nolga teng bo lsn, ya n F u holda (4.)yenglamadan quydag tenglkn hosl qlamz: C (4.6) Tezlknng nolga tenglgdan unng proyeksyalar nolga tenglg kelb chqad, ya n X C, Y C, Z C 3, (4.7) Demak erkn moddy nuqtaga hej qanday kuch ta sr etmasa,y to g r chzql teks harakat qlad yok o z persyas blan harakatlanad. )Nuqtaga ta sr etuvch kuchnng yo nalsh o zgarmas bo lsn. Z o qn kuch yo nalshga paralel qlb olamz, u holda F X, F Y, va (4.) tenglamadan quydag kkta brnch ntegral hosl bo lad. X C, Y C (4.8) (4.8) ntegrallar shun bldradk, bu holda nuqtanng traektoryas Z o qga paralel yok ta sr etuvch kuchga paralel tekslkda yotuvch egr chzqdan borat bo lad. Haqqatan ham (4.8) tenglklardan: C Y c yok CY c Bundan C Y C X Const (4.9) tenglama Z o qga shunngdek ta sr etvch kuchga paralel tekslklknng tenglamasn fodalayd. 4

143 . Nuqta harakat mqdor momentnng o zgarsh haqdag teorema. Dnamkanng asosy tenglamasn quydag ko rnshda yozamz: d m F, (5.) dt bu yerda F - nuqtaga ta sr etuvch kuchlarnng teng ta sr etuvchs. (5.) tenglamanng kkala tomonn quydagcha almashtramz: d d dr d rm rm m rm, (5.) dt dt dt dt bu yerda dr m m chunk. d Natjada (5.) tenglk quydag ko rnshga kelad: d rm r F dt (5.3) tenglkka kruvch z r m mqdor nuqta M harakat mqdornng O markazga nsbatan moment, r F mqdor nuqtaga ta sr etuvch kuchnng o sha markazga nsbatan moment. r F m (5.3) tenglk nuqta harakat mqdor momentnng o zgarsh haqdag teoreman O y fodalayd. 35-shakl Teorema. Bror markazga nsbatan nuqta harakat mqdor momentdan vaqt bo ycha olngan hosla nuqtaga ta sr etuvch kuchnng o sha markazga nsbatan momentga teng. Moddy nuqtanng koordnatalar yok r vektornng proeksyalar, y, z; tezlknng proyeksyalar, Y y z z va ta sr etuvch kuchnng proyeksyalar F X, FY, FZ lardan foydalanb, (5.3) tenglkn koordnata o qlarga proyeksyalasak, uchta skalyar tenglamalarga ega bo lamz: d myz zy yfz zfy mom F ; dt d mz z zfx FX momy F ; (5.4) dt d m y y F yf mom F yy dt End ba z ususy hollarn qaraymz:.faraz qlaylk nuqtaga ta sr etuvch kuchlar teng ta sr etuvchsnng bror O markazga nsbatan moment nolga teng bo lsn, ya n rf n mom F. bunday hol nuqtaga ta sr etuvch kuch 43

144 yok F yok F kuch markazy bo lganda o rnl bo lad. Kuchnng ta sr chzg hamma vaqt btta O nuqtadan o taversa, bunday kuchga markazy kuch deylad. O nuqtaga kuch markaz deylad. Bu holda kuch markazga nsbatan (5.3) dan quydagn hosl qlamz: d rm dt bundan rm const (5.5) Demak nuqtaga ta sr etuvch kuch markazy bo lsa, kuch markazga nsbatan nuqta harakat mqdornng moment o zgarmas bo lar ekan. (5.5) tenglamanng kkala tomonn m ga bo lb quydag ko rnshda yozamz: r c, (5.6) c -o zgarmas vektor. (5.6) tenglkn koordnata o qlarga proyeksyalaymz: yz zy c, z z c, (5.6) y y c3, Shunday qlb, nuqtaga ta sr etuvch kuch markazy bo lsa, harakat mqdor teoremas nuqta harakat tenglamalarnng btta vektor ko rnshdag yok uchta skalyar ko rnshdag brnch ntegrallarn berar ekan. Vektorlar algebrasdan bzga ma lumk r vektor r va vektorlar orqal o tuvch tekslkka perpendkulyar. r vektor o zgarmas demak r va vektorlar hamma vaqt btta tekslkda yotad. Bundan shunday ulosa kelb chqadk, agar nuqtaga ta sr etuvch kuch markazy bo lsa, nuqtanng harakat trayektoryas teks egr chzqdan borat bo lar ekan. Bu tasdqn boshqacha ham sbot qlsh mumkn. (5.6) tenglamalarnng kkala tomonn mos ravshda, y, z larga ko paytrb qo shamz, natjada quydag munosabatn hosl qlamz: C C y C3z. Bu tenglama kuch markaz O nuqtadan o tuvch tekslk tenglamasn fodalayd., y, z lar nuqtanng koordnatalar, demak nuqta traektoryas teks egr chzqdan borat. Knametka kursdan bzga ma lumk tezlknng moment kklangan sentoral tezlkka teng, ya n d mom r c Const (5.7) dt (5.7) tenglaman ntegrallaymz: c t. Demak nuqtanng radus- vektor chzgan sektor yuzas vaqtga propersonal ravshda o zar ekan. Bu hodasa yuzalar qonunn fodalayd, yan nuqtaga ta sr 44

145 etuvch kuch markazy bo lsa, nuqtanng radus-vektor teng vaqtlar oralg da teng yuzlar chzar ekan. ) nuqtaga ta sr etuvch kuchlar teng ta sr etuvchsnng bror o qa nsbatan masalan o qga nsbatan moment nolga teng, ya n mom F (5.6) tenglamalarnng brnchsdan y zy c (5.8) tenglaman hosl qlamz. Bu holda knetk moment teoremas skalyar ko rnshdag btta brnch ntegraln berad. Moddy nuqta harakat mqdor momentnng o zgarsh haqdag teoremadan foydalanb, yechladgan masalalarga dor usluby tavsyalar. Harakat mqdor momentdan foydalanb, masalalarn quydag tartbda yechsh tavsya etlad:.tegshl koordnatalar sstemas tanlanad..nuqtaga ta sr etuvch kuchlar (aktv va passv) shaklda tasvrlab olnad. 3. nuqtaga ta sr etuvch kuchlarnng tegshl o qlarga nsbatan momentlar yg nds toplad. 4.Harakat mqdornng kordnata o qlarga nsbatan momentlar toplad. 5.Toplgan mqdorlar (5.4) tenglamalarga qo ylb skalyar tenglamalar sstemas hosl qlnad. 6. Hosl qlngan tenglamalar sstemasdan so ralgan noma lumlar tolad. 7.gar nuqtaga ta sr etuvch kuch markazy bo lsa, (5.6) tenglamalardan foydalanlad. 8. Ta sr etuvch kuchnng bror o qqa nsbatan moment nolga teng bo lsa, (5.8) tenglamadan foydalanlad. 3. Kuchnng sh. Kuch maydon. Potensal energya. Kuch, massa, tezlk, tezlashsh, knetk va potensal energya, to la meank energya.. Moddy nuqtaga ta sr etuvch F kuchnng modul ham yo nalsh o zagaruvch bo lsh mumkn. Moddy nuqta tyory F kuch ta srdan C egr chzq bo ylab holatdan holatga ko chsn (38- shakl). yoyn n ta tyory bo lakchalarga ajratamz. Ityory k bo lakchanng uzunlgn S k blan belglaymz. n etarlcha katta bo lganda S k yoyn to g r chzql kesmas blan almashtrsh mumkn. Nuqta to g r chzq bo ylab ko`chganda unga ta sr etuvch F kuchnng bajargan sh quydagcha hsoblanad. (38a-shakl). d F S Cos, (6.) k k k k 45

146 Bu yerda - ko`chsh blan kuch orasdag burchak. Bu tenglkn skalyar ko`paytma ko`rnshda ham yozsh mumkn. a) M K M S k F k d k M k M M C d k F M dr C F b) M B c) B Moddy nuqtanng ko`chshda unga ta sr etuvch F kuchnng bajargan sh F S Cos elementar shlar yg`ndsga teng ya`n k k n F S Cos., k k k k Bo`lakchalarnng son cheksz oshganda ularnng uzunlklar cheksz kamayad deb bajarlgan shnng anq qymatn yuqordag tenglkda o`tb topamz, ya`n Lm n F S Cos., k k k n k Sk Yuqordag munosabat yoy bo`ycha olngan ntegraln fodalayd va quydagcha yozlad:, S FCosdS. (6.3) Nuqtaga ta`sr etuvch F kuchnng cheksz ko`chshda bajargan shga elementar sh deylad va quydagcha yozlad: 38-shakl 4. Nuqta knetk energyasnng o`zgarsh haqdag teorema.. Nuqta massas blan unng tezlg kvadrat ko`paytmas yarmga nuqtanng knetk energyas deylad. Nuqta knetk energyasnng o`zgarshn qaraymz. Bunng uchun dnamkanng asosy tenglamasn olamz 46

147 d m F, dt bu erda F - nuqtaga ta`sr etuvch hamma kuchlarnng teng ta`sr etuvchs, m nuqtanng massas. Bu tenglknng kkala tarafn dr ga skalyar ko`paytramz, ya`n d m dr F dr d. (7.) dt (7.) tenglknng o`n tomon F kuchnng d elementar shn fodalayd, chap tomonng ko`rnshn o`zgartramz: d dr m m dr m d md d. dt dt Bularga asosan (7.) tenglk quydag ko`rnshga kelad: m d d F dr. (7.) (7.) tenglk knetk energya blan elementar sh orasdag dfferensal bog`lanshn fodalayd yok nuqta knetk energyasnng o`zgarsh haqdag teoremanng dfferensal ko`rnshn fodalayd: Teorema. Nuqta knetk energyasnng dfferensal nuqtaga ta`sr etuvch kuchnng elementar shga teng. (7.) tenglknng kkala tomonn dt ga bo`lb, (6.) va (6.) fodalarn etborga olb, quydag tenglkn hosl qlamz: d m N, (7.3) dt ya`n nuqta knetk energyasnng hoslas nuqtaga ta`sr etuvch kuchnng quvvatga teng. End nuqtanng chekl ko`chshda unng knetk energyasnng o`zgarshn qaraymz. Nuqta boshlang`ch t t paytda holatda bo`lb, tezlg bo`lsn, tyory t paytda holatga ko`chb, tezlg bo`lsn (44-shakl). U holda (7.) tenglknng chap tomondan,, o`ng tomonn F M ko`chsh bo`yga ntegrallaymz, natjada m m S F dr (7.4) M yok 44-shakl m m. (7.5) (7.5) nuqta knetk energyasnng o`zgarsh haqdag teoreman chekl yok ntegral ko`rnshn fodalayd. 47

148 Teorema. Nuqtanng br holatdan boshqa holatga ko`chshda knetk energyasnng o`zgarsh unga ta`sr etuvch kuchnng ko`chshda bajargan to`la shga teng.. Energya ntegral. Nuqtaga ta`sr etuvch hamma kuchlar potensall bo`lsn, u holda teng ta`sr etuvch kuchnng elementar sh F dr du d bo`lad va (7.) tenglk quydag ko`rnshga kelad m d d, bundan (7.6) m, y, z h, bu yerda h ntegrallash o`zgarmas va u boshlang`ch shartlardan toplad, ya`n m h, y,, z (7.7) ya`n h o`zgarmas nuqtanng boshlang`ch to`la meank energyasga teng. (7.6) ntegral nuqtaga ta`sr etuvch kuchlar faqat potensall bo`lgan holdagna o`rnl. gar nuqtaga ta`sr etuvch kuchlardan bttas potensall bo`lmasa ham (7.6) tenglk bajarlmayd. Masalan, qarshlk kuch to`la meank energyaga qanday ta`sr ko`rsatshn qaraymz. Faraz qlaylk moddy nuqtaga potensall kuchlar blan brga F k qarshlk kuch ham ta`sr etsn. Potensall kuchlarnng bajargan sh d ga teng, F k kuchnng bajargan sh F k dr ga teng. U holda (7.) tenglk quydag ko`rnshga ega bo`lad: m d d Fk dr. Bundan d m Fk. dt Qarshlk kuch blan nuqtanng tezlg M orasdag burchak 8 ga teng shunng uchun Fk Fk Cos8 F. k F F k Natjada 45-shakl d m F k (7.8) dt To`la energyanng vaqt bo`ycha hoslas manfy, demak qarshlk kuch ta`srdan nuqtanng to`la meank energyas kamayad yok energyanng sochlsh sodr bo`lad. Qarshlk kuchnng quvvat F to`la meank 48 k F k energyanng kamayshn arakterlayd. gar qarshlk kuchnng modul (chzql qavushqoq) bo`lsa b

149 b F k b. b bo`lad. mqdorga Releynng desnatv funksyas deylad va energyanng sochlsh o`lchovn bldrad. Nazorat savollar. Moddy nuqta va unng massas tushunchalarn ta rflang.. Nuqtanng harakat mqdor deb nmaga aytlad? 3. Nuqta harakat mqdornng moment nmaga teng? 4. Nuqtanng knetk energyas deb nmaga aytlad? 5. Kuchnng elementlar va to`la sh nmaga teng? 6. Potensyall kuch maydon ta rfn berng? 7. Potensyal energya deb nmaga aytlad? 8. To`la energya nmaga teng? 9. Nuqta harakat mqdornng o`zgarsh haqdag teoreman ta rflang?. Nuqta knetk energyasnng o`zgarsh haqdag teorema qanday yozlad?. Nuqta harakat mqdor momentnng o`zgarsh haqdag teorema nma deyd? Xulosa Moddy nuqtanng harakat mqdor, harakat mqdornng moment, knetk energyas tushunchalar meankanng asosy tshnchalardr. Nuqta dnamkasnng umumy teoremalar Nyutonnng kknch qonundan kelb chqad. Potensyall kuch maydonda nuqtanng to`la meank energyas o`zgarmasdr. 49

150 3- Mavzu Moddy nuqtanng to`g`r chzql tebranma harakat. O quv soat soat O quv mashg ulot shakl Mavzu rejas O`quv mashg`ulotnng maqsad Talabalar son: 5 ta Ma ruza (aborotl dars). Moddy nuqtaga ta sr etuvch kuchlar va tebranma harakat turlar.. Moddy nuqtanng qarshlksz muhtdag erkn tebransh. 3. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag erkn tebransh. 4. Moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat. Moddy nuqtanng garmonk tebranma harakat, so`nuvch tebranma harakat va majbury tebranma harakatlar haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Nuqtanng garmonk tebranma harakat haqda tushuncha bersh. Garmonk tebranma harakat haqda tushunchaga ega. Nuqtanng so`nuvch tebranma harakat haqda tushuncha bersh. Nuqtanng so`nuvch tebranma harakat tushunchasn eslab qolad. Nuqtanng majbury tebranma harakat haqda mufassal ma lunot bersh. Nuqtanng majbury tebranma harakat haqda blmga ega va un amalyotga qo`llay olad. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln Montogng va baholash qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov.. Moddy nuqtanng tebranma harakat mavzusnng tenologk artas. Ish bosqchlar O qtuvch faolyatnng mazmun Tngloch faolyatnng Mazmun 5

151 - Mavzuga bosqch (mn) - bosqch sosy bo lm. (5mn)..O`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 5

152 3-Ma ruza Moddy nuqtanng to`g`r chzql tebranma harakat. Reja:. Moddy nuqtaga ta sr etuvch kuchlar va tebranma harakat turlar.. Moddy nuqtanng qarshlksz muhtdag erkn tebransh. 3. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag erkn tebransh. 4. Moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat. dabyotlar: [], sah, [5], 83-3 sah. [7], 3-bob. Tayanch boralar: Qaytaruvch kuch, markazy kuch, bkrlk koefftsyent,tebranshlar fazas, takrorlk, doravy chastota, faza, tebransh dekrement, os tebranshlar, majbury tebranshlar. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Qaytaruvch kuch deb nmaga aytlad?. Garmonk tebranma harakat deb nmaga aytlad? 3. Tebranshlar fazas deb nman tushunasz? 4. Tebranshlar ampltudas nma? 5. Tebranshlar davr nma? 6. Rezonans hodsas qachon ro`y berad? 5

153 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng. sosy tushunchalar Belg Moddy nuqta. Markazy kuch. 3 Qaytaruvch kuch. 4 Garmonk tebranma harakat. 5 Tebranshlar ampltudas. 6 Tebranshlar chastotas. 7 Doravy chastota, faza. 8 Tebranshlar davr. 9 Tebranma harakat grafg. So`nuvch tebranma harakat. Tebranshlar dekrement. Uyg`otuvch kuch. 3 Rezonans hodsas. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 53

154 3-Mavzu. Moddy nuqtanng to g r chzql tebranma harakat. Bu bobda moddy nuqtanng to g rchzql tebranma harakatlar qaralad: moddy nuqtanng qarshlksz va qarshlk ko rsatuvch muhtdag erkn va majbury tebranshlar. Moddy nuqtaga ta sr etuvch kuchlar va tebranma harakat turlar Nuqtaga ta sr etuvch kuchlardan muhm ahamyatga ega bo lgan kuch bu nuqtanng hamma vaqt muvozanat holatga qaytaruvch kuch hsoblanad. Bu kuchga tklovch kuch deylad. Elastalk kuchlar bunga msol bo lad. Tklovch kuch nuqtanng muvozanat holatdan og shga bog lq, ya n nuqtanng holatga bog lq va hamma vaqt muvozanatn anqlovch nuqtaga qarab yo nalgan bo lad. Nuqtaga ta sr etuvch kuchlardan yana br tur, nuqtanng tezlgga bog lq bo lgan kuch, bu kuchga qarshlk kuch deylad. Bunday kuchlarga havonng qarshlk kuch, srtnng shqalansh kuch va h.k. lar krad. Yana br tur kuchlarga nuqtaga tashqardan ta sr etuvch va vaqtnng funksyas bo lgan kuchlar krad. Bu kuch nuqtan muvozanat holatdan chqarshga harakat qlad, shunng uchn ham bu kuchga uyg otuvch kuch yok majburlovch kuch deylad. Bu bobda yuqorda bayon qlngan kuchlar yok ularnng brgalkdag ta sr natjasda hosl bo ladgan tebranshlar o rganlad. gar nuqtanng tebransh faqat tklovch kuch ta srdan sodr bo lsa, bunday tebranshga erkn tebransh deylad. Nuqtanng tebransh tklovch va qarshlk kuchlar ta serdan hosl bo lsa, bunday tebranshga erkn so ruvch tebransh deylad. Nuqtanng tebransh tklovch va uyg otuvch kuchlar tasrdan hosl bo lsa, bunday tebranshga qarshlksz muhtdag majbury tebransh deylad. gar nuqtaga tlovch va uyg otuvch kuchlar blan brga qarshlk kuch ham ta r etayotgan bo lsa, nuqtanng bundy holdag harkatga qarshlk ko rsatuvch muhtdag majbury tebransh deylad.. Nuqtanng qarshlksz muhtdag erkn tebralsh. Moddy nuqta faqat tklovch kuch ta`srdan harakatlansa, unng bunday harakatga erkn (garmonk) tebranma harakat deylad (-shakl).bz tklovch kuchnng masofanng chzql funksyas, ya`n masofaga propersonal bo lgan holn qarash blan chegaralanamz. Tklovch kuchnng o qdag proeksyas quydagcha bo lad. F CX, (. Bu yerda c -propersonallk koeffsent. Nuqtanng harakat dfferensal tenglamas quydag ko rnshda bo lad: m c 54 O F -shakl M

155 C / m k belglashn krtb, yuqordag tenglamn quydag ko rnshda yozamz: k (.) (.) tenglama moddy nuqtanng tklovch kuch ta srdag harakat dfferensal tenglamasn yok erkn tebranma harakat dfferensal tenglamasn fodalayd. (.) tenglamanng umumy yechm. C Coskt C Snkt (.3) Ko rnshda bo lad. k (.) tenglamanng k arakterstk tenglamasnng ldzlar. C, C, lar ntegrallash o zgarmaslar. (.3) yechmn boshqacha ko rnshda ham ta svrlash mumkn: X asn( kt ), (.4) Bu yerda: C a C C, tg. (.5) C a va yok ntegrallash o`zgarmaslar nuqtanng boshlang`ch holat va boshlang`ch tezlg, ya`n boshlang`ch shartlardan toplad. (.4) tenglamadan ko`rnb turbdk nuqtanng tklovch kuch ta`srdag snus oda da (yok kosnus oda ) qonun blan sodr bo`lar ekan. Bunday harakatga erkn tebranma harakat, yok garmonl tebranma harakat deylad. kt argumentga tebransh fazas, ga boshlang`ch faza deylad. k nuqtanng davrdag tebranshlar sonn fodalayd, unga tebranshnng doravy chastotas deylad. k tebransh chastotas boshlang`ch shartlardan bog`lq emas. Faqat sstema parametlar blan anqlanad. Shu bos bazan k ga sstemanng ususy chastotas ham deylad. Tebransh ampltudas va boshlang`ch fazas boshlang`ch shartlardan toplad. Nuqtanng boshlang`ch paytdag holat va boshlang`ch tezlg berlgan bo`lsn, ya`n t,,, (.6) (.4) dan nuqtanng tezlgn topamz: akcos( kt ) (.7) (.6) boshlang`ch shartlarn (.5) va (.7) tenglamalarga qo`yamz: asn akcos Bulardan: a k, tg k X (.8) Snus davrl davry funksya bo lgan uchun (.4) dan. m kt T kt t T. (.9) T k c a T ga tebransh davr deylad. Demak tebransh davr boshlang`ch shartlardan bog`lq ekan. Tebranshnng bu ossasga zoron zoronlk odsas deylad. Quyda br nechta masalalar qaraymz: a t 55 3shakl

