Προτείνονται προς επίλυση δέκα ασκήσεις εκ των οποίων επιλύονται υποχρεωτικά έξι (όποιες επιθυμείτε) και οι υπόλοιπες τέσσερεις προαιρετικά.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προτείνονται προς επίλυση δέκα ασκήσεις εκ των οποίων επιλύονται υποχρεωτικά έξι (όποιες επιθυμείτε) και οι υπόλοιπες τέσσερεις προαιρετικά."

Transcript

1 ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βλουγώργης, Ερινό ξάμηνο ΕΡΓΑΣΙΑ #: Μτάδοση θρμότητς μ κτινοβολί Ημρομηνί νάρτησης ργσίς στην ιστοσλίδ του μθήμτος: Ημρομηνί πράδοσης ργσίς: Προτίνοντι προς πίλυση δέκ σκήσις κ των οποίων πιλύοντι υποχρωτικά έξι (όποις πιθυμίτ κι οι υπόλοιπς τέσσρις προιρτικά.. Cengel and Ghajar, Κφάλιο 3: Πρόβλημ 3-8 (στη η έκδοση Μήκος διστυρούμνης χορδής abcde: abc ( ab + bc Μήκος μη διστυρούμνης χορδής ef: s Στο τρίγωνο Οbc φρμόζουμ το πυθγόριο θώρημ (ίνι κάθτο φού bc φπτομένη στον κύκλο. / s R Μήκος bc R Η γωνί θ ίνι θ cos s / R R Μήκος ab πr / Rθ R π / cos Rsin s/ s/ Ως πιφάνι ορίζτι η ημιπριφέρι του κυλίνδρου π R. / s R R + Rsin s (,ab,bc s/ + F πr πr πr Θέτουμ X s/ R 3 κι βρίσκουμ F / + X sin X X π F π sin 3 0. F F σ F 05. W / m

2 Γι το ποσό θρμότητς που πάι στο πριβάλλον πρέπι ν λάβουμ υπόψη κι το δύτρο μισό του κυλίνδρου, το οποίο κτινοβολί ξ ολοκλήρου στο πριβάλλον. σ 3 σ 3 F W / m Σημίωση: Σ πρίπτωση που πιλγί ως πιφάνι ολόκληρη η πριφέρι του κυλίνδρου, τότ π R κι F 0., όμως το γινόμνο F πρμένι το ίδιο, οπότ γι τη σ F. Γι τη μτφορά μτξύ των δύο κυλίνδρων πρμένι μτφορά μ το πριβάλλον όμως έχουμ 3 σ ( 3 F3 κθώς έχι ληφθί υπόψη όλη η πριφέρι του κυλίνδρου στον συντλστή όψως.

3 . Cengel and Ghajar, Κφάλιο 3: Ν ποδιχθούν οι ξισώσις μτφοράς θρμότητς μ κτινοβολί νάμσ σ ομοξονικούς κυλίνδρους πίρου μήκους κι β ομόκντρς σφίρς. Έστω δυο ομοξονικοί κύλινδροι (σωτρικός κι (ξωτρικός. Γι τους συντλστές όψης ύκολ ποδικνύτι ότι: F 0, F + F F F F F, F + F F Κύλινδρος : ( σ J Κύλινδρος : ( σ J ( J J ( (3 J J ( J J ( Από τις ( κι ( προκύπτι ότι, νώ πό τις ( κι (3 έχουμ: J σ (5 κι J σ σ + (6 Αφιρώντς τις (5 κι (6 προκύπτι: σ ( + σ ( J J + + ( σ r + r (7 Ακολουθώντς την ίδι μθοδολογί γι τις ομόκντρς σφίρς μ μόνη διφορά ότι r r προκύπτι: σ ( + σ ( J J + + ( σ r + r (8

4 3. Μί κυλινδρική κοιλότητ έχι μέλνς πιφάνις,, 3