156 - masala. Massas m bo`lgan yuk vertkal prujnaga oslgan (4- shakl). Yuknng og`rlk kuch va tklovch kuch (prujnanng elastnlk kuch)lar ta`srdan hosl bo`ladgan harakat dfferensal tenglamas tuzlsn. Yechsh. Yuk oslgan prujnanng uzunlgn l blan belglaymz. Prujnaga yukn osb sekn qo`ysak prujna ma`lum masofaga cho zlb to`tayd, bu cho`zlshga prujnanng statk cho`zlsh yok yuknng statk ta`srdan cho`zlsh deylad. Bu deformatsyan ct blan. Yuknng bu holatga unng muvozanat holat deylad. Koordnatalar boshn yuknng muvozanat holatda olb, o qn vertkal pastga yo`naltramz. Guk qonunga asosan uncha katta bo`lmagan ko chshlar uchun elastklk kuch prujnanng defermatsyas / ct / ga teng deb olsh mumkn, shunng uchun. F C / ct /, bu yerda ct - statk deformatsya, -dnamk ta`sr tufayl hosl bo`ladgan deformatsya. c propersonallk koeffensyent, unga O prujnanng bkrlg, deylad. Elastklk kuchnng o`qdag proyeksyas F c ct ga teng. Yuknng harakat O F dfferensal tenglamas quydagcha bo`lad. ct H m mg F F. ct F -elastklk kuchnng statk deformatsya holatdag qymat mg - og`rlk kuch muvozanatlashad, ya`n mg F ct, F H c. Natjada yuqordag tenglama quydag ko`rnshga kelad: 4-shakl m c yok k, bu yerda k s / m gar koordnatalar boshn O nuqtan olsak F c bo`lad va nuqtanng harakat dfererensal tenglamas. m mg c yok k g, ko rnshda bo lad. gar koordnatalar boshn qo`zg`almas nuqtada olsak F c( l ) bo lad va nuqtanng harakat dfferensal tenglamas. m mg c l yok k g k l Koordnatalar sstemasn qulay qlb tanlash masalanng yechlshn ancha osonlashtrad. -Masala. Massas kg bo`lgan jsm sllq gorzontal tekslkda harakatlanad. Prujnanng br uch qo`zg`almas qlb mahamlangan. Boshlang`ch paytda jsm muvozanat holatdan sm ga o`ng tomonga sljtb 3 sm / c boshlang`ch tezlk H blan qoyb yuborlgan. Prujnanng bkrlk koefersent. Prujna massasn sm hsobga olmay, jsmnng keyng harakat tenglamas toplsn. 56 mg

157 a) Yechsh. Koordnatalar boshn yukn muvozanat holat O nuqtada olb, o qn gorzont bo`ylab o`ng tomonga yo`naltramz. U holda boshlang`ch shartlar quydagcha bo`lad. t, sm, 3 sm / c (a) Nuqtaga ta`sr etuvch kuchlar: F - elastklk kuch, m g - og`rlk kuch, N tekslknng normal reaksyas. Tekslk gorzontal bo`lgan uchun N mg. Elastklk kuchnng o`qdag proeksyas F c. Nuqtanng harakat dfferensal tenglamas quydagcha bo`lad: c m c yok k, k. (b) m (b) tenglamanng umumy yechm CCoskt CSnkt. Bu tenglamadan: kcsnkt kccoskt. topamz : 5-shakl M CM c k. (g) m kg c c (a) boshlang`ch shartlarn (b) va (g) tenglamalarga qo`yb, C, va C, larn, sm sm C 3 kc C sm, C 3sm c Bularn (b) tenglamaga qo`yb nuqtanng harakat tenglamasn topamz: Cost 3Sn 3Snt. b) Tebransh ampltudas a 3 3,6sm, Tebranshnng boshlang`ch fazas tg masala. Massas 5kg bo`lgan jsm vertkal blan 3 l burchak tashkl qluvch qya tekslkda turgan jsmga bekrlg C 98H / M bo`lgan prujna brk-trlgan. Prujna tekslkka paralel. Boshlang`ch paytda jsm cho`zlmagan prujna uchga ulanb unga qya tekslk bo`ylab pastga yo`nalgan O F N M mg 57

158 6,m / s boshlan-g`ch tezlk berlgan bo`lsa, jsmnng harakat tenglamas toplsn. Koordnatalar bosh yuknng statk muvozanat holatda olnsn (6-shakl). Qya tekslk sllq deb olnsn, ya`n shqalansh kuch hsobga olnmasn. a) W b) P N M F O P P 6-shakl Yechsh. Koordnatalar sstemas va nuqtaga ta`sr etuvch kuchlar 6bshaklda tasvrlangan. 6b-shaklga hsob semas deylad. 6b -shaklda tasvr-langan N va P kuchlar muvozanatlashgan kuchlar sstemasn hosl qlad, ya`n N P. Natjada qolgan kuchlarnng o`qdag proyeksyalar: P P mgsn, F clct c, P cl ct. Nuqtanng harakat dfferensal tenglamas: m c yok k, (a) Bu yerda: c 98H / M k 9,5, k 4,4. m 5kg c c (b) Boshlang`ch shartlar: t ; lct,5m, m / s (v) (a) tenglamanng umumy yechm: Coskt BSnkt, ksnkt BkCoskt. (g) (v) boshlang`ch shartlarn (g) tenglamalatga qo`yb, va B larn topamz: 5M M / c 5 6, 6,M / c B,44M. 6,M / c Bk k 4,4 c va B larn toplgan qymatlarn (g) tenglamalarnng brnchsga qo yb, nuqtanng harakat tenglamasnn topamz: 58

159 X,44 Sn4,4t 5Cos4,4t M. 4-masala (I.V.Metchersky 3.4). Br -brga paralel qo`shlgan kkta prujnaga oslgan m massal yuknng erkn tebranshlar davr va bu kkala prujnaga envvalent bo`lgan prujnanng bkrleng koedsent toplsn. Yuk shunday joylashgank, bkrlk koefunsentlar c va c bo`lgan kkala prujna ham br l uzunlkka cho`zld (7-shakl). Yechsh. Yuk ta`sr etuvch kuchlar: prujnalarnng elastcheklk kuchlar F, F va og`rlk kuch P. a) C d d Q C b) F F O d P d F 7-shakl Koordnatalar boshn yuknng statk muvozanat holatda olb, o`qn vertkal pastga yo`naltramz. Hsob semas 7b - shaklda ta`svrlangan. Ikkta prujnaga ekvavalent prujnanng bkrlgn c blan belglaymz va ekastklk kuchn F blan belglaymz. U holda F F F, ct ct P F. F Clct. Ikkala prujna ham br l masofaga cho`zlgan uchun ct F cl ct c c l ct kknch tomondan ct F Clct Bullardan c c c. Ikk parallel kuchnng teng ta`sr etuvchsn qo`ylsh nuqtas quydag proporsyadan toplad: F F clct clct c d. d d d d c d Xususy tebransh chastotas: c c m k, tebransh davr T, m c c Ekvvalent prujnanng bkrlg c c c. 3. Nuqtanng qarshlk ko`rsatuvch muhtdag erkn tebransh 59

160 Moddy nuqtanng masofaga proporsonal bo`lgan F tklovch kuch va nuqta tezlgga bog`lq bo`lgan qarshlk kuchlar ta`srdag harakatn qaraymz. Muhtnng qarshlk kuchn nuqta tezlgga proporsonal va tezlkka qarama-qarsh yo`nalgan deb olamz, ya`n R (8-shakl). O R F M Koordnatalar bosh O nuqtan yuknng muvozanat holatda olb, o`qn trayektorya bo`ylab yo`naltramz. 8-shakl Tklovch kuchnng dnamk qymat: F c. Bu holda nuqtanng harakat dfferensal tenglamas quydag ko`rnshda bo`lad: m c, yok h k, (.) bu yerda c h, k. m m (.) tenglama moddy nuqtanng qarshlk va tklovch kuchlar ta`srdag harakat dfferensal tenglamasn fodalayd. (.) tenglamanng arakterstk tenglamas va unng ldzlar quydagcha bo`lad: h k, h h, h h. (.) k k k c mqdor nuqtanng ususy tebransh chastotas muhtnng m qarshlk koerdsendan katta bo`lsn, ya`n k n. U holda h k, bo`lad. k k h belglashn krtsak, arakterstk tenglamanng ldzlar. h k, h k Ko`rnshda bo`lad. Bu holda (.) tenglamanng umumy yechm quydag ko`rnshda bo`lad: ht e CCoskt CSnkt, (.3) yok ht ae Snkt. (.4) C va C yok a, va ntegrallash o`zgarmaslar boshlang`ch shartlardan toplad. Boshlang`ch shartlar t ;, (.5) Ko`rnshda berlgan bo`lsn. (.4) dan vaqt bo`ycha br marta hosla olamz: ht ea hsn( kt kcos( kt ). (.6) (.5) boshlang`ch shartlarn (.4) va (.6) tenglamalarga qo`yamz: 6

161 asn hsn k acos h k, (.7) k tg. (.8) h (.4) formuladan ko`rnb turbdk moddy nuqtanng harakat davry takrorlanuvch harakat, ya`n tebranma harakatdan borat bo`lad. Vaqtnng tyory paytda ae ht tengszlk o`rnl, ya`n koordnata o`qga nsbatan smmetrk bo`lgan ht ht ae va ae egr chzqlar orasda bo`lar ekan. ht ae ga tebransh ampltudas deylad. Tebransh ampltudas vaqt o`tsh blan cheksz kamayad. Bunday ko`rnshdag tebranshga so`nuvch tebransh deylad. (9-shakl). k k h (.9) ga so`nuvch tebransh chastotas deylad. Nuqtanng br tomonga qarab ketma-ket kk marta og`shlar orasdag o`tgan davrga tebransh davr deylad. So`nuvch tebransh davr T. (.) k k h Bun boshqacha ko`rnshda ham tasvrlash mumkn: T T, (.) k h / k h / k bu yerda T / k ususy tebransh davr. Moddy nuqtanng muvozanat holatdan ketmaket og`shlar ketma-ketlg n qaraymz. ht ae Snkt, ae h ( t T / ). h( t T / ) ae ht / e. ht ae (.) ht ae / nsbat o`zgarmas va brdan kchk t bo`lgan uchun ampltudalar ketma-ketlg 9-shakl maraj 5 ht / d e ga teng bo`lgan kamatuvch geometrk progressyan tashkl qlar ekan. ht /. d e mqdorga tebransh dekrement deylad. D ln d ht / mqdorga logarflk dekrement deylad. - hol. Muhtnng qarshlk koeffsyent, ususy tebransh chastodasdan katta bo`lsn ya`n h k. Bu holda arakterstk tenglamanng kkala ldz ham haqqy manfy bo`lad, ya`n O T T ae ht t 6

162 h h k, h h k, Bu holda (.) tenglamanng umumy yechm quydag ko`rnshda bo`lad. * * ht k t k t e e e, (.3) * Bu yerda k h k, (.3) yechshn boshqacha ko`rnshda yozsh ham mumkn a) ht * * e C Cosk t CSnk t, (.4) bu yerda C C C, C B, va B larn quydag ko`rnshda asn, B acos almashtrb (.4) yechmn quydagcha ko`rnshda ham tasvrlash mumkn: ht * ae Snk t (.5) (.5) tenglamadan ko`rnb turbdk bu holda nuqtanng harakat tebranma bo`lmayd, chunk gperbolk snus davry funksya emas. Boshlang`ch tezlknng yo`nalshga qarab, nuqtanng harakat -rasmlarda tasvrlangan egr O t b) O Boshlangch tezlk yetarlcha katta bo lgan hol t c O Boshlang ch tezlk kchk bo lgan hol t -shakl chzqlarnng bar bo`ycha sodr bo`lad. 3-hol. Muhtnng shqalansh koeffsent ususy tebransh chastotasga teng bo`lsn, ya`n h k. Bu holda arakterstk tenglamanng ldzlar. h. Bo`lad. (.) tenglamanng umumy yechm ht e Ct C (.6) Ko`rnshda bo`lad. (.6) dan nuqtanng tezlgn topamz: ht ht he Ct C e C (.7) (.5) boshlang`ch shartlarn (.6) va (.7) tenglamalarga qo`yb, C va C larn topamz, ya`n C, C h. Bularn (.6) ga qo`yb, nuqtanng berlgan boshlang`ch shartlarn qanoatlantruvch harakat tenglamasn topamz: 6

163 h. ht e t (.8) (.8) yechmdan ko`rnb turbdk nuqtanng harakat bu holda ham davry bo`lmayd, ya`n nuqta o`znng muvozanat holatga asmptotk ravshda ntlad. Quyda moddy nuqtanng so`nuvch tebranma harakatga dor br nechta masalalar qaraymz. 5- masala (I.V.Metchersky 3.66). Massas kg 5 bo`lgan jsm bkrlk koeffsent kh / m ga teng prujnaga oslgan. Muhtnng qarshlk kuch tezlkka proporsonal. To`rt marta tebranshdan keyn ampltuda -marta kchrayd. Yukn cho`zlmagan prujna uchga lb, boshlang`ch tezlksz qo`yb yuborlgan bo`lsa, jsmnng harakat tenglamas toplsn. Yechsh. Masalanng shartga ko`ra: T. T b ht Maraj e ga teng bo`lgan geometrk propressyanng n - hadn topsh formulasga asosan: 8 ht ht 8 8 e e Bundan ht 8 ht 8 Lu 8 Lu Lu, 8 bundan ht ln,6, 3 T. (a) 8 h (.) formulaga asosan: T (b) k h (a) va (b) formulalardan: Bularga asosan. (a) k,6 4,6 k h 4,6, h k h h,97. c formuladan tebransh davr. H c / M 4, 4 39,44. m 5kg c T,35 c. 63

164 Tebranshnng logarfmk dekrement: d ht,3. End so`nuvch tebransh chastotasn topamz: k k h 4 3,8 9,9. c (. 3) formuladan foydalanb, so`nuvch tebranma harakat tenglamasn yozamz:,97t e Cos kt BSn kt. (b) Koordnatalar boshn yuknng statk muvozanat holatga olamz. U holda boshlang`ch shartlar quydagcha bo`lad: t ; ct,. M mg 5kg 9,8 / c ct,45cm. (g) c H / M (b) dan vaqt bo`ycha hosla olamz:,97t,97t,97e Cos kt BSn kt e k Snkt kbcos k t. (d) (g) boshlang`ch shartlarn (v) va (d) tenglamalarga qo`yb va B larn topamz:,45em,45cm,97,97 9,9B B,4cm. 9,9 Bularn (b) tenglamaga qo`yb, yuknng harakat tenglamasn topamz, ya`n,97t X e,45cos9,9t,4sn9,9t cm. 6- masala (I.V.Metchersky 3. 74). Sharnr blan O nuqtaga brktrlgan sterjen uchdag og`r nuqta kchk tebranshlarnng dfferensal tenglamas tuzlsn, shunngdek so`nuvch tebranshlar chastotas toplsn. Muhtnng qarshlk kuch tezlknng brnch darajasga proporsonal, proporsonallk koefsyent. nuqtanng og`rlg P prujnanng bkrlk koefsyent c, sterjen uzunlg, masofa OB b. Sterjenng massas, massas hsobga olnmasn. Muvozanat holatda sterjen gorzontal joylashgan, koeffsentnng qanday qymatda operodk bo`lad (a-shakl). a) -shakl Yechsh. Hsob semas b -shaklda tasvrlangan. b) y b F R B y B J y y 64

165 yb b b b b-shakldan: yb y, y B y, y cb Elastklk va qarshlk kuchlar: F cyb y, b R y B y. O nuqtaga nsbatan moment tenglamasn tuzamz: p J br bf, J my y g Natjada p b Cb P b b y y y yok y y C y (a) g g (a) tenglamanng arakterstk tenglamas: p b Cb g b C g b C yok. (b) g P P Xususy tebransh chastotas va shqalansh koeffsentlar: cgb cgb k, h. (v) p p So`nuvch tebransh chastotas: 4 cgb g b b cg g b k k h 4 p 4 p p p va 3 hollarga asosan h k bo`lganda harakat perepodk bo`lad. (b) formulalarga asosan: 7 - masala (I. V. Metchersky 3. 68). 4,9H kuch blan sm ga cho`zladgan prujnaga oslgan va massas,96kg bo`lgan jsm harakat vaqtda tezlknng brnch darajasga proporsonal bo`lgan qarshlkka uchrayd va bu qarshlk M / c tezlkda /9,6H ga teng. Boshlang`ch paytda prujna muvozanat holatdan 5 cm ga cho`zlgan va jsm boshlang`ch tezlksz harakatga keltrlgan. Jsmnng harakat qonun anqlansn. Yechsh. 4,9H kuch prujnan sm ga cho`zsa, sm cho`zsh uchun 4,9 H H H,49, ya n c 49. cm cm M R, M / c bo lganda R, 96H kg M C kg /9,6H M / c /9,6 ; / 9,6 C M c Jsmnng harakat dfferensal tenglamas 65

166 h h, h h. k kg c k 9,6 h C 49, 5, k 5, k 5. gm 9,6 kg c m,96 kg Xarakterstk tenglamanng kkala ldz ham br l va, 5. U holda nuqtanng harakat tenglamas quydagcha bo`lad: 5t e C t C. (a) 5 C t C ae. 5t t 5e (b) Boshlang`ch shartlar: t ; 5cm, 4. Bularn (a) va (b) tenglamalarga qo`yamz: 5 C; C 5cm; 5C C C 5C 5cm. Natjada 5t 5t e 5t 5cm 5e 5t cm. Harakat davry bo`lmas ekan. H M 4. Moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat. Massa, kuch, bkrlk, tezlk, tezlansh, ampletuda, tebransh chastotas, tebransh davr, tebransh fazas, rezonans, benya. Moddy nuqtanng tklovch kuch va uyg`otuvch kuchlar ta`srdag harakatn qaraymz. Uyg`otuvch kuch umumy holda vaqtnng tyory funksyas bo`lsh mumkn. Bu paragrafda uyg`otuvch kuchnng praktkada muhm ahamyatga ega bo`lgan oddy holn qarash blan chegaralanamz. Uyg`otuvch kuch vaqtnng garmonk funksyas ko`rnshda berlgan bo`lsn, ya`n HSn pt. Uyg`otuvch kuch ampltudas, - uyg`otuvch kuch chastotas, boshlang`ch fazas. F C, Q H Snpt. Nuqtanng harakat dfferensal tenglamas O F M Q quydag ko`rnshda bo`lad: yok m c H Sn pt -shakl k H Snpt, (.) bu yerda 66

167 c H k, H. m M.) tenglamanng umumy yechm unga mos k (.) Brjenl tenglamanng umumy yechm va (.) tenglamanng brorta ususy yechmlar yg`ndsga teng. (.) tenglamanng umumy yechm quydagcha bo`lad: asnkt, (.3) bu yerda a va lar ntegrallash o zgarmaslar. (.) tenglamanng ususy yechmn Snpt ko rnshda ataramz. noma lum son. va larn (.) tenglamag qo yb, n topamz: p Snpt k Snpt H Snpt yok k p Sn pt H Sn pt. Bundan H. k p Natjada ususy yechm quydag ko rnshda bo lad: H Snpt. (.4) k p Shunday qlb, (.) tenglamanng umumy yechm quydag ko rnshda tasvrlanad: H asnkt Snpt. (.5) k p (.5) tenglama kkta garmonk tebranma yg ndsn fodalayd: k ususy chastotal garmonk tebranma harakat va chastotas uyg otuvch kuch chastotasga teng bo lgan garmonk tebranma harakatlar. a va lar boshlang ch shartlardan topladgan shartlar. Majbury tebransh ampltudas quydagga teng: H. (.6) k p Ikkta hol uchun (.4) formulan (.6) dan foydalanb, yozamz: k p - ususy tebransh chastotas uyg otuvch kuch chastotasdan katta bo lgan holda Snpt. ( k p ) k p - ususy tebransh chastotas uyg otuvch kuch chastotasdan kchk bo lgan holda Snpt Snpt. k p Bulardan quydag ulosa kelb chqad: p k bo lgan holda majbury 67

168 tebransh fazas uyg otuvch kuch fazas blan br l bo lad, p k bo lgan holda majbury tebransh fazas uyg otuvch kuch fazasda masofaga sljgan bo lad: (.6) formulan p / k almashtrb olb, quydag ko rnshga keltramz: H H st, (.7) k c bu yerda m -nuqtanng muvozanat holatdan statk og sh, ya n nuqtanng c ct uyg otuvch kuch eng katta qymatga ega bo lgan paytdag og sh quydag belglashn krtamz:. st - mqdorga dnamknng koeffsent deylad. mqdor tebransh ampltudasnng statk og shdan necha marta kattalgn anqlayd. 3-shaklda nng ga bog lqlk grafg tasvrlangan. Grafkdan ko rnb turbdk, p bo lganda dnamklk koeffsyent tez k o sb ketad. (.5) nng kkala tomondan vaqt bo ycha hosla olamz: H akcoskt Cospt. (.8) k p Boshlang ch shartlar t ;,. ko rnshda berlgan bo lsn. Berlgan boshlang ch shartlarn (.5) va (.8) tenglamalarga qo yamz: H H asn Sn asn Sn k k H (.9) H asn Sn asn Sn. k k( k ) k (.5) yechmn quydag ko rnshda yozamz: H Coskt Snkt Sn Coskt Cos Snkt k k p k k H p Sn pt. P * ( t) t P k 4-shakl 68 P / k 3-shakl

169 (.) yechmdag H. Sn Cos kt Cos Sn kt qo`shluvch ususy k p k chastotal tebranshn fodalayd, demak hat. boshlang`ch shartlarda ham nuqta ususy chastotal tebranshda shtrok etar ekan. Bu tebranshlar ampltudas boshlang`ch shartlardan bog`lq emas. End uyg`otuvch kuch chastotas ususy chastotaga juda yaqn bo`lgan holn qaraymz ( k ). U holda. boshlang`ch shartlar uchun (.) yechmn quydag ko`rnshda yozsh mumkn ( / k, lekn k ): H Sn pt Snkt k yok H k k k Sn tcos, t k (.) (.) yechmda t ;, k ya`n, k, k 4, k bo`lganda. Bo`lad, davr blan nuqta o`znng muvozanat holatga qaytad. Uzunlg ga teng bo`lgan vaqt oralg`da tebransh o`sb kamayad (4-shakl). Bunday harakat--ga byenya hodsas deylad. Byenya holda tebransh uyg`otuvch kuch chas-totas blan sodr bo`lad. Tebransh ampltudas * H k t Sn t k davry ravshda sekn o`zgarad (4-shakl). End ususy tebransh chastotas uyg`otuvch kuch chastotasga teng bo`lgan holn qaraymz, ya`n k. Bu holda (.) tenglamanng ususy yechmn X tsnpt (.) ko`rnshda ataramz. (.) yechmn (.) tenglamaga qo`yb, quydag munosabatn hosl qlamz: Cospt H Snpt Quydagcha belglash krtamz: t p t, natjada Cos H Sn, yok Cos H Sn Cos H Cos Sn. Bu tenglk H Cos, H Sn 69

170 shartlarda aynyatga aylanad. Bunda Cos, Sn demak H /,. Shunday qlb H t Cospt. (.3) (.) tenglamanng umumy yechm X a Sn H t (.4) p t Cospt (.3) majbury tebranma harakat ampltudas vaqtga nsbatan chzql qonun blan cheksz o`sad (5- shakl). Bunday hodsaga rezonas hodsas deylad. Quyda nuqtanng majbury tebranshga dor Masalalar qaraymz. 8- masala. Massas m ga teng bo`lgan yuk bkrlg C ga teng bo`lgan prujnanng quy B uchga lngan, prujnanng yuqor uch asnt qonunga asosan ko`chad (6-shakl). m, 4kg, C 39,H / m, 7c, a cm deb olb, yuknng majbury tebransh anqlansn. Yechsh. Koordnatalar boshn yuknng statk muvozanat holatga olamz. U holda prujnanng dnamk defarmatsyas asn t ga teng bo`lad. Prujnanng elastklk kuch quydagga teng bo`lad: F X c Snpt. Statk muvozanat holatda prujnanng elastklk kuch yuknng O og`rlk kuch blan muvozanatlashad, ya`n c ct mg, F ct -prujnanng statk defarmatsyas. Q X CaSnt M Yuknng harakat dfferensal tenglamas quydag Q ko`rnshda bo`lad: B m c casnt M yok 6-shakl k H Snt, (.4) formulaga asosan yuknng majbury tebransh quydagcha bo`lad: H Snt,. k Bunga berlganlarn qo`yamz: O H t P H t P 5-shakl t 7

171 H M H ca 39, cm c 39, 4cm, k 98 m( k ) m( k ),4kg(98 49) m,4kg c c Natjada 4Sn7tcm. T 9-masala (I.V.Metchersky 3.8). Q c tklovch kuch va F F e kuch ta`sr etayotgan m massas nuqtanng to`g`r chzql harakatn, boshlang`ch paytda nuqta uznng muvozanat holatda teng turgan deb topng. Yechsh. Nuqtaga ta`sr etayotgan kuchlar: F T O F M F elastklk kuch, F F e uyg'otuvch kuch, mg - og`rlk kuch. mg Kuchlarnng o qdag proeksyalar: T F X c, F F e, ( mg 7-shakl ) X. Nuqtanng harakat dfferensal tenglamasn tuzamz: t F m c Fe yok K e t. (a) m (a) tenglamanng umumy yechm X X X, ya n (a) tenglamaga mos br jnsl tenglamanng umumy yechm va (a) tenglamanng brorta ususy yechmlar yg ndsdan borat. Coskt BSnkt, (b) c bu yerda k. Xususy yechmn quydag ko rnshda ataramz: m t t Ce Ce. Bun (a) tenglamaga qo yamz: t F t F CK e e C. m m k Natjada F t e. mk (a) tenglamanng umumy yechm: F t Coskt Snkt e. (v) mk Boshlang ch shartlar: t ;, H M ksnkt kcoskt F m k t e. 7

172 Nazorat savollar. Markazy kuch deb nmaga aytlad?. Qaytaruvch kuch deb qanaqa kuchga aytlad? 3. Garmonk tebranma harakatn ta rflang. 4. Garmonk tebranma harakatnng dfferensyal tenglamas qanday ko`rnshda yozlad? 5. Garmonk tebranma harakat qonunqanday bo`lad? 6. So`nuvch tebranma harakatn ta rflab berng. 7. Majbury tebranma harakatnng dfferensal tenglamasn yozb ko`rsatng. 8. Rezonans deb nmaga aytlad? Xulosa Qaytaruvch kuch ta sr ostda qarshlksz muhtda harakatlanuvch nuqta garmonk tebranma harakatda bo`lad. Garmonk tebranma harakatnng davr ampltudaga bog`lq emas, shunng uchun bunday tebranma harakatga zoron deylad. Muhtnng qarshlg mavjud holda tebranma harakat so`nuvch bo`lad. Nuqtanng os tebranshlar chastotas blan uyg`otuvch kuchnng chastotas o`zaro teng bo`lb qolsa, rezonans hodsas ro`y berad. 7

173 Rezonans rejm jarayonda tebranshlar ampltudas cheksz o`sb borad. 4- mavzu Nuqtanng majbury tebranma harakat.. Mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot Ma ruza (aborotl dars) shakl Mavzu rejas. Moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat.. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag majbury tebranma harakat O`quv mashg`ulotnng Moddy nuqtanng uyg`otuvch kuch ta srdag majbury maqsad tebranma harakat va unng natjasda yuzaga keladgan rezonans hodsas haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Nuqtanng majbury tebranma Nuqtanng majbury tebranma harakat harakat haqda tushuncha bersh. haqda tushunchaga ega. Nuqtanng qarshlk ko`rsatuvch Qarshlk ko`rsatuvch muhtdag muhtdag majbury tebranma majbury tebranma harakat haqda harakat haqda tushuncha bersh. tasavvurlar bor. Rezonans hodsas mohyatn Rezonans hodsas haqda tasavvurga ega ochb bersh. va un eslab qolad. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum O qtsh shakllar Frontal,kollektv sh. 73

174 O qtsh sharot Montogng va baholash Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov.. Nuqtanng majbury tebranma harakat mavzusnng tenalogk artas. Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 74

175 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 4-Ma ruza Nuqtanng majbury tebranma harakat. Reja:. Moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat.. Moddy nuqtanng qarshlk ko`rsatuvch muhtdag majbury tebranma harakat. dabyotlar: [], sah, [5], 83-3 sah. Tayanch boralar: Markazy kuch, qaytaruvch kuch, uyg`otuvch kuch, garmonk uyg`otuvchm kuch, os tebranshlar, majbury tebranshlar, tebransh ampltudas, tebransh davr, rezonans. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball 75

176 Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Qaytaruvch kuch deb nmaga aytlad?. Uyg`otuvch kuch deb qanaqa kuchga aytlad? 3. Xos tebranshlar nma? 4. Majbury tebranshlar deb nmaga aytlad? 5. Rezonans hodsas nma va u qachon yuzaga kelad Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Qaytaruvch kuch. Uyg`otuvch kuch. 3 Nuqtanng os tebranshlar. 4 Nuqtanng majbury tebranshlar. 5 Majbury tebranshlarnng ampltudas. 6 Majbury tebranshlarnng davr. 7 Garmonk uyg`otuvch kuch. 8 Uyg`otuvch kuchnng chastotas. 9 Majbury tebranshlarnng dfferensal tenglamas. Majbury tebranshlarnng qonun. Insert jadval qodas. 76

177 V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 4-Mavzu. Nuqtanng majbury tebranma harakat..moddy nuqtanng qarshlksz muhtdag majbury tebranma harakat. Moddy nuqtanng tklovch kuch va uyg`otuvch kuchlar ta`srdag hara-katn qaraymz. Uyg`otuvch kuch umumy holda vaqtnng tyory funksyas bo`lsh mumkn. Bu paragrafda uyg`otuvch kuchnng praktkada muhm ahamyatga ega bo`lgan oddy holn qarash blan chegaralanamz. Uyg`otuvch kuch vaqtnng garmonk funksyas ko`rnshda berlgan bo`lsn, ya`n HSn pt. Uyg`otuvch kuch ampltudas, - uyg`otuvch kuch chastotas, boshlang`ch fazas. F C, Q H Snpt. Nuqtanng harakat dfferensal tenglamas O F M Q quydag ko`rnshda bo`lad: yok m c H Sn pt -shakl k H Snpt, (.) bu yerda c H k, H. m M.) tenglamanng umumy yechm unga mos k (.) Brjenl tenglamanng umumy yechm va (.) tenglamanng brorta ususy yechmlar yg`ndsga teng. (.) tenglamanng umumy yechm quydagcha bo`lad: asnkt, (.3) bu yerda a va lar ntegrallash o zgarmaslar. (.) tenglamanng ususy yechmn Sn pt 77

178 ko rnshda ataramz. noma lum son. va larn (.) tenglamag qo yb, n topamz: p Snpt k Snpt H Snpt yok k p Sn pt H Sn pt. Bundan H. k p Natjada ususy yechm quydag ko rnshda bo lad: H Snpt. (.4) k p Shunday qlb, (.) tenglamanng umumy yechm quydag ko rnshda tasvrlanad: H asnkt Snpt. (.5) k p (.5) tenglama kkta garmonk tebranma yg ndsn fodalayd: k ususy chastotal garmonk tebranma harakat va chastotas uyg otuvch kuch chastotasga teng bo lgan garmonk tebranma harakatlar. a va lar boshlang ch shartlardan topladgan shartlar. Majbury tebransh ampltudas quydagga teng: H. (.6) k p Ikkta hol uchun (.4) formulan (.6) dan foydalanb, yozamz: k p - ususy tebransh chastotas uyg otuvch kuch chastotasdan katta bo lgan holda Snpt. ( k p ) k p - ususy tebransh chastotas uyg otuvch kuch chastotasdan kchk bo lgan holda Snpt Snpt. k p Bulardan quydag ulosa kelb chqad: p k bo lgan holda majbury tebransh fazas uyg otuvch kuch fazas blan br l bo lad, p k bo lgan holda majbury tebransh fazas uyg otuvch kuch fazasda masofaga sljgan bo lad: (.6) formulan p / k almashtrb olb, quydag ko rnshga keltramz: H H st, (.7) k c bu yerda m -nuqtanng muvozanat holatdan statk og sh, ya n nuqtanng c ct uyg otuvch kuch eng katta qymatga ega bo lgan paytdag og sh quydag belglashn krtamz: 78

179 st - mqdorga dnamknng koeffsent deylad. mqdor tebransh ampltudasnng statk og shdan necha marta kattalgn anqlayd. 3-shaklda nng ga bog lqlk grafg tasvrlangan. Grafkdan ko rnb turbdk, p bo lganda k dnamklk koeffsyent tez o sb ketad. (.5) nng kkala tomondan vaqt bo ycha hosla olamz:. P / k 3-shakl H akcoskt Cospt. (.8) k p Boshlang ch shartlar t ;,. ko rnshda berlgan bo lsn. Berlgan boshlang ch shartlarn (.5) va (.8) tenglamalarga qo yamz: H H asn Sn asn Sn k k H (.9) H asn Sn asn Sn. k k( k ) k (.5) yechmn quydag ko rnshda yozamz: H H Coskt Snkt Sn Coskt Cos Snkt k k p k k p Sn pt. (.) yechmdag H. Sn Cos kt Cos Sn kt qo`shluvch ususy k p k chastotal tebranshn fodalayd, demak hat. boshlang`ch shartlarda ham nuqta ususy chastotal tebranshda shtrok etar ekan. Bu tebranshlar ampltudas boshlang`ch shartlardan bog`lq emas. End uyg`otuvch kuch chastotas ususy chastotaga juda yaqn bo`lgan holn qaraymz ( k ). U holda. boshlang`ch shartlar uchun (.) yechmn quydag ko`rnshda yozsh mumkn ( / k, lekn k ): H Sn pt Snkt k yok H k k k Sn tcos, t k (.) 79

180 (.) yechmda t ;, k 4, bo`lganda k. P * ( t) Bo`lad, ya`n, davr blan k t nuqta o`znng muvozanat holatga qaytad. Uzunlg, ga teng k P k bo`lgan vaqt oralg`da tebransh o`sb 4-shakl kamayad (4-shakl). Bunday harakat--ga byenya hodsas deylad. Byenya holda tebransh uyg`otuvch kuch chas-totas blan sodr bo`lad. Tebransh ampltudas * H k t Sn t k davry ravshda sekn o`zgarad (4-shakl). End ususy tebransh chastotas uyg`otuvch kuch chastotasga teng bo`lgan holn qaraymz, ya`n k. Bu holda (.) tenglamanng ususy yechmn X tsnpt (.) ko`rnshda ataramz. (.) yechmn (.) tenglamaga qo`yb, quydag munosabatn hosl qlamz: Cospt H Snpt Quydagcha belglash krtamz: t p t, natjada Cos H Sn, yok Cos H Sn Cos H Cos Sn. Bu tenglk H Cos, H Sn shartlarda aynyatga aylanad. Bunda Cos, Sn demak H /,. Shunday qlb H t Cospt. (.3) (.) tenglamanng umumy yechm H t X a Sn p t Cospt (.4) 8

181 (.3) majbury tebranma harakat ampltudas vaqtga nsbatan chzql qonun blan cheksz o`sad (5- shakl). Bunday hodsaga rezonas hodsas deylad. Quyda nuqtanng majbury tebranshga dor Masalalar qaraymz. 8- masala. Massas m ga teng bo`lgan yuk bkrlg C ga teng bo`lgan prujnanng quy B uchga lngan, prujnanng yuqor uch asnt qonunga asosan ko`chad (6-shakl). m, 4kg, C 39,H / m, 7c, a cm deb olb, yuknng majbury tebransh anqlansn. Yechsh. Koordnatalar boshn yuknng statk muvozanat holatga olamz. U holda prujnanng dnamk defarmatsyas asn t ga teng bo`lad. Prujnanng elastklk kuch quydagga teng bo`lad: F X c Snpt. Statk muvozanat holatda prujnanng elastklk kuch yuknng O og`rlk kuch blan muvozanatlashad, ya`n c ct mg, ct -prujnanng statk defarmatsyas. Q X CaSnt Yuknng harakat dfferensal tenglamas quydag ko`rnshda bo`lad: B F M Q m c casnt M yok 6-shakl k H Snt, (.4) formulaga asosan yuknng majbury tebransh quydagcha bo`lad: H Snt, k. Bunga berlganlarn qo`yamz: H M H ca 39, cm c 39, 4cm, k 98 m( k ) m( k ),4kg(98 49) m,4kg c c Natjada 4Sn7tcm. T 9-masala (I.V.Metchersky 3.8). Q c tklovch kuch va F F e kuch ta`sr etayotgan m massas nuqtanng to`g`r chzql harakatn, boshlang`ch paytda nuqta uznng muvozanat holatda teng turgan deb topng. Yechsh. Nuqtaga ta`sr etayotgan kuchlar: F T elastklk kuch, F F e uyg'otuvch kuch, mg - og`rlk kuch. Kuchlarnng o qdag proeksyalar: 8 O O H t P H t P 5-shakl F 7-shakl M H M mg F t

182 T F X c, F F e, ( mg ) X. Nuqtanng harakat dfferensal tenglamasn tuzamz: t F m c Fe yok K e t. (a) m (b) tenglamanng umumy yechm X X X, ya n (a) tenglamaga mos br jnsl tenglamanng umumy yechm va (a) tenglamanng brorta ususy yechmlar yg ndsdan borat. Coskt BSnkt, (b) c bu yerda k. Xususy yechmn quydag ko rnshda ataramz: m t t Ce Ce. Bun (a) tenglamaga qo yamz: t F t F CK e e C. m m k Natjada F t e. mk (b) tenglamanng umumy yechm: F t Coskt Snkt e. (v) mk Boshlang ch shartlar: t ;, F t ksnkt kcoskt e. (g) mk Boshlang ch shartlarn (v) va (g) tenglamalarga qo yb, va larn topamz: F, F m k, mk k Natjada nuqtanng harakat tenglamas quydagcha bo lad: F t ( e Snkt Coskt). mk k - masala. Massas m, 4kg bo lgan yuk, bkrlg C 9, 6 H cm bo lgan prujnaga oslgan bo lb, unga S Sn 7 th kuch ta sr etad. Boshlang ch paytda 4 sm, k sm s. Koordnata bosh yuknng statk muvozanat holatda olngan. Yuknng harakat tenglamas toplsn. Yechsh. Yuknng harakat defferensal tenglamas. 8 m C Sn7et yok k H Sn7t, CM c 9,6 bu yerda k 49, m,4kg c N H 5m s,4kg

183 Demak ususy tebransh chastotas uyg otuvch kuch chastotasga teng, ya n k 7. Bu holda (a) tenglamanng ususy yechm (.3) ko rnshda c olnad, ya n M c H t 5 Cost tcos7t 35,8tCos7 7 c (a) tenglamanng umumy yechm quydagcha bo lad. Coskt Snkt 35,8tCos 7t, Bundan ksnkt kcoskt 56 Sn7t 35,8Cos 7 t. M Bularga 4 sm, c boshlang ch shartlarn qo yb va larn topamz: Natjada SM C 4cm, B,65. X 4Cos7t,65Sn7t 35,8Cos 7t SM. Nazorat savollar.. Uyg`otuvch kuch deb nmaga aytlad?. Uyg`otuvch kuchnng chastotas nma? 3. Xos tebranshlar deb nmaga aytlad? 4. Xos tebranshlarnng dfferensal tenglamas qanday ko`rnshda yozlad? 5. Majbury tebranshlar nma? 6. Majbury tebranshlar ampltudas nmaga teng? 7. Rezonans hodsas qays hollarda ro`y berad? Xulosa Markazy qaytaruvch kuch blan brgalkda uyg`otuvch kuch ta sr natjasda moddy nuqta majbury tebranma harakatda bo`lad. Majbury tebranshlarnng ampltudas cheksz o`sb borad. Uyg`otuvch kuchnng chastotas os tebranshlar chastotasga teng bo`lb qolsa, rezonans hodsas yuz berad. 83

184 Rezonans hodsas radotenkada, akustkada, nshootlarnng dnamk raschetdda muhm rol o`ynayd. 84

185 5- mavzu Nuqtanng markazy kuch maydondag harakat... Mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Mavzu rejas O`quv mashg`ulotnng maqsad Pedagagk vazfalar: Yuzalar qonun va Bne formulalar haqda tushuncha bersh. Nuqtanng Nyuton tortsh kuch maydondag harakat haqda tushuncha bersh. Ma ruza (aborotl dars) Kosmk parvozlar dnamkas haqda tushuncha bersh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash. Yuzalar qonun. Markazy kuch ta srda harakatlanuvch nuqtanng tezlg va harakat dfferensal tenglamalar.. Moddy nuqtanng Nyuton tortsh kuch maydandag harakat. Trayektoryan anqlash. Moddy nuqtanng markazy kuch maydondag harakat va kosmk parvozlar dnamkas haqda tushuncha bersh. O quv faolyat natjalar: Yuzalar qonun mohyat va Bne formulalarn eslab qoladlar. Nyuton tortsh kuch maydondag harakat va trayektoryanng ko`rnshlar yetarl blmga ega... Moddy nuqtanng markazy kuch maydondag harakat mavzusnng tenologk artas. 85 haqda Kosmk parvozlar dnamkasnng asoslar haqda tasavvurga ega. O UM,ma ruza matn,rasmlar,plakatlar,doska borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar,bls-so rov

186 Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 5-Ma ruza 86

187 Moddy nuqtanng markazy kuch maydondag harakat. Reja:. Yuzalar qonun. Markazy kuch ta srda harakatlanuvch nuqtanng tezlg va harakat dfferensal tenglamalar.. Moddy nuqtanng Nyuton tortsh kuch maydondag harakat. Trayektoryan anqlash. dabyotlar: [], sah, [5], sah. Tayanch boralar: Markazy kuch, tezlk, tezlansh, yuzalar ntegral, trayektorya, konus kesmlar, brnch kosmk tezlk, kknch kosmk tezlk, ellptk orbta. Belglar: MS-muommol savol, MT- muommol topshrq, MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:. Markazy kuch deb nmaga aytlad?. Radal tezlk deb nmaga aytlad? 3. Transversal tezlk deb nmaga aytlad? 4. Nyuton tortsh kuch maydon qanaqa maydon? 5. Konus kesmlar qanaqa egr chzqlardan borat? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng 87

188 sosy tushunchalar Belg Osmon jsmlar. Yuzalar qonun (ntegral). 3 Radal tezlk. 4 Transversal tezlk. 5 Bne formulalar. 6 Nyuton tortsh kuch maydon. 7 Ellptk orbtalar. 8 Brnch kosmk tezlk. 9 Ikknch kosmk tezlk. Ikk jsm masalas. Kepler qonunlar. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz,. Yuzalar qonun. Markazy kuchlar ta`srda harakatlanuvch moddy nuqtanng tezlg va harakat 88

189 dfferensal tenglamalar Moddy nuqta, tezlk, tezlansh, harakat mqdor moment, kuch moment, trayektorya va h.k.yuzalar qonun. gar moddy nuqtaga ta`sr etuvch kuch markazy bo`lsa, va koordnatalar bosh kuch markazda olnsa, u holda r F. U holda harakat mqdor momentnng o`zgarsh haqdag teorema d r m r F dt quydag brnch ntegraln berad: r c Const. (4.9.) Bundan shunday ulosa kelb chqadk, markazy kuch ta`srda harakatlanuvch nuqtanng harakat trayektoryas teks egr chzqdan borat bo`lb, nuqta yuzalar qonun asosda harakatlanad, ya`n nuqtanng radus-vektor teng vaqtlar oralg`da teng yuzalar chzad. (4.9.) tenglkdan yuzalar qonunn quydagcha fodalash mumkn: d r C, (4.9.) dt d Bu yerda nuqtanng sektoral tezlg, C o`zgarmasga yuzalar domys dt deylad. C nng qymat boshlang`ch shartlardan toplad. Boshlang`ch paytda r r va bo`lsa, u holda C mom r Snr. (4.9.3), Moddy nuqtanng harakat trayektoryas teks egr chzqdan borat bo`lgan uchun qutb koordnatalar r va lardan foydalansh mumkn. Knematka bo`lmda bz ko`rgan edk d d r. dt dt Bunga asosan yuzalar qonunn fodalovch (4..) tenglama quydag ko`rnshga kelad: d r C. (4.9.4) dt. Markazy kuch ta`srda harakatlanuvch moddy nuqtanng tezlg. Bzga ma`lumk nuqtanng tezlg qutb koordnatalarda quydagcha fodalanad: dr d r. (4.9.5) dt dt 89

190 Nuqta tezlgnng qutb o`qlardag prayeksyalar dr d r, r (4.9.6) dt dt larn almashtramz. Bunng uchun ( ) tenglkdan foydalanb vaqt t n yo`qotamz: dr dr d C dr d C r, r. p dt d dt r d dt r Yang o`zgaruvch krtamz, ya`n u. (4.9.7) r Bundan du dr. (4.9.8) d r d Natjada tezlknng proyeksyalar quydag ko`rnshga kelad: du r, cu. (4.9.9) d Shunday qlb nuqta tezlg uchun quydag fodan hosl qlamz: du C u. (4.9.) d 3. Markazy kuchlar maydonda harakatlanuvch nuqtanng harakat dfferensal tenglamalar. Markazy kuchn quydag ko`rnshda yozsh mumkn: r F Fr, (4.9.) r bu yerda F r kuchnng radus vektordag proyeksyas. Knematka bo`lmdan bzga ma`lumk nuqta tezlanshnng radal tuzuvchs w r r r ko`rnshda bo`lad. Dnamkanng asosy tenglamasn quydag ko`rnshda yozamz: r mw Fr. r Bu tenglaman radus vektorga proyeksyalaymz: mr r F r. (4.9.) ( ) tenglamadan foydalanb, (4.8.) tenglaman quydag ko`rnshda yozamz: C r F. 3 r (4.9.3) r m Nuqtanng harakat tenglamasn qutb koordnatalarda fodalash uchun (4.8.3) tenglamada t o`zgaruvchn yo`qotamz. (4.8.4) tenglamalarga asosan: d C Cu, u, dt r r 9

191 d r dt d dt dr dt d dt C r dr d d dt Cu u d u d d u C C u. d dt d Bularga asosan (4.8.3) tenglama quydag ko`rnshga kelad: d u 3 C u C u F. r d m bundan d u mc u u F. r d (4.9.4) (4.9.4) tenglamaga Bne tenglamas deylad. Umumy holda nuqtaga ta`sr etuvch kuch du F Fr,, r,, t yok Fr Fn u,,, t. (4.9.4) tenglama d (4.9.4) tenglama blan brgalkda kkta dfferensal tenglamalar sstemasn hosl qlad. Bu tenglamalar sstemasn yechb, u va n yok r va n vaqtnng funksyas ko`rnshda topsh mumkn, ya`n markazy kuch ta`srda harakatlanuvch nuqtanng harakat tenglamalarn topsh mumkn. Olngan tenglamalar Quyosh tortsh maydonda yok planetalar tortsh Maydondag harakatlarn o`rganshda, shunngdek osmon meankasda, raketalar dnamkasda va kosmonavtkada katta ahamyatga ega. gar moddy nuqta r a Cons t aylana bo`ylab harakatlansa, ( a - aylana radus) unga ta`sr etuvch markazy kuchn topamz. (4.9.4) Bne formulasga r nng bu qymatn qo`yamz: 3 mc F r mc u. 3 a Demak ta`sr etuvch kuchnng modul o`zgarmas bo`lar ekan (4.8.) formuladan foydalanb, nuqtanng tezlgn topamz: C CU. a Bundan C n topb, yuqordag formulaga qo`yamz: m F r. a Shunday qlb, m massal moddy nuqtanng a radusl aylana bo`ylab harakat m o`zgarmas tezlkl, o`zgarmas tortuvch kuch ta`srdan sodr a bo`lar ekan. 4. Planetalar harakat. Butun olam tortlsh qonun. Osmon meankasnng asosda Keplernng (57-63) uchta qonun yotad. Bu qonunlarn quyda bayon qlamz: 9 du d C d dt du d

192 ) Hamma planetalar Quyosh atrofda teks orbtalar bo`ylab yuzalar qonun asosda harakatlanad. ) Planetalar orbtalar konus kesmlardan borat bo`lb, fokuslardan brda Quyosh yozad. 3) Planetanng Quyosh atrofda aylansh yulduz vaqtnng kvadrat orbta katta yarm o`qnng kubga proporsonal. Kepler qonunlar asosda Nyuton Quyosh atrofda harakatlanuvch planetalarga ta`sr etuvch kuchnng o`zgarsh qonunn topgan, undan keyn butun olam tortlsh qonunn yaratgan. Keplernng brnch qonundan planetaga ta`sr etuvch kuch markazy bo`lb, unng yo`nalsh Quyoshdan o`tad. Iknch qonundan planetaga ta`sr etuvch kuch Quyoshga tortuvch bo`lb, masofanng kvadratga teskar proporsonal. Bzga ma`lumk konus kesmlarnng qutb koordnatalardag tenglamas quydag ko`rnshda bo`lad: p ecos r yok u, (4.9.5) ecos p bu yerda e trayektorya ekssentrstet, parametr. gar trayektorya ellns b bo`lsa, p, a bu yerda a va b lar ellnsnng katta va kchk yarm o`qlar. u nng (4.9.5) fodasn (4.9.4) Bne formulasga qo`yb ta`sr etuvch kuchn topamz: mc u ecos ecos F r, p bundan c mu F r. Quydagcha belglash krtamz: c. (4.9.6) p u bo`lgan uchun kuchn quydag ko`rnshda ta`svrlash mumkn: r m F r. (4.9.7) r Shunday qlb, nuqtaga ta`sr etuvch kuch tortuvch bo`lb, markazgacha bo`lgan masofa kvadratga teskar proporsonal ravshda o`zgarar ekan. ga Gauss domys deylad. Keplernng uchnch qonunga asosan: a T 3 Cons t 3 4 a yok Cons t. T (4.9.8) 9

193 gar nuqta trayektoryas ellnsdan borat bo`lsa, radus-vektor to`la br marta aylanganda u ellns yuzasn chzad.ellnsnng yuz a b bo`lgan uchun yuza domysn quydagcha olsh mumkn: a b 4 a b C va C. T T b p dan foydalanb, quydag tenglkn yozamz: a 3 4 a p C, T bundan 3 C 4 a. p T C p bo`lgan uchun (4.9.8) ga asosan: 3 4 a Cons t. (4.9.9) T Shunday qlb koeffsent Quyosh atrofda harakatlanuvch hamma jsmlar uchun br l, faqat Quyosh massasdan bog`lq bo`lad. Yer tortsh maydonda harakatlanuvch jsmlar uchun o`znng Gauss domys mavjud. Un blan belglaymz. Quyosh yern m F (4.9.) r kuch blan tortad. O`z navbatda yer Quyoshn M F (4.9.) r kuch blan tortad. m va M mos ravshda yer va Quyoshnng massas.ta`sr va aks ta`sr qonunga asosan: m M F F yok, r r bundan Cons t, M m Demak tyory planetanng Gauss domysnng shu planeta massasga nsbat o`zgarmas va hamma planetalar uchun br l bo`lar ekan. Bu o`zgarmasga gravtasya domys deylad va f blan belglaymz, ya`n f. M m Bundan fm, fm. va larnng bu qymatlarn (4.9.) va (4.9.) larga qo`yamz va F F F belglash krtb quydag tenglkn hosl qlamz: 93

194 M m F f (4.9.) r Bu formula butun olam tortlsh qonunn fodalayd: kk jsmnng o`zaro tortsh kuch ular massalar ko`paytmasga to`g`r proporsonal va oralardag masofa kvadratga teskar proporsonal. Gravtasya domysnng o`lchov brlg: 3 M L L L f. T M MT CU sstemasda 3 f 6,673 M kg sek Planetanng moddy nuqtaga ta`sr etuvch Nyuton tortsh kuchn quydag ko`rnshda yozsh mumkn mm r F f, (4.9.3) r r Bu yerda f gravtasya domys, m moddy nuqtanng massas, M planetanng massas, r planeta markazdan moddy nuqtagacha bo`lgan masofa. Yer srtda r R yer radus bu kuch mg ga teng, g erkn tushsh tezlansh. Shunday qlb r R bo`lganda (4.9.3) tenglkdan: f m M mg bundan f M gr, R natjada (4.9.3) formula quydag ko`rnshga kelad: mgr r F. (4.9.4) r r Bne formulasga asosan bu holda F u r mgr. Moddy nuqta Yer srtdan uncha katta bo`lmagan masofada harakatlansa, unga boshqa planetalar tomondan ta`sr etuvch kuchlarn etborga olmaslk mumkn va nuqtaga faqat (4.9.4) kuch ta`sr etad deb qarash mumkn. Bu holda nuqtanng harakat dfferensal tenglamasn quydag ko`rnshda yozsh mumkn: d u u, (4.9.5) d p bu yerda p 4c gr Cons t.. Moddy nuqtanng Nyuton tortsh maydondag harakat. Trayektoryan anqlash Moddy nuqta harakatnng asosy dferensal tenglamas (4.9.4) nng umumy yechmn quydag ko`rnshda ataramz: u acos, (4..) 94

195 bu yerda a va lar ntegrallash o`zgarmaslar. u r ga asosan (4..) n quydag ko`rnshda yozamz: p r e Cos, (4..) bu yerda c ap o`zgarmas mqdor. Tahlln soddalashtrsh uchun yang o`zgaruvch krtamz. End burchak fksrlangan boshlang`ch O yo`nalshdan emas balk burchakka burlgan O yo`nalshga nsbatan hsoblanad (53-shakl). Lekn bu almashtrsh blan trayektoryanng ko`rnsh o`zgarmayd. Natjada (4..3) tenglamanng ko`rnsh quydagcha bo`lad: p r (4..3) e Cos naltk geometrya kursdan ma`lumk (4..3) tenglama konus kesmn tenglamasn fodalayd. Trayektoryanng tp ekssentrstet e nng qymat blan anqlanad. e ekssentrstetn qymatn boshlang`ch shartlardan bog`lab topamz. Boshlang`ch vaqt sfatda moddy nuqtanng o`qdan o`tsh vaqtn olamz, ya`n t,. (4..3) formuladan dr pesn. d e Cos Bunga asosan nuqtanng radus-vektor da ekstremumga ershad. Bu shun bldradk bo`lganda tyory e uchun nuqtanng tezlg unng boshlang`ch holatn anqlovch r radus-vektorga perpendkulyar bo`lad transversal tezlk uchun r larn etborga olb, yuza ntegraln quydag ko`rnshda yozamz: r p C. ytaylk bo`lganda r r, bo`lsn. Bu boshlang`ch shartlar uchun (4..3) dan: p r. e Bundan p. r e (4..4) Qaralayotgan boshlang`ch shartlar uchun, u holda C r va p 4C gr larn etborga olb, quydag tenglkn hosl qlamz: 95

196 r e gr. (4..5) (4..5) formula nuqtanng boshlang`ch tezlgga qarab trayektoryanng ko`rnshn topsh mkonn berad. Ellptk trayektorya uchun e. Bunga asosan (4..4) formuladan: g R r. Xususy holda e bo`lsa, trayektorya aylanadan borat bo`lad va nuqtanng boshlang`ch tezlg quydagga teng bo`lad: g R r. Bu tezlkka aylana bo`ylab harakat tezlg deyald. ylana bo`ylab harakat tezlg yer srtga yaqn harakatlar uchun r R brnch kasmk tezlk deylad va u quydagga teng: gr 7,9km. s Parabolk trayektorya uchun e. (4..4) formulaga asosan: g R r. tezlkka parabolk tezlk deylad. gar nuqtaga Yer srtga yaqn nuqtadan boshlang`ch tezlk berlsa, tezlk gr, km s ga teng bo`lad. gar nuqtaga boshlang`ch tezlk berlsa nuqta Yerdan cheksz uzoqlashad. Gperbolk trayektorya uchun e. Bu holga quydag boshlang`ch tezlk mos kelad: g R r. Moddy nuqta trayektoryasnng tortuvch markazga eng yaqn nuqtasga persentr (yernng sun`y yo`ldoshlar uchun-pergey) deylad. 54 shaklda e bo`lganda barcha mumkn bo`lgan trayektoryalar tasvrlangan. Hamma trayektoryalar uchun O markazdan persentrgacha bo`lgan masofa br l. Bu masofa (4..3) formulaga asosan p rmn r e ga teng. (4..3) tenglamadan bundan e Cos u, (4..6) p du e Sn. (4..7) d p 96

197 Boshlang`ch paytda nuqta M holatda va tortuvch markazdan r masofada bo`lb, boshlang`ch tezlkka ega bo`lsn (55-shakl). PO M burchak P persentrnng M nuqtaga nsbatan holatn anqlayd. (4.9.) formuladan foydalanb, nng boshlang`ch qymatn topb, quydag boshlang`ch du d shartlarga ega bo`lamz: ; u u, r du d c u. (4..8), r va demak dr, d larn shoralar br l bo`lsh uchun ldz du oldda (-) shora olnad. (4.9.8) formuladan bo`lsh kerak. d (4..8) boshlang`ch shartlarn (4..6) va (4..7) tenglamalarga qo`yb, quydaglarn olamz: e Cos e u, c u Sn. p c Bu yerda p n (4.9.6) dan foydalanb almashtramz, natjada c c esn c u, ecos u. (4..9) Bu tenglklarn avval brn kknchsga hadma-had bo`lb, keyn kvadratga ko`tarb qo`shb, quydaglarn topamz: c c u tg, (4..) c u c e u. (4..) Bu formulaga kruvch yuza domys c (4.9.3) formuladan toplad (4..) formuladan persentrnng nuqtan boshlang`ch r radus-vektorga nsbatan holatn anqlovch burchak toplad. Trayektorya eksentrstet e (4..) formuladan toplad. Bu formuladan ko`rnb trbdk e nng qymat h u (4..) r nng shorasdan bog`lq. Bu mqdorn fzk ma`nosn anqlaymz.markazy kuchlar maydonda potensal energya avval ko`rganmzdek m r formula blan toplad. Nuqtanng to`la boshlang`ch energyasn hsoblaymz: 97

198 m m m m. r r Demak, h to`la boshlang`ch energyaga proporsonal bo`lar ekan. Shunng uchun nuqta trayektoryasnng ko`rnsh boshlang`ch to`la energya shorasga bog`lq: agar h, ya`n, bu holda e, trayektorya ellks; agar r ya`n, bu holda e, trayektorya gperbola. r Bularga asosan nuqta tortuvch markazdan cheksz uzoqlashsh uchun unga n tezlkdan kam bo`lmagan tezlk bersh kerak. h, ya`n, r r bu holda e, trayektorya parabola; agar h, Nazorat savollar.. Markazy kuch deb qanday kuchga aytlad?. Yuzalar qonun qanday ta rflanad? 3. Radal va transversal tezlklar deb nmaga aytlad? 4. Bne formulalar qanday ko`rnshda yozlad? 5. Bnenng kknch formulas nman fodalayd? 6. Kepler qonunlarn ta rflang? 7. Kosmk tezlklar necha l bo`lad? 8. Ikknch jsm masalas nmadan borat? Xulosa Markazy kuch ta sr ostda harakatlanayotgan trayektoryalar konus kesmlardan borat. 98 jsmnng (nuqtanng) Quyosh sstemasdag planetalarnng harakat yuzalar qonunga bo`ysunad. Nyuton tortsh kuch maydonda harakatlanayotgan jsmlarnng orbtalar ellps, parabola va gperboladan borat. Markazy kuch maydondag nuqta dnamkas hozrg zamon kosmk parvozlar dnamkasnng asosn tashlk etad. Keplernng umumlashgan uchnch qonun taqrby arakterga ega.

199 6- avzu Moddy nuqtanng nsby harakat... Mavzunng tenologk model. O quv soat soat O quv mashg ulot shakl Talabalar son: 5 ta Ma ruza (aborotl dars). Nsby harakat haqda tushuncha.. Moddy nuqtanng nsby hrakat dfferensal tenglamalar. Mavzu rejas 3. Nsby harakat turlar. 4. Nsby muvozanat, tenglamas. Og`rlk kuch. 5. Erkn tushuvch jsmnng shmolga og`sh. 6. dabyotlar. O`quv mashg`ulotnng maqsad Moddy nuqtanng nsby harakat, unng turlar, nsby harakat dfferensal tenglamalar va ularn tegrallash haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Nsby harakat dnamkas haqda dastlabk ma`lumotlar bersh. Nsby harakat dnamkas va unng vazfalar haqda tushunchalar bor. Nuqta nsby harakatnng dfferensal Nuqta nsby harakatnng dfferensal teglamalarn keltrb chqarsh. tenglamalar keltrb chqarshn blad va ularn eslab qolad. Nsby harakat turlar, nsby muvozant va erkn tushuvch jsmnng shmolga og`sh haqda tushuncha bersh. Nsby harakat turlar, nsby muvozanat, erkn tushuvch jsmnng shmol tomonga og`sh haqda tushunchalar bor. O qtsh vostar O UM, ma ruza matn, kompyuter saydlar,doska O qtsh usullar borotl ma ruza, bls-so rov, Pnbord tenkas, aqly hujum O qtsh shakllar Frontal, kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan, guruhlarda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar, bls-so rov boholash 99

200 .. Moddy nuqtanng nsby harakat mavzusnng tenalogk artas. Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)... Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar

201 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 6-Ma ruza Moddy nuqtanng nsby harakat. Reja:. Nsby harakat haqda tushuncha.. Moddy nuqtanng nsby harakat dfferensal tenglamalar. 3. Nsby harakat turlar. 4. Nsby muvozanat. 5. Erkn tushuvch jsmnng shmolga og`sh dabyotlar: [], sah, [5], sah. Tayanch boralar: Moddy nuqta, nersya va nonersal sanoq sstemalar, nuqtanng nsby tezlg, nsby tezlansh, absolyut tezlk va tezlansh, ko`chrma nersya kuch, korols nersya kuch, nsby muvozanat. MS-muommol savol, MT- muommol topshrq, Belglar: MV- muommol vazyat, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball

202 Mavzun jonlantrsh uchun bls-so rov savollar:. Inersal sanoq sstemas deb nmaga aytlad?. Nonersal sanoq sstemas deb nmaga aytlad? 3. bsolyut tezlk, nsby tezlk nma? 4. bsolyut tezlansh deb qanday tezlanshaga aytlad? 5. Inersya kuch deb nmaga aytlad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng sosy tushunchalar Belg Inersya va nonersal sanoq sstemalar Nsby, ko`chrma va absolyut tezlanshlar 3 Korols teoremas 4 Nsby harakat 5 Nsby harakatnng dfferensal tenglamalar 6 Nsby harakat turlar 7 Nsby muvozanat 8 Inersya kuchlar 9 Dalamber prnsp Erkn tushuvch jsmnng shmolga og`sh

203 Insert jadval qodas. V- avval olgan blmlarga to`g`r kelad. + - yang ma`lumot - - olgan blmga qarama-qarsh? - tushunarsz. Nsby harakat haqda tushuncha. Klassk meankanng qonunlar va ular asosda kelb chqadgan tenglamalar moddy nuqtanng nersyal sanoq sstemasga nsbatan harakat uchun o rnl. Inersya prnsp bajarladgan sanoq sstemasga nersyal sanoq sstemas deylad. Ko p hollarda dnamka masalalarn u yok bu nonersyal sanoq sstemasga nsbatan tahll qlshga keltrlad. Bror nersyal sanoq sstemasga nsbatan to g r chzql teks harakat qluvch sanoq sstemas ham nersyal bo lad. gar qaralayotgan sanoq sstemas nersyal sanoq sstemasga nsbatan to`g`r chzql teks harakat qlsa, bunday sanoq sstemasga nonersal sanoq sstemas deylad. Bunday sstemaga nsbatan dnamkanng asosy qonunlar, ususan nersya qonun o`rnl bo`lmayd. Dnamka tenglamalarn nonersal sstemaga qarash uchun nersal kuchlar nurlar krtlad. Ushbu bobga moddy nuqtanng nonersal sanoq stemasga nsbatan harakat o`rganlad.. Moddy nuqtanng nsby harakat dfferensyal tenglamalar. Moddy nuqta, radus-vektor, tezlk, telansh,ko chrma, nsby va absolyut tezlk, ko chrma, nsby va absolyut tezlansh, massa, kuch va nersya kuch. Moddy nuqtanng harakatn nersyal sanoq sstemas va nersyal sanoq sstemasga nsbatan tyory harakatqluvch OXY nonersyal sanoq sstemalarga nsbatan qaraymz ( 65-shakl ). Z M, y, z R F Y 3 O

204 (65-shakl) Moddy nuqtanng koordnatalar sstemasga nsbatan harakatga unng murakkab harakat yok absolyut harakatga deylad. OXYZ koordnatalar sstemasnng moddy nuqta blan brgalkda koordnatalar sstemasga nsbatan harakatga nuqtanng ko chrma harakat deylad. Moddy nuqtanng OXYZ qo zg aluvch koordnatalar sstemasga nsbatan harakatga unng nsby harakat deylad. Moddy nuqtaga ta sr etuvch kuchlar va OXYZ koordnatalar sstemasnng harakat berlgan deb nsby harakatnng asosy tenglamalarn keltrb chqaramz. Nuqtanng absolyut harakat uchun dnamkanng asosy tenglamas qu ydag ko rnshda bo lad: mw F R bu erda F -nuqtaga ta sr etuvch aktv kuchlarnng teng ta sr etuvchs, R - bog lansh reaksyalarnng teng ta sr etuvchs, m-moddy nuqtanng massas, W - nuqtanng tezlansh. Korols teoremasga asosan moddy nuqtanng absolyut tezlansh ko chrma, nsby va korols tezlanshlar yg ndsga teng, ya n W We WR WK. Bun (5.5.) tenglamaga qo yamz: mw E mw R mw 4 K F R Bundan nsby harakat uchun q uydag tenglaman hosl qlamz: mwr F R ( mwe ) ( mwk ). (5.5.) Quydag belglashlarn keltramz: J e mw e, J K mwk. J e va J K -vektorlar mos ravshda W e va W K tezlanshlarga qarama-qarsh yo nalgan bo lb, modullar moddy nuqta massas blan ko chrma va korols tezlanshlar moddullar ko paytmasga teng. Bu vektorlarga mos ravshda ko chrma va korols nersya kuchlar deylad. Bularn (5.5.) ga qo yb, quydag tenglaman hosl qlamz: mwr F R J e J K (5.5.3) (5.5.3) tenglama moddy nuqta dnamkasnng asosy tenglamasn fodalayd.

205 (5.5.3) tenglamadan quydag ulosan hosl qlamz: Moddy nuqta harakat dfferensyal tenglamasn tuzsh uchun nuqtaga ta sr etuvch aktv kuchlar va bog lanshlar reaksyalar qatorga ko chrma va korols nersya kuchlarn qo shb olsh kerak. Ko chrma va korols nersya kuchlarnng odatdag kuchlardan farq shundak, odatdag kuchlar nonersyal sanoq sstemasn tenglashshdan bog lq emas, ko chrma va korols nersya kuchlar nonersyal sanoq sstemasn tanlashsh blan anqlanad. (5.5.3) tenglamanng kkala tomonn qo zg atuvch koordnatalar sstemas o qlarga proeksyalab, moddy nuqtanng harakat dfferensyal tenglamalarn hosl qlamz, ya n mx FX RX J EX J KX my FY FY J EY J KY mz FZ RZ J EZ J KY (5.5.3) yok (5.5.4) tenglamalardan ko rnb turbdk moddy nuqtanng nonersyal sanoq sstemasga nsbatan harakat dfferensyal tenglamalar J E va J K kuchlarn krtsh blan udd nersyal sanoq sstemasdagdek bo lad. Boshqacha qlb aytganda qo zg aluvch koordnatalar sstemas harakatnng nsby harakatga ko rsatadgan ta sr J E, J K kuchlarn krtlsh blan hsobga olnad. gar qo g atuvch koordnatalar sstemas nersyal sanoq sstemasga nsbatan to g r chzql teks harakat qlsa, W E va W ( K ) bo lb, (5.5.3) tenglama (5.5.) ko rnshda kelad. Demak, nersyal sanoq sstemasga nsbatan to g r chzql teks harakat qluvch har qanday sanoq sstemas nersyal bo lad. Ko chrma harakat turga qarab, moddy nuqta nsby harakatnng qo ydag hollarn qaraymz. 3. Nsby harakat turlar.. Ko chrma harakat noteks aylanma harakatdan borat bo lsn (66-shakl). Bu holda ko chrma tezlansh aylanma va markazga ntlma tezlanshlarnng geometrk yg ndsdan borat bo lad, ya n W E W E W E Mos ravshda ko chrma nersya kuch ham kkta tuzuvchdan borat bo lad: J E mw E - aylanma nersya kuch, J E mw E -markazdan qochma nersya kuch. Shunday qlb: J E J E J E K 5 66-shakl

206 Bunga asosan (5.5.3) tenglama qo ydag ko rnshga kelad: mw R F R J E J E J Urnma va normal tezlanshlarnng modullar qo ydagcha toplad: W MK W MK E E, E E Bu yerda E va E lar burchak tezlk va burchak tezlanshlarnng algebrak qymat, MK-nuqtadan aylansh o qgacha bo lgan masofa. Urnma ko chrma nersya kuch WE tezlanshga qarama-qarsh yo nalgan bo lb, modul quydagga teng: J E mw E mmk Markazdan qochma nersya kuchnng yo nalsh markazga ntlma tezlanshga qarama-qarsh yo nalgan bo lb, modul quydagcha toplad: J E mwe mmke Korols tezlansh WK ( e r ) bo`lgan uchun unng modul sn( ) WK E R E R Korols nersya kuch korols tezlanshga qarama-qarsh yo`nalgan bo`lb, modul quydagcha toplad: J k m we vr sm( we, vr ). Korkoles nersya kuch weva vr vektorlarnng har brga perpendkulyar va demak, ko`chrma aylansh o`qga ham perpendkulyar bo`lad.. Ko`chrma harakat qo`zg`almas o`q atrofda teks aylanma harakat bo`lsn E (66-shakl). Bu holda Ee o va J e o bo`lb, bu holda nsby harakat dnamkasnng asosy tenglamas quydagcha bo`lad: w mwr F R J e J k (5.5.6) 3. ko`chrma harakat lgarlma egr chzql noteks harakat bo`lsn. Bu holda we o va J e o bo`lb, nsby harakat dnamkasnng asosy tenglamas mwr F R J e (5.5.7) ko`rnshda bo`lad. Ko`chrma harakat lgarlma egr chzql noteks harakat bo`lgan uchun J e J e J en, Bu yerda dve mv J e m va J en dt p 4. Ko`chrma harakat lgarlma to`g`r chzql teks harakat bo`lsn. Bu holda We o va J e o bo`lb, (5.5.7) tenglama quydag ko`rnshga kelad: mw r F R (5.5.8) (5.5.8) tenglama moddy nuqtanng absolyut harakat dfferensal tenglamas(5.5.) tenglama blan br l, ya`n bu holda Oyz sanoq sstemas ham nersal bo`lar ekan. 4. Nsby muvozanat tenglamas. Og rlk kuch. E K 6

207 Moddy nuqta unga ta sr etuvch kuchlar ta srdan nsby muvozanat holatda bo lsn, ya n nuqta qo zg aluvch koordnatalar sstemasga nsbatan harakatlanmasn.nuqta nsby harakatda shtrok etmasa, unng absolyut tezlansh ko chrma tezlanshga teng, ya n W W E bo lad. U holda (5.5.) tenglama quydag ko rnshga kelad. mw E F R yok F R mwe bundan F R J E (5.5.) tenglamadan quydag ulosa kelb chqad: moddy nuqta nsby muvozanatda bo lsa, unga ta sr etuvch aktv kuchlar, bog lansh reaksyalar va nersya kuchlarnng geometrk yg nds nolga teng bo lad. Masalan, yer srtda nsby muvozanatda turgan jsmn nuqtan qaraymz (67-shakl). Nuqtanng nsby muvozanat shart (5.5.) tenglkka asosan qo ydagcha bo lad: P N J E Bu yerda P -yer tortsh kuch; N -bog lansh reaksyas; E -yernng o z o q atrofda teks aylansh natjasda hosl bo ladgan markazdan qochma nersya kch. kuchnng modul qo ydagcha teng: J E Bu yerda 4 36 rad sek J E mmk E -yernng aylansh burchak tezlg. Jsmnng srtga ko rsatadgan bosm kuch G N ya n G P J E fodalanad. Yernng tortsh kuch F blan ko chrma nersya kuch J E larn teng ta sr etuvch G kuch jsmnng og rlk kuchn fodalayd. Markazdan qochma nersya kuchnng modul og rlk kuchnng modulga nsbatan juda kchk. Ular modullarnng nsbatn topamz: J E mmk E OM E RE cos cos G mg g g bu yerda R-yer sharnng radus, -M nuqtan anqlovch tenglk. J E nsbat ekvatorda eng katta qymatga ega bo lad, ya n G, R 637km, g 9.78m / s, J E / G. 346 yok J E / G / 9. Demak, og rlk kuchnng modul tortsh kuch P nng moduldan kchk mqdorga farq qlad va vertkal blan P kuch juda kchk burchak tashkl qlad. Og rlk kuch qutbda eng katta, ekvatorda eng kchk qymatga ega bo lad. P tortsh kuch qutbda eng katta mqdorga ega; J E -ko chrma nersya kuchnng modul nolga teng. Erkn tushsh tezlansh ekvatorda 983 sm/s, qutbda 978sm/s ga teng Erkn tushuvch jsmnng shmolga og sh. Berlgan balandlkdan yer srtga erkn tushayotgan moddy nuqtanng yerga mahkamlangan koordnatalar sstemasga nsbatan qaraymz. Bu koordnatalar sstemasnng boshn nuqtanng boshlang ch holat M blan btta vertkalga E J

208 joylashtramz (68-shakl). Z o qn yer markazdan chquvch vertkal bo ylab yuqorga yo naltramz, X o qn merdan bo ylab janubga yo naltramz, Y o qn XOZ merdan tekslgga perpendkulyar qlb, sharqqa yo naltramz. U holda moddy nuqtanng nsby harakat uchun boshlang ch shartlar qo ydagcha bo lad: t ; ; y ; z H; ; y ; z. gar muhtnng qarshlg hsobga olnmasa, nuqtaga faqat Yernng torysh kuch P ta sr qlad. Bu holda nsby harakat dnamkasnng asosy tenglamas (5.5.6) qo ydag ko rnshda bo lad: mwz P J E J K (5.5.6) Bu holda ko chrma harakat teks aylanma harakatdan borat. Yernng tortsh kuch P blan J E markazdan qochma nersya kuchlarnng teng ta sr etuvchs jsmnng G og rlk kuchga teng. U holda (5.7.) tenglama qo ydag ko rnshga kelad: mwr G J K (5.7.3) Korols nersya tezlansh WK ( E R ) g arbga qarab yo nalgan bo lb, E va R yotgan merdan tekslgga perpendkulyar bo lad. Korols nersya kuch esa shu tekslkka perpendkulyar bo lb, sharqa yo nalad, ya n u o qn musbat yo nalsh blan br l yo nalgan bo lad. Bu kachnng modul J K me R cos ga teng. -M nuqta joylashgan kenglk. Nuqtanng harakat vaqtda R -nsby tezlknng Z vertkaldan og sh juda kchk deb, (5.7.3) tenglaman koordnata o qlarga proyeksyalaymz: mx ; my J K m E R cos; mz G mg. (5.7.4) Brnch tenglamadan: (5.7.4) boshlang ch shartlardan: С С. Nuqtanng X o q bo ylab, harakat tenglamas X (5.7.5) bo lad. Demak, nuqta faqat ZOY tekslgda harakat qlar ekan Uchnch tenglaman ntegrallaym Z g; gt Z gt C3, Z C3t C4. Boshlang ch shartlardan: C3, C4 H. Moddy nuqtanng Z o q bo ylab, harakat tenglamas qo ydagcha bo lad: gt Z gt, Z H. (5.7.6) Nuqtanng R nsby tezlgnng yo nalsh Z vertkaldan juda kchk farq qlgan uchun yetarlcha anqlk blan Z gt R Z deb olsh mumkn. Natjada (5.7.4) tenglamalarnng kknchsn quydag ko rnshda yozsh mumkn. my m gt cos E 8

209 Bu tenglaman ntegrallab, quydagn hosl qlamz: 3 Y E gt cos C5; Y E gt cos C5t C6 3. Berlgan boshlang ch shartlardan ntegrallash o zgarmaslarn topamz: С 5 С6. Natjada nuqtanng Y o q bo ylab harakat tenglamasn topamz, ya n 3 Y E gt cos; Y E gt cos 3. (5.7.7) Nuqta yerda kelb tushganda Z deb, (5.7.6) tenglamadan unng tushsh vaqtn topamz: gt H H, t. g Bun (5.7.7) ga qo yb, Y ma n topamz, ya n 3 8H cos H cos Yma E g H 3 E. (5.7.8) 3 g 3 g (5.7.8) formula yordamda nuqtanng tushsh balandlg va kenglgn blgan holda unng sharqqa maksmal og shn topsh mumkn. Nazorat savollar.. Inersya va nonersal sanoq sstemalar deb qanday sstemalarga aytlad?. Nuqtanng nsby harakat deb nmaga aytlad? 3. Nsby harakat turlar haqda nmalarn blasz? 4. Dalamber prnsp qanday ta`rflanad? 5. Korols teoremas nma deyd? 6. Inersya kuchlarnng turlarn ta`rflang 7. Nsby muvozanat turlar haqda nmalarn blasz? 8. Erkn tushuvch jsmnng shmolga og`shn tushuntrb berng. XULOS Moddy nuqtanng nsby harakat haqdag tushuncha meankanng asosy deyalarga asoslangan. Inersal sanoq sstemasga nsbatan muntazam lgarlanma va to`g`r chzql harakat etuvch har qanday sanoq sstemas ham nersal bo`lad. 9

210 Sanoq sstemas muvozanat holatda yok muntazam to`g`r chzql lgarlanma harakatda ekanlgn tajrbalar orqal anqlab bo`lmayd (Galley-Nyutonnng nsbylk prnsp ). Bo`shlqda erkn tushayotgan har qanday og`r jsm albatta vertkaldan og`b ketad. Klassk meankanng brnch va kknch qonunlar faqat nersal sanoq sstemalarda harakat etuvch jsmlar uchun o`rnl bo`lad.

211 7- mavzu Meank sstema dnamkasga krsh.meank sstema harakatnng dfferensyal tenglamalar... Mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Mavzu rejas Ma ruza (aborotl dars) 3. Meank sstema.meank sstemaga ta sr etuvch kuchlarnng tavsf. 4. Meank sstema harakatnng dfferensyal tenglamalar. O`quv mashg`ulotnng maqsad 5. Bog lanshdag meank sstema harakatnng dfferensyal tenglamalar. Meank sstema dnamkasnng asosy tushunchalar va sstema harakatnng dfferensyal tenglamalar haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Meank sstema dnamkas haqda dastlabk ma lumotlar bersh. Meank sstema dnamkasnng asosy tushunchalar va sstema harakatnng dfferensyal tenglamalar haqda tushunch bersh. Meank sstema harakatnng Meank sstema harakatnng dfferensyal tenglamalarn keltrb dfferensyal tenglamalar haqda chqarsh va un mustahkamlash. tasavvurga ega va ularn eslab qolad. Bog lanshdag meank sstema haqda tushuncha bersh. Bog lanshdag meank sstema dnamkasnng asosy tushunchalar va vazfalarn blad. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash

212 .. Meank sstema dnamkasnga krsh. Meank sstema harakatnng dfferensyal tenglamalar mavzusnng tenologk artas. Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. 7-Ma ruza Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar.

213 Meank sstema dnamkasga krsh. Meank sstema harakatnng dfferensyal tenglamalar. Reja:. Meank sstema.meank sstemaga ta sr etuvch kuchlarnng tavsf.. Meank sstema harakatnng dfferensyal tenglamalar. 3. Bog lanshdag meank sstema harakatnng dfferensyal tenglamalar. dabyotlar: [],7-4 sah, [5], sah. Tayanch boralar: Meank sstema, absolyut qattq jsm, bog lanshlar, golonom sstema, sstemanng erknlk darajas, asosy dnamk mqdorlar, chk va tashq kuchlar. Belglar: MS-muommol savol, MV- muommol vazyat, MT- muommol topshrq, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:.meank sstema deb nmaga aytlad?.ichk va tashq kuchlar deb qanday kuchlarga aytlad? 3.Sstemanng massalar markaz qanday toplad? 4.Sstemanng harakat mqdor nmaga teng? 5.Sstemanng knetk moment deb nmaga aytlad? 6.Sstemanng knetk energyas qanday fodalanad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng. 3

214 sosy tushunchalar Belg Meank sstema. bsolyut qattq jsm. 3 Ichk va tashq kuchlar. 4 Bog lanshlar va ularnng turlar. 5 Golonom va nogolonom meank sstemalar. 6 Sstemanng erknlk darajas. 7 Sstemanng harakat mqdor. 8 Sstemanng knetk moment. 9 Sstemanng knetk energyas. Kyong teoremas. Meank sstema harakatnng dfferensyal tenglamalar. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 4

215 .Meank sstema. Meank sstemaga ta sr etuvch kuchlar. Br-br blan ma lum munosabatda bog`langan hamda har br nuqtasnng harakat boshqa nuqtalarnng holat va harakatga bog`lq bo`lgan moddy nuqtalar to`plam meank sstema deylad. Istalgan mashna yok meanzm meank sstemaga msol bo`la olad, chunk mashna va meanzmlarnng qsmlar br-br blan sharnrlar, sterjenlar, tasmalar yok tshl g`ldraklar vostasda bog`langan bo`lad. Bu holda sstema nuqtalarga bog`lanshlar orqal berladgan taranglk kuchlar yok o`zaro bosm kuchlar ta sr etad. gar meank ssteman tashkl etuvch nuqtalar orasdag masofalar domo o`zgarmasdan qolsa, bunday meank sstema o`zgarmas meank sstema deylad. Masalan, absolyut qattq jsmn o`zgarmas meank sstema nuqtalarnng to`plamdan borat deb qarash mumkn. gar meank sstemanng barcha nuqtalar erkn bo`lsa, u holda ssteman tashkl etuvch nuqtalar orasdag bog`lanshlar mazkur nuqtalarnng o`zaro ta sr kuchdan borat bo`lad. Bunda bz erkn nuqtalardan tashkl topgan meank sstemaga ega bo`lamz. Masalan, Quyosh sstemasn bunday sstemaga msol qlb ko`rsatsh mumkn, chunk Quyosh va planetalar o`zaro butun dunyo tortlsh kuch ta srda bo`lad. gar meank sstema nuqtalarga bog`lanshlar qo`ylgan bo`lsa, sstema bog`lanshdag sstema deylad. Bunday sstemaga msol tarqasda uzunlg o`zgarmas bo`lgan sterjen blan brktrlgan kk moddy nuqtan olsh mumkn. Berlgan meank sstema nuqtalarga ta sr etuvch kuchlar chk va tashq kuchlarga ajratlad. Meank ssteman tashkl etuvch nuqtalarnng o`zaro ta sr kuchlar chk kuchlar deylad. Ichk kuchlar, odatda, F blan belglanad. Meank sstema nuqtalarga bu sstemaga krmaydgan nuqta yok jsmlarnng ta sr kuchlar tashq kuchlar deylad. Tashq kuchlar belglanad. 5 e F blan Masalan, avtomabln meank sstema deb qarasak, dvgatel slndrlarda hosl bo`ladgan gazlarnng porshenga bosm kuchlar, porshennng shatunga,

216 shatunnng trsakl valga ta sr kuchlar va hokazo kuchlar chk kuchlardr; avtomabl og`rlg, avtomabl g`ldraklar blan yer srt orasdag shqalansh kuch, havonng qarshlk kuch va boshqalar tashq kuchlardr. Bog`lanshdag meank sstema nuqtalarga ta sr etuvch kuchlar bog`lansh reaksya kuchlarga va aktv kuchlarga ajratlad. Bu kuchlar o`z navbatda chk va tashq kuchlar bo`lsh mumkn. Ichk kuchlarnng asosy ossalar blan tanshamz.. Dnamkanng uchnch qonunga ko`ra meank sstemanng har qanday kk nuqtas (masalan M va M nuqtalar) mqdor jhatdan teng va br chzq bo`ylab qarama-qarsh tomonlarga yo`nalgan F va F kuchlar blan br-brga ta sr etad (86-rasm). Bu kuchlarnng geometrk yg`nds nolga teng: F F M M h F F Shu sababl N ta nuqtadan tashkl topgan meank sstema uchun quydag munosabat o`rnl bo`lad: R N k F k (9.) demak, sstema nuqtalarga ta sr etuvch chk kuchlarnng geometrk yg`nds (bosh vektor) nolga teng bo`lad. Bundan buyon yg`nd chegarasn tushurb yozamz va k n dan N gacha qymatlarn olad, deb hsoblaymz. (9.) n bror O o`qqa proeksyalasak X, (9.) k ya n chk kuchlarnng tyory o`qdag proeksyalar yg`nds nolga teng bo`lad. 6

217 . F va F kuchlarnng bron O nuqtaga nuqtaga nsbatan momentlarn topamz. 86- rasmdan M o F M F, Bo`lshn ko`ramz, chunk kkala kuchnng yelkas br l bo`lb, moment vektorlar qarama-qarsh yo`nalgan. U holda butun sstema uchun quydagn yoza olamz: Bunda o k M M F, (9.3) o o k M o chk kuchlarnng O markazga nsbatan bosh momentn fodalayd. (9.3) n tyory O o`qqa proeksyalaymz: M F. o k (9.3) va (9.4) lardan ko`ramzk, chk kuchlarnng tyory nuqtaga nsbatan soblangan momentlarnng geometrk yg`nds yok tyory o`qqa nsbatan momentlarnng yg`nds nolga teng bo`lad. (9.) va (9.4) fodalar fazoda tyory vazyatda joylashgan kuchlar sstemasnng muvozanat tenglamalarga o`shasa-da, chk kuchlar muvozanatlashmayd. Chunk ular sstemanng turl nuqtalarga qo`ylganlg tufayl mazkur kuchlar ta srda sstemanng nuqtalar br-brga nsbatan harakatlanad. O`zgarmas meank sstema yok qattq jsm qaralayotganda chk kuchlar muvozanatlashuvch kuchlar sstemasn tashkl etad. 7

218 . Meank sstema harakatnng dfferensal tenglamalar Meank sstema N ta moddy nuqtalardan tashkl topgan bo`lsn. Bu sstemanng tyory M k nuqtasn olb, massasn m k blan, unga ta sr etuvch tashq kuchlar hamda chk kuchlarnng teng ta sr etuvchlarn mos ravshda F, F blan belglaymz (87-rasm). U holda sstema nuqtalar harakatnng e k k dfferensal tenglamalar Nyutonnng kknch qonunga bnoan quydagcha yozlad: z M, y, z k k k k F k r k e F k y e m F F k, N. (9.5) k k k k (9.5) n Dekart koordnata o`qlarga proeksyalab quydag 3N ta tenglamalar sstemasga ega bo`lamz: m m y m k k k z k k k X Y Z e k e k e k X ; k Yk ; k Z k. Bu tenglamalar sstemas meank sstema harakatnng Dekart koordnata o`qlardag dfferensal tenglamalar deylad. Bu tenglamalarnng o`ng tomon umumy holda t vaqtga hamda ssteman tashkl qluvch barcha nuqtalarnng koordnatalarnng vaqt bo`ycha hoslasga bog`lq bo`lad. Bu tenglamalar sstemasnng, umumy holda, meank sstema hatto btta nuqtadan tashkl topganda ham anq yechm toplmagan. Lekn hozrg zamon elektron 8

219 hsoblash mashnalarn qo`llab bu tenglamalarnng taqrby yechmn juda katta anqlk blan topsh mumkn. Ko`pncha (9.6) tenglamalarda qatnashuvch chk kuchlar ham noma lum bo`lad, shu sababl masalan yechsh murakkablashad. 3. Bog`lanshdag meank sstema harakatnng dfferensal tenglamalar gar sstema nuqtalarga bog`lanshlar qo`ylgan bo`lsa, u holda bog`lanshlardan bo`shatsh haqdag aksomaga ko`ra, ta sr etayotgan kuchlar qatorga meank ssteman F k aktv N k bog`lansh reaksya kuchlarn ham qo`shsh kerak. Natjada F k aktv kuchlar va N k reaksya kuchlar ta srdag erkn meank sstema deb qaralad. Bunday sstema harakatnng dfferensal tenglamalar Nyutonnng kknch qonunga asosan quydagcha yozlad: qolad. r c const, ya n sstema harakatlanganda sstemanng massalar markaz tnch holatda Faraz qlaylk, sstemaga ta sr etuvch tashq kuchlarnng bosh vektor noldan farql bo`lb, unng bror o`qdag proeksyas nolga teng bo`lsn: R e X e. kelb chqad. U holda (.4) tenglamalarnng brnchsdan c c const Demak, sstemaga ta sr etuvch tashq kuchlarnng bror o`qdag proeksyalarnng algebrak yg`nds nolga teng bo`lsa, sstema massalar markaz tezlgnng shu o`qdag proeksyas o`zgarmas bo`lad. Xususan, agar boshlang`ch paytda v bo`lsa, sstemanng harakat davomda v c co bo`lad, ya n bu holda sstema massalar markaznng koordnatas c o`zgarmay qolad: c co const. c 9

220 Olngan natjalar sstema massalar markaz harakatnng saqlansh qonunn fodalayd. Sstema massalar markaz harakatnng saqlansh qonunn qo`llashga od br necha msollar keltramz.. Havonng qarshlgn hsobga olmay, gorzontga nsbatan qyalatb v boshlang`ch tezlk blan otlgan to`p o`qnng og`rlk kuch ta srdag harakatn tekshramz. O`q uchb ketayotganda havoda yorlsa, unng bo`laklar turl tomonga uchb ketad, lekn bo`laklarnng brortas yerga borb tushguncha ularnng massalar markaz lgarg harakatn davom ettrad. Bo`lakchalardan brortas yerga tushgandan so`ng, sstemaga ta sr etuvch tashq kuchlarga Yernng reaksya kuch ham qo`shlb, o`q massalar markaznng harakatn o`zgartrad. O`q yorlganda hosl bo`ladgan kuchlar mohyat bo`ycha chk kuchlardan borat bo`lgan uchun ular o`q massalar markaznng harakatn o`zgartra olmayd.. bsolyut sllq gorzontal tekslk ustda turgan odam o`zcha gorzontal yo`nalshda harakat qla olmayd. Chunk odamnng og`rlg va gorzontal sllq tekslknng normal reaksyas tashq kuchlar bo`lb, bu kkala kuch vertkal yo`nalgan sababl ularnng gorzontal o`qdag proeksyalar yg`nds nolga teng. gar odam boshlang`ch paytda tch holatda bo`lsa, massalar markaz harakatnng saqlansh qonunda ko`ra u, o`z gavdasnng massa markazga gorzontal ko`chsh bera olmayd. Masalan, odam o`ng oyog`n oldnga ko`targanda unng chap oyog` orqaga surlad va massalar markaz o`z joyda qolad. Odamnng oyoq kym blan gorzontal tekslk orasda srpanshdag shqalansh mavjud bo`lganda, odam chap oyog`nng orqaga ketshga qarshlk ko`rsatadgan va oldnga yo`nalgan shqalansh kuch ta sr etad. Bunda shqalansh kuch tashq kuch bo`lb, odamnng oldnga harakat qlshga mkon berad. 3. Parovoz, avtomobl va shunga o`shash sstemalarnng gorzontal yo`nalshdag harakatn ham shunday tushuntrsh mumkn. Dvgateldag gaznng porshenga bosm avtomoblga nsbatan chk kuch bo`lganlg tufayl avtomoblnng massalar markazn harakatlantra olmayd. Dvgateldan yetakch

221 g`ldraklarga aylantruvch moment uzatlsh hsobga yetakch g`ldrak aylanad. vtomobl o`ngga harakatlanganda yetakch g`ldraknng tekslkka tegb nuqtas chapga sljshga ntlad. U holda g`ldrakka o`ng tomonga yo`nalgan shqalansh kuch ta sr etad. Bu kuch tashq kuch bo`lb, avtomobl massalar markaznng o`ng tomonga sljshga mkon berad. gar shqalansh kuch bo`lmasa, yok bu kuch yetaklanuvch g`ldraknng qarshlgn yenga olmasa, avtomobl harakatlana olmayd. Bunda yetakch g`ldrak aylansa-da avtomobl joydan qo`zg`almayd. Izoh. Yetaklanuvch g`ldrakka aylantruvch moment ta sr qlmasdan, balk unng o`qga qo`ylgan kuch ta sr qlad. Bu kuch ta srda hamma g`ldraklar va ular blan brga g`ldraknng tekslkka tegb turgan nuqtas ham avtomobl blan brgalkda o`ng tomonga sljyd. Bunda g`ldrakka orqaga yo`nalgan shqalansh kuch ta sr etad. Bu kuch tashq kuch bo`lb, g`ldrak harakatn to`tatshga ntlad.

222 Nazorat savollar. Meank sstema deb nmaga aytlad?. Bog lanshlar nma? Ularnng qanday turlarn blasz? 3. Golonom va nogolonom sstemalar deb nmaga aytlad? 4. Ichk va tashq kuchlar kuchlar ta rfn berng. 5. Sstemanng harakat mqdor nmaga teng? 6. Sstemanng knetk moment nmaga teng? 7. Sstemanng knetk energyas qanday fodalanad? 8. Sstema harakatnng dfferensyal tenglamalar qanday yozlad? Xulosa Meank sstemanng harakat tashq va chk kuchlarga bog lq bo lad. Har qanday chk kuchga qarama-qarsh yo nalgan boshqa kuch mos kelad (mqdor jhatdan o zaro teng). Demak: )Barcha chk kuchlarnng bosh vektor nolga teng. )Barcha chk kuchlarnng tyory markazga va koordnata o qlarga nsbatan bosh momentlar nolga teng bo lad. Sstemanng massalar markaz tushunchas og rlk markazga nsbatan umumyroq tushunchadr. O grlk markaz tushunchas Yernng tortsh kuch maydonda joylashgan meank sstemaga nsbatan o rnldr.

223 8- mavzu Sstema dnamkasnng umumy teoremalar... Mavzunng tenologk model. O quv soat soat Talabalar son: 5 O quv mashg ulot shakl Mavzu rejas Ma ruza (aborotl dars) 6. Sstema harakat mqdornng o zgarsh haqdag teorema. 7. Sstema knetk momentnng o zgarsh haqdag teorema. 8. Sstema knetk energyasnng o zgarsh haqdag teorema. O`quv mashg`ulotnng Meank sstema dnamkasnng umumy teoremalar va unng maqsad nazary hamda amaly ahamyat haqda tushuncha bersh. Pedagagk vazfalar: O quv faolyat natjalar: Sstema harakat mqdornng Sstemanng harakat mqdor haqda va o zgarsh haqda tushunch bersh. unng o zgarsh qonunlar to g rsda yetarlblmga ega. Sstema knetk momentnng Sstemanng knetk moment va unng o zgarsh haqdag teoremaga o zgarsh haqda tushunchaga ega. tushuncha bersh. Sstema knetk energyasnng Sstemanng knetk energyas to rsda o zgarsh haqda tushuncha bersh. Kyonng teoremasn eslab qolad. Knetk energyanng o zgarsh haqdag teorema haqda tushunchaga ega. O qtsh vostar O UM,ma ruza matn,rasmlar,plakatlar,doska O qtsh usullar borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum O qtsh shakllar Frontal,kollektv sh. O qtsh sharot Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Montogng va Og zak savollar,bls-so rov baholash 3

224 .. Sstema dnamkasnng umumy teoremalar mavzusnng tenologk artas. Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng Mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 4

225 8-Ma ruza Sstema dnamkasnng umumy teoremalar. Reja:. Sstema harakat mqdornng o zgarsh haqdag teorema.. Sstema knetk momentnng o zgarsh haqdag teorema. 3. Sstema knetk energyasnng o zgarsh haqdag teorema. dabyotlar: [], 4-46 sah, [5], 35-4 sah, [8], -3 sah. Tayanch boralar: Meank sstema, absolyut qattq jsm, chk va tashq kuchlar, sstemanng harakat mqdor, sstemanng knetk moment, sstemanng knetk energyas. Belglar: MS-muommol savol, MV- muommol vazyat, MT- muommol topshrq, MM- muommol masala Baholash mezon : Har br savol javobga ball Har br qo shmcha fkrga ball Har br javobn to ldrshga ball Mavzun jonlantrsh uchun bls-so rov savollar:.meank sstema deb nmaga aytlad?.ichk va tashq kuchlar qanday kuchlar? 3.Massalar markaz deb qays nuqtaga aytlad? 4.Tashq va chk kuchlarnng bajargan sh qanday toplad? 5.Kyong teoremasn ta rflang? 6.Energya ntegral deb nmaga aytlad? 5

226 Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng. sosy tushunchalar Belg Meank sstema. Ichk va tashq kuchlar. 3 Ichk va tashq kuchlarnng bajargan sh. 4 Sstemanng harakat mqdor. 5 Sstemanng knetk moment. 6 Sstemanng knetk energyas. 7 Sstema harakat mqdornng o zgarsh haqdag teorema. 8 Sstema knetk momentnng o zgarsh haqdag teorema. 9 Sstema knetk energyasnng o zgarsh haqdag teorema. Sstemanng potensyal energyas. Sstemanng to la energyas. Energyanng saqlansh qonun. Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 6

227 8- Ma ruza Meank sstema dnamkasnng umumy teoremalar..sstema harakat mqdornng o`zgarsh haqdag teorema. tyory Meank sstema N ta nuqtadan tashkl topgan bo`lsn. Sstemanng M k nuqtasga ta sr etuvch tashq kuchlar hamda chk kuchlarnng teng ta sr etuvchlar mos ravshda harakatnng dfferensal tenglamalar quydagcha yozlad: d dt F, F bo`lsn. U holda sstema nuqtalar e k k e m v F F, k N k k k k, (.4) tenglamalar sstemasn qo`shamz: d dt e mkvk Fk 7 F, Bunda m k v k K - sstemanng harakat mqdor; F e e k R - tashq kuchlarnng bosh vektor. Ichk kuchlarnng ossasga ko`ra F k Natjada (.5) n quydagcha yozsh mumkn: dk dt (.6) tenglama sstema harakat mqdornng o`zgarsh haqdag teoreman fodalayd: sstema harakat mqdornng vaqt bo`ycha brnch oslas e R. sstemaga ta sr etuvch tashq kuchlarnnng bosh vektorga teng. (.6) n Dekart koordnata o`qlarga proeksyalab,sstema harakat mqdornng o`zgarsh haqdag teoreman skalyar ko`rnshda yozamz: dk dt dk dt dk dt y z R R R e e z e y k (.7) Ya n, sstema harakat mqdornng bror o`qdag proeksyasdan vaqt bo`ycha olngan hosla, sstemaga ta sr etuvch kuchlar bosh vektornng mazkur o`qdag proeksyasga teng.

228 Sstema harakat mqdornng chekl vaqt chda o`zgarshn anqlash uchun (.6) n dt ga ko`paytrb, ntegrallaymz: K K R e dt yok (.8) K K S e. Bunda K blan t boshlang`ch paytdag, K blan tyory t vaqtdag sstemanng harakat mqdor belglangan: etuvch tashq kuchlar bosh vektornng mpuls. S e t e R dt t vaqt chda sstemaga ta sr (.8) foda chekl vaqt chda sstema harakat mqdornng o`zgarsh haqda g teoreman fodalayd: sstema harakat mqdornng chekl vaqt chda o`zgarsh sstemaga ta sr etuvch tashq kuchlar bosh vektornng shu vaqt chdag mpulsga teng. (.8) n Dekart koordnata o`qlarga proeksyalab quydagn yozamz: K K K y z K K K y z S S S e e z,,, e y (.9) Sstema harakat mqdornnng o`zgarsh haqdag teorema blan sstema massalar markaznng harakat haqdag teoremalar orasdag munosabatn anqlaymz. Bunng uchun (.6) n (.6) ga qo`yamz: yok d dt e Mv c R e Mw c R Bu munosabat sstema massalar markaz harakat haqdag teoreman fodalash bzga ma lum. Shunday qlb, umuman olganda, sstema massalar markaznng harakat haqdag teorema va sstema harakat mqdornng o`zgarsh haqdag teorema btta teoremanng kk l ko`rnsh fodalayd. Qattq jsmnng harakatn 8

229 o`rganshda bu teoremalarnng stalgan brortasdan foydalansh mumkn. Bunda ko`pncha, massalar markaznng harakat haqdag teoremadan foydalanlad. Broq, tutash muht (suyuqlk yok gazlar) uchun butun sstemanng massalar markaz tushunchas amalda o`z ma nosn yuqotad. Shu sababl, bu holda masalalar yechganda sstema harakat mqdornng o`zgarsh haqdag teoremadan foydalansh maqsadga muvofq bo`lad. Sstema harakat mqdornng o`zgarsh haqdag teoremadan zarba nazaryasda, raketalar harakatn o`rganshda va boshqa br qator amaly masalalarn yechshda ham samaral foydalansh mumkn. tyory.sstema knetk momentnng o`zgarsh haqdag teorema Meank sstema N ta nuqtadan tashkl topgan bo`lsn. Sstemanng bror M k nuqtasn olb, unga ta sr etuvch tashq kuchlar hamda chk kuchlar e teng ta sr etuvchlarn mos ravshda F, F blan belglaymz (-rasm). Moddy nuqta uchun chqarlgan harakat k k mqdor momentnng o`zgarsh haqdag teoreman meank sstemanng har br nuqtas uchun qo`llab quydagga ega bo`lamz: Bu yerda l ok k dl dt k ok M o e F M F, k,,... N, k o k r m v nuqta harakat mqdornng O markazga nsbatan moment. Bu fodalarn qo`shamz: yok d dt Ichk kuchlarnng ossasga ko`ra e lok M o F M o Fk. k M F. o k U holda (.34) ga muvofq (.47) n ushbu ko`rnshda yozamz: dl dt o e M F. o k dl dt o M e o, 9

230 e e Bu yerda o M o F rk k M F sstema nuqtalarga ta sr etuvch tashq kuchlarnntg O markazga nsbatan bosh moment. O 3 e k (.48) foda sstema knetk momentnng o`zgarsh haqdag teoreman fodalayd: meank sstemanng bror qo`zg`almas markazga nsbatan knetk momentnng vaqt bo`ycha oslas sstema nuqtalarga ta sr etuvch tashq kuchlarnng shu markazga nsbatan bosh momentga teng. (.48) fodanng har kkala tomonn, y, z o`qlarga proeksyalaymz: dl dt dl y dt dl dt z M M M y z F F F e k e k e k,,. (.49) Demak, meank sstemanng bror qo`zg`almas o`qqa nsbatan knetk momentdan vaqt bo`ycha olngan hosla sstema nuqtalarga ta sr etuvch tashq kuchlanng shu o`qqa nsbatan momentlarnng yg`ndsga teng. Sstema knetk momentnng o`zgarsh haqdag teoremadan qattq jsmnng aylanma harakatn o`rganshda, groskoplar nazaryasda keng foydalanlad. Bu teoremanng afzallg shundan boratk, sstema harakat mqdornng o`zgarshda od teoremadagdek, oldndan noma lum bo`lgan qatnashmayd. 3.Sstema knetk energyasnng o`zgarsh haqdag teorema chk kuchlar Meank sstema N ta moddy nuqtalardan tashkl topgan bo`lsn. Sstemanng har br nuqtasga aktv kuchlardan tashqar, bog`lansh reaksya kuchlarn ham qo`yamz va sstema nuqtalarga qo`ylgan kuchlarn chk va tashq kuchlardan borat kk guruhga ajratamz. Sstemanng M k nuqtasga ta sr etayotgan tashq kuchlar hamda chk kuchlarnng teng ta sr etuvchlar mos o z e M r k F k M e F k m v k k y

231 ravshda e F, F bo`lsn. U holda sstemanng har br nuqtasn vaf e k k F kuchlar k k ta srdag erkn nuqta deb qarash mumkn. Bnobarn, (.) ga asosan sstemanng har br nuqtas knetk energyasnng o`zgarsh haqdag teoremanng dfferensall fodas quydagcha yozlad: Bunda, e d k va mkv d k d e k d k, k,,..., N, (.7) d k mos ravshda, sstema nuqtalarga ta sr etuvch tashq va chk kuchlarnng elementar shlar. (.7) fodan hadlab qo`shamz: yok d mkv dt k d e k e d k d k, d k Bunda m k v T k sstemanng knetk energyas. (.8) tenglama sstema knetk energyasnng o`zgarsh haqdag teoremanng dfferensall fodasd: sstema knetk energyasnng dfferensal sstemaga ta sr etuvch tashq va chk kuchlar elementar shlarnng yg`ndsga teng. (.8) n ntegrallab sstema nuqtalarnng chekl ko`chshlarda knetk energyasnng o`zgarshga od teoremaga ega bo`lamz. T T k (.9) e 3 k Bunda: T va T mos ravshda sstemanng sstemanng boshlang`ch va stalgan paytdag knetk energyalar; kuchlarnng sh; e k sstema nuqtalarga ta sr etuvch tashq k chk kuchlatnng chekl qo`shshdag shlar. (.9) munosabat sstema knetk energyasnng o`zgarsh haqdag teoreman fodalayd: sstemanng holatdan kknch holatga ko`chshda knetk energyasnng o`zgarsh sstema nuqtalarga ta sr etuvch barcha tashq va chk kuchlarnng mos ko`chshlardag shlarnng yg`ndsga teng. (.8) va (.9) dan ko`ramzk sstema dnamkasnng boshqa umumy teoremalarda farql ravshda, sstema knetk energyasnng o`zgarsh haqdag teoremada chk kuchlar ham qatnashad.

232 O`zgarmas meank sstema uchun (yok absolyut qattq jsm uchun) chk kuchlar bajargan shlarnng yg`nds nolga teng bo`lad. Bu holda (.9) quydagcha yozlad e T T. (.) k Ya n o`zgarmas meank sstema (yok absolyut qattq jsm) br holatdan kknch holatga ko`chshda knetk energyasnng o`zgarsh mazkur sstema (yok qattq jsm) nuqtalarga ta sr etuvch barcha tashq kuchlarnng mos ko`chshlardag shlarnng yg`ndsga teng. gar meank ssteman tashkl qluvch nuqtalar qo`zg`almas sllq srtlar ustda harakatlansa, bog`lansh reaksya kuchlar mazkur srtlarga o`tkazlgan normal bo`ycha yo`nalgan uchun sstema nuqtalarnng har qanday ko`chshda bog`lansh reaksya kuchlarnng sh nolga teng bo`lad va (.9) da bog`lansh reaksya kuchlar qatnashmayd. 3

233 Nazorat savollar.. Stemanng harakat mqdor deb nmaga aytlad?. Sstemanng knetk moment deb nmaga aytlad? 3. Sstemanng knetk energyas nmaga teng? 4. Tashq va chk kuchlarnng bajargan sh nmaga teng? 5. Sstema harakat mqdornng o`zgarsh haqdag teorema nma deyd? 6. Sstema knetk momentnng o`zgarsh haqdag teoreman ta`rflang? 7. Sstema knetk energyasnng o`zgarsh haqdag teorema qanday ta`rflanad? Xulosa Meank sstema dnamkasnng umumy teoremalar harakat tenglamalarnng bevosta natjas bo`lb, sstemaga ta`sr etuvch kuchlar blan dnamk mqdorlar orasdag bog`lanshn anqlab berad. Sstema dnamkasnng umumy teoremalardan ba`z hollarda harakatnng brnch ntegrallarn anqlash mumkn. Ushbu negrallar sstemanng harakatn anqlashda yetakch rol o`ynayd, va demak, amaly masalalarn yechshda katta ahamyetga ega. 33

234 9- mavzu Massalar geometryas. Inersya momentlarnng umumy formulalar... Mavzunng tenologk model. O quv soat soat O quv mashg ulot shakl Mavzu rejas O`quv mashg`ulotnng maqsad Pedagagk vazfalar: Sstemanng massalar markaz haqda tushuncha bersh. Sstemanng nersya momentlar haqda tushuncha bersh. Gyugens-Shtayner teoremasn sbotlab bersh. O qtsh vostar O qtsh usullar O qtsh shakllar O qtsh sharot Montogng va baholash Talabalar son: 5 ta Ma ruza (aborotl dars).sstemanng massalar markaz va unng koordnatalar.. Sstemanng nersya momentlar.inersya momentlarnng umumy formulalar. 3.Jsmnng parallel o`qlarga nsbatan nersya momentlarn hsoblash. Gyugens-Shtayner teoremas. bsolyut qattq jsm dnamkasda katta ahamyatga ega bo`lgan massalar geometryas haqda ma`lumot bersh. O quv faolyat natjalar: Sstemanng massalar markaz va unng koordnatalarn topsh haqda tushunchaga ega. Sstemanng nersya momentlar haqda yash blmga ega. Gyugens-Shtayner teoremasn eslab qolad. O UM,ma ruza matn,mokpyuter saydlar,doska borot ma ruza,bls-so rov,pnbord tenkas, aqly hujum Frontal,kollektv sh. Tenk vostalar blan tamnlangan,guruhda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar, bls-so rov 34

235 .. Massalar geometryas. Inersya momentlarnng umumy formulalar mavzusnng tenologk artas. Ish bosqchlar - Mavzuga krsh bosqch (mn) - bosqch sosy bo lm. (5mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot mavzus, savollarn va o`quv faolyat natjalarn aytad...baholash me zonlar (-lova).3.pnbord usulda mavzu bo`ycha ma lum bo`lgan tushunchalarn faollashtrad. Pnbord usulda natjasga ko`ra tnglovchlarnng nmalarda adashshlar, ato qlshlar mumknlgnng tashzn amalga oshrad (-lova)..4.mavzun jonlashtrsh uchun savollar berad. (3-lova).. Savol yuzasdan mn ma ruza qlad.. Ma ruza rejasnng hamma savollar bo`ycha tushuncha berad (4-lova)..3 Ma ruzada berlgan savollar yuzasdan umumlashtruvch ulosa berad. (5-lva)..4 Tayanch boralarga qaytlad..5 Talabalar shtrokda ular yana br bor takrorlanad. Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Tnglaydlar. Tnglaydlar. UMK ga qarydlar UMK ga qarydlar Har br tayanch tushuncha va boralarn muhokama qladlar 3- bosqch Yakun lovch (mn) 3. Mashg`ulot bo`ycha yakunlovch ulosalar qlad. Mavzu bo`ycha olngan blmlarn qayerda shlatsh mumknlg ma lum qlad. 3. Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar ro`yatn berad. 3.3 Keyng mavzu bo`ycha tayyorlanb kelsh uchun savollar berad. Savollar beradlar UMKga qaraydlar. UMK ga qarydlar Vazfalarn yozb oladlar. 9-Ma ruza 35

236 Massalar geometryas. Inersya momentlarnng ummy formulalar. Reja: 4. Sstemanng massalar markaz va unng umumy formulalar. 5. Sstemanng nersya momentlar. Inersya momentlarnng umumy formulalar. 6. Jsmnng parallel o`qlarga nsbatan nersya momemtlarn hsoblash. Gyugens-Shtayner teoremas. dabyotlar: [], 8-47 sah, [5], sah. Tayanch boralar: Meank sstema, massalar markaz, nersya momentlar, brnch va kknch darajal nersya momentlar, o`qqa nsbatan nersya moment. Belglar: MS-muommol savol, MT- muommol topshrq, Baholash mezon : MV- muommol vazyat, MM- muommol masala Har br savol javobga Har br qo shmcha fkrga Har br javobn to`ldrshga- ball ball ball Mavzun jonlantrsh uchun bls- so`rov savollar.meank sstema nma?.bsolyut qattq jsm deb nmaga aytlad? 3.Massalar markaz qanday anqlanad? 4.Sstemanng nersya momentlar deb nmaga aytlad? 5.O qqa nsbatan nersya moment qanday anqlanad? Insert semas bo ycha mavzun o qb chqng va jadvaln to ldrng 36

237 sosy tushunchalar Belg Meank sstema. bsolyut qattq jsm. 3 Sstemanng nersya momentlar. 4 Brnch darajal momentlar. 5 Ikknch darajal momentlar. 6 O`qqa nsbatan nersya moment. 7 Qattq jsmnng nersya moment. 8 Gyugens-Shteyner teoremas. 9 Insert jadval qodas. V - avval olgan blmga to g r kelad. + - Yang ma lumot. - olgan blmga qarama-qarsh.? tushunarsz, 37

238 Mavzu: Massalar geometryas Tayanch boralar: massa, readus-vektor, absolyut qattq jsm, statk moment, nersya moment, nersya radus, nersya tenzor vanertsya ellpod. Reja. Massalar taqsmot;. Brnch darajal momentlar; 3. Ikknch darajal momentlar; 4. O qqa nsbatan nersya moment; 5. Parallel to g r chzqlar dastasga nsbatan nersya moment; 6. Br nuqtadan chquvch to g r chzqlar dastasga nsbatan nersya mopment; 7. Inersya tenzor. Inersya ellpsod.. Massalar taqsmot. bsolyut qattq jsm dnamkasda massalar taqsmot muhum ahamyatga ega. Massalar taqsmotn arakterlovch kattalkka moment deylad. Moment sstema nuqtalar massalarn ular koordnatalarnng br jnsl funksyalar ko paytmalar yg ndsn fodalayd, ya n m y z ko rnshda bo lad. n ga moment darajas deylad. gar sstema massas uzluksz taqsmlangan va jsm zchlg koordnatalarnng br jnsl funksyas bo lsa, moment hajm ntegral ko rnshda fodalanad, ya n ( V ) (, y, z) 38 y z ddydz gar jsm br jnsl bo lsa ya n jsmnng zchlg koordnatalardan bog lq bo lmasa, moment quydag ko rnshda fodalanad: (V ) y z ddydz. Bu hplda moment zchlknng faqat koordnatalarnng funksyasdan hajm bo ycha olngan ntegralnng ko paytmasn fodalayd. Bu ntegral geometrk mqdor bo lgan uchun n-darajal geometrk moment deylad. Shunday qlb br jsnsl bolgan holda moment zchlk blan geometrk moment ko paytmasga teng. Tenkada odatda brnch va kknch darajal momentlar kuzatlad, yuqor darajal momentlar mustahkamlk nazaryasda ba zan qo lanlad.. Brnch darajal momentlar. m r ( r m massalar zarrachanng radus vektor) ko rnshda fodalangan mqdorlarga statk momentlar yok brnch darajal momrntlar deylad.bu fodaga sstemanng O markazga nsbatan statk moment deylad. Bz ma lumk

239 m r Mr bu yerda M butun sstemanng massas, r c -massalar markaznng radusvektor. gar O markaz massalar markaz blan ustma-ust tushsa, m r statk moment nolga teng bo lad. Statk momentn quydag ko rnshda yozamz: m r m m y j m z k. m m y, c, m z mqdorlar mos ravshda yz, z, y tekslklarga nsbatan statk momentn fodalayd. m M, c m y Myc, m z Mz, c bu yerda c, yc, zc lar massalar markaznng koordnatalar. Statk momentnng o lchav massa o lchov blan uzluksz o lchovl ko paytmasga teng. gar O markaz sstema massalar markaz blan ustma ust tushsa, koordnatalar tekslklarga nsbatan statk momentlar nolga teng bo lad. 3. Ikknch darajal momentlar. Quydag ko rnshdag mqdorlarga kknch darajal momentlar deylad: J J J yz yz m ;, J z m y, J y m z m y z, J m z, J m y ; z m ( y z ), J yy m ( z ), J zz m ( y ) ; J m ( y z y ) Ulardan brnch uchtas mos ravshda yz, z, y tekslklarga nsbatan nersya momentlar, kknch uchtas markazdan qochma momentlar yok nersyalar ko paytmasn, uchnch uchtas mos ravshda,y,z o qlarga nsbatan nersya momentlarn va orgs O nuqtaga nsbatan nersya momentn fodalayd. )Ikknch darajal momentnng o lchov massa o lchov blan uzunlk o lchov ko paytmasga, teng. Bu mqdornng o lchov brlg: SI sstemasda kg m tenk o lchov brlklar sstemasda kg m sek. ) Uchta o zaro perpendkulyar tekslklarga nsbatan nersya momentlar yg nds markazga nsbatan nersya momenttga teng, ya n J yz J J J. z 3)Uchta o zaro perpendkular o qlarga nsbatan nersya momentlar yg nds markazga nsbatan nersya momentnng kklanganga teng, ya n J y J yy J zz J. m r, 39

240 4)Ikkta o qqa nsbatan nersya momentlar yg nds uchunchsdan hamma vaqt katta, ya n Haqqatan ham m J J J, J J J, yy zz m ( zz yy ( y z ) m ( z ) m ( y ) m z m ( J J zz J yy, bundan m ( y z ) z ) y ) va h.k. 4. O qqa nsbatan nersya moment. Sstemanng (qattq jsmnng ) o qqa nsbatan masalan, o qga nsbatan nersya moment deb sstema nuqtalar masalarnng shu nuqtalardan aylansh o qgacha bo lgan masofalar kvadratlar ko paytmalar yg ndsga, ya n m h ga aytlad. gar stema tutash to ldrlgan qattq jsmdan borat bo lsa, jsm elementar zarrajasnng massas dv ga teng bo lad ( -jsm zchlg, dv- elementar hajm ) shunng uchun o qga nsbatan nersya moment jsmnng butun hajm bo ycha olngan hajm ntegral orqal fodalanad,ya n J h dv ( V ) (, y, z)( y z ) ddydz gar jsm br jnsl bo lsa, ( =const) yuqordag formula quydag ko rnshga kelad: J h dv, bu yerda h dv hajmnng geometrk nersya moment. v gar jsm qalnlg b ga teng bo lgan yupqa plastnkadan borat bo lsa, dv bd (bu yerda d plastnkanng elementar yuzas) bo lb, plastnkanng o qga nsbatan nersy moment quydagcha toplad. J v h dl, bu yerda b -srtnng zchlg. gar jsm ko ndalang kesm yuzas bo lgan ngchka sterjndan borat bo lsn. U holda elementar hajmn dv dt ko rnshda fodalash mumkn, dl- elementar uzunlk. Bu holda sterjnnng o qga nsbatat nersya moment quydagcha hsoblanad: J b v v h d, bu yerda - chzql zchlk. Sstemanng bror o qqa nsbatan nersya momentn quydagcha kornshda ham tasvrlash mumkn: 4

241 J m h M, bu yerda M- butun sstema massas, -mqdorga sstemanng o qga nsbatan nersya radus deylad. - massas butun sstema massasga teng bo lgan shunday nuqtagacha bo lgan, masofa bo lb, bu nuqtanng o qga nsbatan nersya moment butun sstemanng o qga nsbatan nersya momentga teng. Yuqorda tenglkdan: M. Ba z oddy jsmlarnng nersya momentlarn qaraymz: ) Br jnsl ngchka alqa. Xalqanng massas M va radus R bo lsn. Xalqa markazdan alqa tekslgga perpendkulyar C o qn o tkazamz (3-rasm). U holda alqanng tyory nuqtas Uchun h R va J m h m R MR (4) Xudd shunday formulan yupqa dekartl slndrk qobq uhun ham hosl qlsh mumkn ) Br jnsl doravy plastnka. Plastnkang massas M, radus R bo lsn. Plastnkan ngchka konsentrk alqalarga ajratamz (-rasm). En r va radus r M bo lgan halqanng yuz r r va massas r r bo lad. U holda (4) R formulaga asosan bu alqanng plastnka markazdan unng tekslgga perpendkular bo lb o tuvch C o qqa nsbatan nersya moment ( M r ) r r R ga teng. J r C R C r R -rasm -rasm Bu mqdorlarn yg b r n da lmtga o tsak plastnkanng nersuya moment uchun quydag frmulan hosl qlamz: R M 3 M J l r dr R R R 4 4 4

242 MR va demak J l (5) Xudd shunday formulan massas M va radus R bo lgan br jnsl slndr uchun ham hosl qlsh mumkn. C h h 3. Br jnsl ngchka sterjn. Sterjen massas M, uzunlg l bo lsn (-rasm). Sterjnnng unng br uchdan unga perpendkular bo lb o tuvch o qqa nsbatan momentn hsoblaymz. Sterjnnng uzunlkdag bo lakchasnng massas M h ga teng. h M J mh yok J h h l bu tenglkda h n da lmtga o tb quydag formulan hosl qlamz l 3 M M l J l h dh (6) l l 3 5. Parallel to g r chzqlar dastasga nsbatan nersya moment. Gyugens (Shteyner) teoremas O qqa nsbatan nersuya momentnng ta rfdan ko rnb turbdk, o qqa nsbatan nersya moment o qnng y y d h h C, y, z ) 4-rasm ( M 3-rasm (, y, z ) z z holatga bog lq, ta n o qnng holat o zgarsh blan nersya momentnng qymat o zgard. Shu maqsad blan parallel to g r chzqlar dastasga nsbatan nersya momentlar orasdag bog lanshn topamz. O qlar o zaro parallel bo lgan Cyz va bosh sstema massalar markazda bo lgan C yz koordnatalar sstemalarn plamz (4-rasm). Sstemanng o qga nsbatan nersya momentn olamz. 4 l J m h m ( y z ). () ш

243 O Sstema massalar markaznng Oyz koordnatalar sstemasga nsbatan koordnatalar c, yc, zc bo lsn. U holda ' y y y ' z z zc ' ' ' bu yerda, y, z lar M nuqtanng C yz koordnatalar sstemasga nsbatan nersya moment. Bularn () tenglkka qo yamz: J ' ' ' m ( y yc ) ( z zc ) m ( y z ) m ( yc zc ) m ( y yc ш c z z ) () tenglknng o ng tomondag brnch qo shluvch sstemanng o qqa nsbatan nersya momentn fodalayd, ya n Ikknch qo shluvchn qaraymz: m J m ( y z ) ш. ( yс zс ) ( yc zc ) m Md bu yerda M- butun sstema massas, d- va o qlar orasdag masofa. End uchnch qo shluvchn qaraymz. bu yerda Shunday qlb ' ' m ( y y z z ) y с c с c c m y z c m y m z J m z J Md. (3) () tenglk Gyugens (Shteyner) teremasn fodalayd. Teorema. Sstemanng bror o qqa nsbatan nersya moment shu o qqa parallel va sstema massalar markazdan o tuvch o qqa nsbatan nersya moment blan butun sstema massasnng o qlar orasdag masofa kvadratga ko paytmas yg ndsga teng. gar va o qlarga nsbatan nersya raduslarn krtsak, u holda d (4) (3) yok (4) tenglklardan shunday ulosa kelb chqadk, parallel to g r chzqlar dastasga nsbatan nersya momentlar orasda sstema massalar markazdan o tuvch o qqa nsbatan nersya moment eng kchk bo lar ekan. Gyugens teoremasdan foydalanb, parallel to g r chzqlar dastasnng brorta o qga nsbatan nersya moment ma lum bo lsa, dastanng tyory o qga nsbatan nersya momentn topsh mumkn. Faraz qlaylk dastanng o qga nsbatan nersya moment J bo lsn, u holda Gyugens teoremasga asosan: J =J c +Md, (5) bu yerda J c - o qqa parallel va sstema markazdan o tuvch o qqa nsbatan nersya moment, d massalar markazdan o tuvch o q blan o q orasdag ' c 43

244 masofa. o qqa parallel o qqa nsbatan nersya moment uchun Gyugens teoremasn yzamz: J =J c +M d (6) (5) va (6) tenglklardan quydag munosabatn hosl qlamz: J =J c +M d d (7) Gyugens teoremas nafaqat o qqa nsbatan nersya moment balk barcha kknch darajal momentlar o rnl bo lad, ya n m m Mc va h.k. m y z m y z Myc zc va h.k. m ( y z ) m ( y z ) Mc yc zc ). 6. Br nuqtadan chquvch to g r chzqlar dastasga nsbatan nersya moment Sstemanng O nuqtadan o tuvch l o qqa nsbatan nersya momentn topamz. l o qnng Oyz koordnatalar sstemas o qlarga nsbatan yo nalsh unng yo naltruvch kosnuslar,, lar blan anqlanad. lbatta sstemanng l o qga nsbatan nersya moment yo naltruvchkosnuslarnng funksyas bo lad. O qqa nsbatan nersya mometnng ta rfga asosan: J l mh bu yerda h -m massal nuqtadan l o qgacha bo lgan masofa. M nuqtanng O nuqtaga nsbatan radus OM r hamda r y j zk. U holda rl y z r cos z o r M, y, z h ( l y 5-rasm bu yerda r va l lar orasda burchak. h r sn bo lgan uchun 44

245 J l m h ш m r sn 45 m r ( r cos ). ш munosabatdan fydalanb quydag munosabatn hosl qlamz: J l ш m ( y z )( ) ( y z ) yok J m ( y z ) ( z ) ( y ) y y z z y l ш End quydag belglashlarn krtamz: J J yy m ( y m ( z z ); ); J J yz yz m ( y ) J y J ; m y z ; m z ; m y U holda nersya moment uchun quydag fodan hosl qlamz J l J J yy J zz J yz J z J y. (8) 7.Inersya tenzor. Inersya ellpsod. (8) tenglkdan O nuqtadan o tuvch tyory o qqa nsbatan nersya momentn topsh uchun oltta J J, J, J, J, J nuqtalarn va o qnng yo naltruvch, yy zz yz z y kosnuslar,, larn blsh yetarl. Bu mqdorlarn quydag smmetrk matrsa ko rnshda yozsh mumkn: J J y J z ( J ) J y J yy J yz (9) J z J zy J zz (J) matrtsaga nersya tenzor deylad. (9) matrtsanng daganal bo ylab joylashgan elementlar o qlarga nsbatn nersya momentlarn fodalayd, qolgan elemetlar nersyalar ko paytmasnng shora blan olngan fodalar. (J) tenzor bror a vektorga ta sr etrsak, proeksyalar a vektor komponentalarnng chozql funksyalar blan b vektorn berad. b vektor a vektornng chzql vektor funksyasn fodalayd. Bu operat sya a vektorn (J) tenzorga ko paytmasn fodalayd va quydagcha yozlad: b a(j ). b vektornng proyeksyalar quydagcha toplad: b b y J J y a a bz J za J zy a y J zzaz. (J) tenzordan foydalanb, (8) formulan quydagcha almashtrsh mumkn. l o qnng l brlk vektorn olamz: l j k; uholda l ( y) ( J J y J z ) ( J y J yy J yz ) j ( J z J zy J zz ) k. l ( J) vektorn l vektorga skalar ko paytramz: J y J zy a y a y J z J zz a z a ; z ;

246 l ( y) l J J y J y ; J yz J zy ; z z Yyy J zz J yz J z J y. () J J bo lgan uchun () foda,, larga nsbatan kvadratk forman fodalayd. l o qn ustda tyory nuqtan olamz, u holda nuqtanng koordnatalar quydagcha bo lad: R, y R, z R, O=R. Bulardan,, larnng qymatlrn (8) fodaga qo yamz va quydag fodan hosl qlamz: J R J J Y J Z J yz Y z J y. () l R n shunday tanlaymzk J l R yok k yy zz k R, () bu yerda k o zgarmas mqdor. U holda J J yy y J zz z J yz yz (3) J z J y k. z y J l yz Demak nuqta geometrk o rn (3) tenglama blan anqlanadgan - 6- tartbl srtn fodalayd. J l musbat rasm anqlangan mqdor va nolga teng emas shunng uchun R chekl va demak (3) srt cheks uzoqlashgan nuqtaga ega emas. Demak bu srt ellpsod bo lad. Bu elepsodga O nuqtaga nsbatan nersya llpsod deylad. k nng har hl qymatlar uchun o shash ellpsodlar hosl bo lad. Shunday qlb jsmnng har br O nuqtasga to la anqlangan btta ellpsod mos kelad. gar O nuqta jsmnng massalar markaz blan ustma-ust tushsa, u holda bu nuqta uchun qurulgann ellpsodga markazy ellpsod deylad. Inersy ellpsodnng bosh o qlarga O nuqta uchun jsmnng bosh nersyas o qlar deylad. z z y R (,y,z) y 46

247 Nazorat savollar.. Sstemanng massalar markaz qanday toplad?. Sstemanng nersya momentlar deb nmaga aytlad? 3. Brnch darajal momentlar deb nmaga aytlad? 4. Ikknch darajal momentlar deb nmaga aytlad? 5. O qqa nsbatan nersya momentlar deb nmaga aytlad? 6. Inersya radus nma? 7. Gyugens-Shteyner teoremasn ta rflang? Xulosa Massalar geometryas absolyut qattq jsm dnamkasda muhm rol o ynayd. Jsm massasnng taqsmlanshn arakterlovch mqdorlarga momentlar deb aytlad. Meankada asosan brnch va kknch darajal momentlar uchrayd, yuqor darajal momentlar boshqa fanlarda uchrayd. O qqa nsbatan nersya moment o qnng joylashgan holatga bog lq, ushbu bog lansh Gyugens-Shteyner teoremas yordamda anqlanad. Gyugens-Shteyner teoremas barcha kknch darajal momentlarga tadbq etlsh mumkn. sosy adabyotlar. Н.Н.Бухгольц. Основной курс теоретической механики. М.: «Наука», I.II. части, 976 г.. Лойцянский Л.Г. Лурье А.И. Курс теоритической механики. М.: «Наука», Том I,II. 3. Кильчевский Н.А. Курс теоритической механики. М.: «Наука», 977 г. 4. Бутенин Н.В., Лунц Я.П., Меркин Д.Р. Курс теоритической механики. М.: «Наука», 985 г. 5. Уразбоев М.Т., Назарий механика асосий курси. - Т.: «Ўқитувчи» 96 й. 6. Рашидов Т.Р., Шозиётов Ш., Муминов К.Б. Назарий механика асослари. Т.: 99 й. 7. Шоҳайдарова П. ва б. Назарий механика. Т.: 99 й. 8. Мешчерский И.В. Назарий механикадан масалалар тўплами. Т.: «Ўқитувчи» 985 й. 9. Яблонский А.А. Сборник курсовых работ по теоритической механике. М.: «Наука» 985 г.. Дўсматов О.М., Тилавов А. Назарий механика. Самарқанд - й.. Тўраев Х.Т., Тилавов А. Назарий механика. Самарқанд -6 й. 47

248 «NZRIY MEXNIK» FNIDN MLIYOT V LBORTORIY MSHG ULOTLRID O QITISH TEXNOLOGIYLRI 48

249 -amaly mashg ulot Br nuqtada kesshuvch kuchlar sstemas..3. Br nuqtada kesshuvch kuchlar sstemas mavzusdag amalyot mashg ulotnng tenologk model. O quv soat soat O quv mashg ulot shakl malyot rejas O`quv mashg`ulotnng maqsad Pedagagk vazfalar: Talabalar son: 5ta Mavzuga dor asosy tushunchalarn mustahkamlash. Masalalar yechsh bo ycha usluby ko rsatmalarn o rgansh va ulardan samaral foydalansh. O qtsh vostar O qtsh usullartenkas O qtsh shakllar O qtsh sharot Montogng va baholash Indvdual topshrqlarn bajarshga asoslangan amaly mashg ulot.br nuqtada kesshuvch kuchlar sstemasga dor asosy tushunchalarn takrorlash va mustahkamlash..mavzuga dor namunavy masalalar yechsh.usluby tavsyalar. 3.Darsda mustaql yechsh uchun masalalar. 4.Mustaql sh uchun savollar va topshrqlar. 5.dabyotlar. Mavzuga dor masalalar yechsh, mavjud metodlardan samaral foydalansh ko nkmalarn hosl qlsh. O quv faolyat natjalar: Qo ylgan savollarga javob berdlar, masala shartda berlgan kuchlarn shaklda to g r yo naltraoladlar. Muvozanat tenglamalarn tuzb, ulardan tegshl noma lumlarn anqlaydlar. Ma ruza matn, kompyuter slaydlar, doska ekspert varaqlar, grafklardan foydalansh. maly mashg ulot, topshrqlar, amaly shlash usul, suhbat, guruhlarda shlash usul. Bas munozara usul. Charpalak Indvdual, guruh Tenk vostalar blan tamnlangan,guruhlarda shlash usuln qo llash mumkn bo lgan audtoroya Og zak savollar, bls-so rov 49

250 .4. Br nuqtada kesshuvch kuchlar sstemas mavzusdag amalyot mashg ulotnng tenologk artas. Ish bosqchlar - bosqch (mn) O qtuvch faolyatnng mazmun..o`quv mashg`ulot savollarn tahll qlad va o`quv faolyat natjalarn aytad...tnglovchlarnng mashg ulotdag faolyatn baholash ko rsatkchlar va mezonlar blan tanshtrad (-lova).3. Mavzu bo ycha tayorlangan topshrqlarn tarqatad.(-lova).4.savollar berb suhbat tarzda tnglovchlar blmlarn jonlashtrad. Tngloch faolyatnng mazmun Tnglaydlar. Tnglaydlar Topshrqlar blan tanshadlar Javob beradlar - bosqch sosy bo lm. (5mn)..Topshrqlarn anqlayd va guruhda shlashn tashkl etad. Echmn tekshrad va baholayd.(3-lova)...topshrqlar mazmunn tushuntrad va bajarsh boycha maslahatlar berad. ta mn guruhga ajradlar. Topshrqda keltrlgan savollarga - javob tayorlayd. 3- bosqch Yakun lovch (mn) 3..Mavzu bo ycha yakunlovch ulosalar qlad. 3..Mavzu maqsadga ershshdag tnglovchlar faolyat tahll qlnad va baholanad Mavzu bo`ycha blmlarn chuqurlashtrsh uchun adabyotlar berad. Savollar beradlar UMKga qaraydlar. Mustaql sh topshrqlar va uy vazfalarn yozb oladlar. 5

251 -amaly mashg ulot. Br nuqtada kesshuvch kuchlar sstemasnng muvozanat shartlar Teorema. Br nuqtada kesshuvch kuchlar sstemas muvozanatda bo lsh uchun berlgan kuchlar sstemasnng teng ta sr etuvchs nolga teng bo lsh zarur va yetarl, yan n R. (.3.) 5 F To g r burchakl Oyz dekart koordnatalar sstemasn tanlab, (.3.) tenglaman koordnata o qlarga proyeksalaymz, natjada uchta skalyar tenglamalar sstemasn hosl qlamz, ya n n R ; R ; R. (.3.3) F n у F у n z F z Muvozanatdag qattq jsm erkn bo lmasa, bog lanshlar aksomasdan foydalanb, bog lanshlarnng jsmga ko rsatad-gan ta srn ularnng reaksya kuch blan almashtramz. Natjada avval ham aytlgandek, bunday jsmn berlgan kuchlar va bog lansh reaksya kuchlar ta srdag erkn jsm deb qarash mumkn. (.3.3) tenglamalardan foydalanb kuchlar sstemasnng muvozanat shartlarn quydagcha fodalash ham mumkn: br nuqtada kesshuvch kuchlar sstemas muvozanatda bo lsh uchun berlgan kuchlarnng mos koordnata o qlardag proyeksyalar yg nds alohda-alohda nolga teng bo lsh zarur va yetarl. gar qattq jsmga qo ylgan kuchlar sstemas br tekslkda joylashgan bo lsa, koordnata o qlardan bttasn, masalan, z o qn kuchlar tekslgga perpendkulyar qlb olsh kerak. U holda (.3.3) tenglamalarnng uchnchs aynan nolga teng bo lad, ya n R n z F z. Natjada quydag tenglamalar sstemas hosl bo lad: R F ; R F. (.3.4) n (.3.4) tenglamalar sstemas br tekslkda joylashgan va br nuqtada kesshuvch kuchlar sstemasnng muvozanat shartlarn fodalayd.. Kesshuvch kuchlar sstemasnng muvozanatga dor namunavy masalalarn yechsh. Usluby tavsyalar Tekslkda kesshuvch kuchlar sstemasnng muvozanatga od masalalarn quydag tartbda yechsh tavsya etlad.. Muvozanat tekshrlayotgan qattq jsmn ajratb, unga ta sr etuvch aktv kuchlar shaklda tasvrlab olnsh kerak.. Qaralayotgan qattq jsm erkn bo lmasa bog lansh aksomasdan foydalanb, unga qo ylgan bog lansh reaksyalarn ham tasvrlab olsh zarur (albatta, bog lansh turga e tbor bersh talab etlad). y n y

252 3. Masalan geometrk usulda yechsh uchun qattq jsmga ta sr etuvch kuchlar sstemasga mos kuch ko pburchag yasalb keyn bu ko pburchakdan no malum mqdor toplad. 4. Masalan analtk usulda yechsh uchun mos koordnatalar sstemasn tanlash kerak (ko p hollarda koordnatalar sstemasnng bosh sfatda kuch markaz olnad). 5. Tanlangan koordnatalar sstemasga nsbatan (.3.4) tenglamalar sstemas tuzlad. 6. Tuzlgan tenglamalar sstemas brgalkda yechlb, zlanayotgan no malum mqdorlar toplad. Ushbu usluby tavsyalar asosda quyda mavzuga dor ayrm masalalarn yechb ko rsatamz. 4.-masala (И.B.Мешчерский..). Tog larda qurlgan temr yo lda, yo lnng dara chdag br qsm shaklda ko rsatl-gandek oslgan. B osmaga P=5kN kuch ta sr qlad, deb hsoblab, C va D sterjenlardag zo rqshlar anqlansn (5-shakl). Yechsh. Masalan avval analtk usul blan yechamz. Bu-nng uchun tegshl koordnatalar sstemasn tanlaymz. Koordnatalar sstemasnng bosh sfatda nuqtan olamz (6-shakl). y S 6,4m S D S S C,65m B,65m α α P P 5-shakl 6-shakl (.3.3) muvozanat tenglamalarn tuzamz snα va cosα larn topamz 3 3 F S cos S F y S sn S cos, sn P. 6,4 tg tg,549; sn,47,,65 tg cos,88 tg Toplganlarn (a) tenglamalarga qo yamz S S,,48S,48S P. Bulardan S S 53kN. Javob: C va D sterjenlarnng har br 53kNga teng kuch blan sqlar ekan.. (a) 5

funksiyaning birinchi tartibli xususiy hosilasidan

funksiyaning birinchi tartibli xususiy hosilasidan A RUZA 8 URAKKA UNKSIYANING HOSILASI. TO`LA DIЕRЕNTSIAL TUSHUNCHASI. EKSTRЕULARI. TAQRIIY HISOLASH. DASTURIY PAKETLAR YORDAIDA HISOLASH. aqsad: Talabalarga ko po zgaruvchl uksalarg deresal, ekstremumlar

Διαβάστε περισσότερα

Ehtimollar nazariyasi va matematik statistika

Ehtimollar nazariyasi va matematik statistika O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI Toshket Molya Isttut E. Mamurov T. Adrov Ehtmollar azaryas va matematk statstka o quv qo llama Toshket-005 E. Mamurov, T. Adrov. Ehtmollar

Διαβάστε περισσότερα

KIRISh Termodinamika fani nazariy fizikaning asosiy bo`limlaridan biri xisoblanadi. Termodinamika fani muvozanat xolatda bo`lgan termodinamika

KIRISh Termodinamika fani nazariy fizikaning asosiy bo`limlaridan biri xisoblanadi. Termodinamika fani muvozanat xolatda bo`lgan termodinamika KIRIh ermodnamka fan nazary fzkanng asosy bo`lmlardan br xsoblanad. ermodnamka fan muvozanat xolatda bo`lgan termodnamka sstemalarnng ssklk blan boxlangan umumy xususyatlarn, konunyatlarn va unda utayotgan

Διαβάστε περισσότερα

O zbekiston Respublikasi oliy va o rta maxsus ta lim vazirligi. Toshkent moliya instituti. Q Safaeva. Matematik dasturlash.

O zbekiston Respublikasi oliy va o rta maxsus ta lim vazirligi. Toshkent moliya instituti. Q Safaeva. Matematik dasturlash. O zbeksto Respublkas oly va o rta asus ta l vazrlg Toshket olya sttut Q Safaeva. Mateatk dasturlash (Darslk) Toshket. Q.Safaeva. Mateatk dasturlash. Darslk TMI-y. Aotatsya: Ushbu ktob ateatk dasturlashda

Διαβάστε περισσότερα

OLIY MATEMATIKA. Ehtimollar nazariyasi va matematik statistika bo yicha mustaqil ishlarni bajarish uchun qo llanma

OLIY MATEMATIKA. Ehtimollar nazariyasi va matematik statistika bo yicha mustaqil ishlarni bajarish uchun qo llanma O ZBEКISTON RESPUBLIКASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI Abu Rayho Beruy omdag TOSHКENT DAVLAT TEXNIКA UNIVERSITETI OLIY MATEMATIKA Ehtmollar azaryas va matematk statstka bo ycha mustaql shlar bajarsh

Διαβάστε περισσότερα

YARIMO TKAZGICHLARDA ULTRATOVUSHNING YUTILISHI VA KUCHAYISHI HAQIDA

YARIMO TKAZGICHLARDA ULTRATOVUSHNING YUTILISHI VA KUCHAYISHI HAQIDA O ZBEKISTON RESPUBLIKASI OLIY VA O RTA AXSUS TA LI VAZIRLIGI SAARQAND DAVLAT UNIVERSITETI Qo l yozma huquqa UDK 537.3.33.534.8 URINOV JASHID ORTIQOVICH YARIO TKAZGICHLARDA ULTRATOVUSHNING YUTILISHI VA

Διαβάστε περισσότερα

o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730

o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730 . (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8)

Διαβάστε περισσότερα

BITIRUV MALAKAVIY ISHI

BITIRUV MALAKAVIY ISHI O'ZBEKISTON ESPUBLIKASI OLIY VA O'TA AXSUS TA'LI VAZILIGI ALISHE NAVOIY NOIDAGI SAAQAND DAVLAT UNIVESITETI EXANIKA ATEATIKA FAKULTETI atematk fka a fksoal aal kafedas ade Olmos 5 - matematka ta'lm o'alsh

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar

Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar Stereometriya, ya'ni fazodagi geometriyani o'rganishni biz

Διαβάστε περισσότερα

Fizika fanidan test topshiriqlarini yechish bo yicha abituriyentlar uchun ayrim tavsiyalar

Fizika fanidan test topshiriqlarini yechish bo yicha abituriyentlar uchun ayrim tavsiyalar Fizika fanidan test topshiriqlarini yechish bo yicha abituriyentlar uchun ayrim tavsiyalar Quyida fizika fanidan test topshiriqlarini bajarishga doir bir necha uslubiy tavsiyalarga beriladi. - test topshirig

Διαβάστε περισσότερα

Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni

Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni Tasdiqlayman O quv ishlari bo yicha prorektor prof. X.S Zanutdinov 2014 y Toshkent-2014 1 Ushbu

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

IQTISODIY MATEMATIK USULLAR VA MODELLAR (nazariy asoslar va amaliy tavsiyalar)

IQTISODIY MATEMATIK USULLAR VA MODELLAR (nazariy asoslar va amaliy tavsiyalar) Mirzayev A.N., Abduramanova Yu. M. IQTISODIY MATEMATIK USULLAR VA MODELLAR (nazariy asoslar va amaliy tavsiyalar) O quv qo llanma TOSHKENT - 4 Mualliflar: A.N. Mirzayev- Yu. M. Abduramanova- Taqrizchilar:

Διαβάστε περισσότερα

TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI

TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI O ZBEKISTON RESPUBLIKASI XALQ TA LIMI VAZIRLIGI Sh. Ismailov, O. Ibrogimov TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI Toshket- 008 Sh. Ismailov, O. Ibrogimov. Tegsizliklar-II. Isbotlashig zamoaviy

Διαβάστε περισσότερα

Differensial hisobning tatbiqlari

Differensial hisobning tatbiqlari O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI Begmatov A. OLIY MATEMATIKA KAFEDRASI Differensial hisobning tatbiqlari amaliy mashg ulot darsida

Διαβάστε περισσότερα

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI ENERGETIKA FAKULTETI

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI ENERGETIKA FAKULTETI O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI ENERGETIKA FAKULTETI «Muqobil energiya manbalari» ta lim yo nalishi 195-guruhi talabasi Rahmatov

Διαβάστε περισσότερα

GEOMETRIYA 7. Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik. Tuzatilgan va to4ldirilgan uchinchi nashr

GEOMETRIYA 7. Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik. Tuzatilgan va to4ldirilgan uchinchi nashr GEMETRIY 7 Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik Tuzatilgan va to4ldirilgan uchinchi nashr 4zbekiston Respublikasi Xalq ta limi vazirligi tasdiqlagan TSHKENT œyngiy4l PLIGRF SERVIS 07

Διαβάστε περισσότερα

Otaxanov Nurillo Abdumalikovich. Dasturlash uchun masalalar to plami. Taqrizchilar: 1. FMFD Badalov M. 2. FMFN, dotsent,olimov M.

Otaxanov Nurillo Abdumalikovich. Dasturlash uchun masalalar to plami. Taqrizchilar: 1. FMFD Badalov M. 2. FMFN, dotsent,olimov M. N. A. OTAXANOV Otaxanov Nurillo Abdumalikovich. Dasturlash uchun masalalar to plami. Taqrizchilar:. FMFD Badalov M.. FMFN, dotsent,olimov M. Ushbu to plam dasturlashning eng muhim usullari va tomonlarini

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI. QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI.

O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI. QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI. O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI. QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI. Geodeziya, kartograiya va kadastr kaedrasi. Net va gaz akul teti talabalariga GEODEZIYA anidan

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

MAGNIT MAYDON ELEKTROMAGNIT INDUKSIYA ELEKTROMAGNIT TEBRANISHLAR ELEKTROMAGNIT TO LQINLAR VA TO LQIN OPTIKASI NISBIYLIK NAZARIYASI

MAGNIT MAYDON ELEKTROMAGNIT INDUKSIYA ELEKTROMAGNIT TEBRANISHLAR ELEKTROMAGNIT TO LQINLAR VA TO LQIN OPTIKASI NISBIYLIK NAZARIYASI MAGNIT MAYDON ELEKTROMAGNIT INDUKSIYA ELEKTROMAGNIT TEBRANISHLAR ELEKTROMAGNIT TO LQINLAR VA TO LQIN OPTIKASI NISBIYLIK NAZARIYASI KVANT FIZIKASI ATOM VA YADRO FIZIKASI ATOM ENERGETIKASINING FIZIK ASOSLARI

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

OCHIQ DARS ISHLANMASI

OCHIQ DARS ISHLANMASI SAMARQAND QISHLOQ XO JALIK INSTITUTI Oliy matematika va aborot tenologiyalari Kafedrasi o qituvchisi Eshonqulov Sirojiddin Xakimovichning Informatika va aborot tenologiyalari fanidan Aborot jarayonlarini

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI

ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI O ZBEKISÒON RESPUBLIKASI OLIY VA O RÒA MAXSUS ÒA LIM VAZIRLIGI O RÒA MAXSUS, KASB-HUNAR ÒA LIMI MARKAZI A. U. Abduhamidov, H. A. Nasimov, U. M. Nosirov, J. H. Husanov ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

ELEKTRODINAMIKA fanidan

ELEKTRODINAMIKA fanidan O zbekiston Respublikasi Oliy va o rta maxsus ta lim vazirligi Z.M.Bobur nomidagi Andijon davlat universiteti FIZIKA kafedrasi ELEKTRODINAMIKA fanidan ma ruza matnlari Tuzuvchi: dots M.Nosirov Andijon-06

Διαβάστε περισσότερα

10 MEXANIKA MEXANIKADA SAQLANISH QONUNLARI MEXANIK TEBRANISHLAR VA TO LQINLAR

10 MEXANIKA MEXANIKADA SAQLANISH QONUNLARI MEXANIK TEBRANISHLAR VA TO LQINLAR 10 MEXANIKA KINEMATIKA DINAMIKA MEXANIKADA SAQLANISH QONUNLARI STATIKA VA GIDRODINAMIKA MEXANIK TEBRANISHLAR VA TO LQINLAR TERMODINAMIKA ASOSLARI ELEKTRODINAMIKA O ZGARMAS TOK QONUNLARI TURLI MUHITLARDA

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

FIZIKADAN OLIMPIADA MASALALARI

FIZIKADAN OLIMPIADA MASALALARI M.Nosirov, O.Bozarov, Sh.Yulchiev FIZIKADAN OLIMPIADA MASALALARI Toshkent- O zbekiston Respublikasi Oliy va o rta maxsus ta lim vazirligi Z.M.Bobur nimidagi Andijon davlat universiteti M.Nosirov, O.Bozarov,

Διαβάστε περισσότερα

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2 SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ELEKTR TOKINING ISHI VA QUVVATI

ELEKTR TOKINING ISHI VA QUVVATI 66 III bob. Elektr tokining ishi va quvvati ELEKTR TOKINING ISHI VA QUVVATI Darsning maqsadi. O quvchilarda elektr tokining bajargan ishi haqida tasavvur hosil qilish, sarflangan elektr energiyani hisoblash

Διαβάστε περισσότερα

ФИЗИКА. Физика file-» (240487) Кенглиги 2,4 м бˇулган вагон 15 м/с тезлик билан харакатланмо

ФИЗИКА. Физика file-» (240487) Кенглиги 2,4 м бˇулган вагон 15 м/с тезлик билан харакатланмо Физика 1 ФИЗИКА 1. 1.1-1 file-» 52-21 - - (240478) Сано к системаси тушунчасига нималар киради? A)сано к жисми ва координаталар системаси B)координаталарсистемасивава ктни ˇулчайдиган асбоб C)сано кжисмивава

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

VIII. TEST. bayon etish usullarini ifodalovchi zamonaviy nazariya; bayon etish usullarini ifodalovchi zamonaviy nazariya;

VIII. TEST. bayon etish usullarini ifodalovchi zamonaviy nazariya; bayon etish usullarini ifodalovchi zamonaviy nazariya; VIII. TEST 1. Atom fizikasi: +Atom va u bilan bog lik hodisalar fizikasini o rganuvchi fan; - Atom yadrosini tuzilishi xossalari va bir - biriga aylanishlarini o rganadi; - mikrozarrachalar va ulardan

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

Bitiruv malakaviy ish

Bitiruv malakaviy ish O ZBEKISTON RESPUBLIKASI XALQ TA LIMI VAZIRLIGI Ajiniyoz nomidagi Nukus davlat pedagogika instituti Fizika-matematika fakulteti «Umumiy Fizika» kafedrasi Bitiruv malakaviy ish Mavzu: Akademik litseylarda

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin.

FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin. FOYDALANILGAN ADABIYOTLAR. MATEMATIKA sinf uchun darslik. J. Ikromov. Toshkent 998.. MATEMATIKA sinf uchun darslik. M.A.Mirzaahmedov. Toshkent 00. MATEMATIKA 6 sinf uchun o quv qo llanma. J.Ikromov. Toshkent

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s ( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

B I T I R U V M A L A K A V I Y I SH I

B I T I R U V M A L A K A V I Y I SH I O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI NIZOMIY NOMIDAGI TOSHKENT DAVLAT PEDAGOGIKA UNIVERSITETI FIZIKA-MATEMATIKA FAKULTETI Himoyaga ruxsat etilsin Fakultet dekani, f.-m.f.n. G.F.Djabbarov

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

TA LIM VAZIRLIGI TOSHKENT ARXITEKTURA QURILISH INSTITUTI. QURILISH MASHINALARI fanidan

TA LIM VAZIRLIGI TOSHKENT ARXITEKTURA QURILISH INSTITUTI. QURILISH MASHINALARI fanidan O ZBEKISTONRESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI TOSHKENT ARXITEKTURA QURILISH INSTITUTI QURILISH MASHINALARI fanidan Referat Gurux :16-12 BIQKT Bajardi: Norqobilova Z. Tekshirdi:Xushnazarov

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος Ά τετράμηνο. Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 = 2

2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος Ά τετράμηνο. Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 = 2 2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος 2012-2013 Ά τετράμηνο Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Α. Να αποδειξετε ότι αν M ( xm, y M) το μεσο του ευθυγραμμου τμηματος

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

! "#$ %$ & ' ( )*" +, -../

! #$ %$ & ' ( )* +, -../ !"#$%$& ' ( )*"+, -../ *)"123$45"4%$!"%!", 62" #$7" $!6$ $$!$8592*!" $1:" #$8 *);"*)3)"4%$6$*% #3!)*%$!$*"#$%""3#"$ 3$#3"%! ) :!)"%""

Διαβάστε περισσότερα

Westfalia Bedienungsanleitung. Nr

Westfalia Bedienungsanleitung. Nr Westfalia Bedienungsanleitung Nr. 108230 Erich Schäfer KG Tel. 02737/5010 Seite 1/8 RATED VALUES STARTING VALUES EFF 2 MOTOR OUTPUT SPEED CURRENT MOMENT CURRENT TORQUE TYPE I A / I N M A / M N Mk/ Mn %

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw) PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

«DISKRET MATEMATIKA VA MATEMATIK MANTIQ» FANIDAN O QUV-USLUBIY MAJMUA

«DISKRET MATEMATIKA VA MATEMATIK MANTIQ» FANIDAN O QUV-USLUBIY MAJMUA O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI ALISHER NAVOIY NOMIDAGI SAMARQAND DAVLAT UNIVERSITETI MEXANIKA-MATEMATIKA FAKULTETI «MATEMATIK MQDELLASHTIRISH» KAFEDRASI TO RAYEV HOTAM TO

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

O`ZBeKISTON ReSPUBLIKASI XALQ TA`LIM VAZIRLIGI. AJINIYOZ NOMIDAGI NUKUS DAVLAT PeDAGOGIKA INSTITUTI. «Tasviriy san`at va chizmachilik» kafedrasi

O`ZBeKISTON ReSPUBLIKASI XALQ TA`LIM VAZIRLIGI. AJINIYOZ NOMIDAGI NUKUS DAVLAT PeDAGOGIKA INSTITUTI. «Tasviriy san`at va chizmachilik» kafedrasi O`ZBeKISTON ReSPUBLIKASI XALQ TA`LIM VAZIRLIGI AJINIYOZ NOMIDAGI NUKUS DAVLAT PeDAGOGIKA INSTITUTI «Tasviriy san`at va chizmachilik» kafedrasi 2- kurslar uchun «MAShINA QURILISh ChIZMAChILIGI» FANIDAN

Διαβάστε περισσότερα

TOSHKENT IRRIGATSIYA VA MELIORATSIYA INSTITUTI BUXORO FILIALI "UMUMKASBIY FANLAR" KAFEDRASI "CHIZMA GEOMETRIYA VA MUHANDISLIK GRAFIKASI"

TOSHKENT IRRIGATSIYA VA MELIORATSIYA INSTITUTI BUXORO FILIALI UMUMKASBIY FANLAR KAFEDRASI CHIZMA GEOMETRIYA VA MUHANDISLIK GRAFIKASI TOSHKENT IRRIGATSIYA VA MELIORATSIYA INSTITUTI BUXORO FILIALI "UMUMKASBIY FANLAR" KAFEDRASI "CHIZMA GEOMETRIYA VA MUHANDISLIK GRAFIKASI" fanidan ma'ruzalar matni Tuzuvchilar: S.R.Djuraeva Buxoro 2016 1

Διαβάστε περισσότερα

OLIY GEODEZIYA ASOSLARI

OLIY GEODEZIYA ASOSLARI O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI O RTA MAXSUS, KASB-HUNAR TA LIMI MARKAZI B.R. NAZAROV OLIY GEODEZIYA ASOSLARI Oliy va o rta maxsus ta lim vazirligi tomonidan kasb-hunar kollej

Διαβάστε περισσότερα

Lektsiya tekstleri (60 saat lektsiya)

Lektsiya tekstleri (60 saat lektsiya) U ZBEKSTAN RESPUBLIKASI JOQARI HA M ORTA ARNAWLI BILIMLENDIRIW MINISTIRLIGI BERDAQ ATINDAGI QARAQALPAQ MA MLEKETLIK UNIBERSINETI A meliy matematika ha m informatika kafedrasi A meliy matematika ka nigeligi

Διαβάστε περισσότερα

ρολόγια χειρός κωδ.: G-WATCH NEW Κάθε ρολόι διατίθεται συσκευασμένο... κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW

ρολόγια χειρός κωδ.: G-WATCH NEW Κάθε ρολόι διατίθεται συσκευασμένο... κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW ρολόγια χειρός κωδ.: G-WATCH Κάθε ρολόι διατίθεται συσκευασμένο... 34 κωδ. κοπτικού: MC-28R κωδ. μονταρίσματος: UM-GW μπρελόκ για supermarket κωδ.: M6 CARRO μεταλλικό μονής όψης κωδ. κοπτικού: UC 25R κωδ.

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

O ZBЕKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI O RTA MAXSUS, KASB-HUNAR TA LIMI MARKAZI RADIOTEXNIK O LCHOVLAR

O ZBЕKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI O RTA MAXSUS, KASB-HUNAR TA LIMI MARKAZI RADIOTEXNIK O LCHOVLAR O ZBЕKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI O RTA MAXSUS, KASB-HUNAR TA LIMI MARKAZI RADIOTEXNIK O LCHOVLAR Kasb-hunar kollejlari uchun o quv qo llanma Toshkеnt «ILM ZIYO» 2016 UO K:

Διαβάστε περισσότερα

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI. KOMPLEKS BIRIKMALAR KIMYOSI fanining O QUV DASTURI. Toshkent 2008

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI. KOMPLEKS BIRIKMALAR KIMYOSI fanining O QUV DASTURI. Toshkent 2008 O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI KOMPLEKS BIRIKMALAR KIMYOSI fanining O QUV DASTURI Bilim sohasi: Ta lim sohasi: Ta lim yo nalishi: 400000 Fan 440000 Tabiiy fanlar 5440400

Διαβάστε περισσότερα

M.T. Gulamova, Sh.Q.Norov N.T.Turobov

M.T. Gulamova, Sh.Q.Norov N.T.Turobov M.T. Gulamova, Sh.Q.Norov N.T.Turobov ANALITIK KIMYO fanidan oziq-ovqat texnologiyasi yo nalishi bo yicha bakalavrlar uchun o quv qo'llanma Toshkent Taqrizchilar: R.Ro`ziyev Tosh K.T.I Analitik kimyo kafedrasi

Διαβάστε περισσότερα

19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ SECTION 9 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 9. Υπεργεωµετρικές Συναρτήσεις ιαφορικές εξισώσεις Η υπεργεωµετρική διαφορική εξίσωση (Σ Ε του Gass) είναι ( )'' {c (a b )}' ab Αν οι c, a b, και c a b δεν είναι ακέραιοι,

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

R A N G S H U N O S L I K A S O S L A R I

R A N G S H U N O S L I K A S O S L A R I O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI TOShKENT TO`QIMAChILIK VA YENGIL SANOAT INSTITUTI Tolali materiallar va qog oz kimyoviy texnologiyasi kafedrasi R A N G S H U N O S L I K

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0

Διαβάστε περισσότερα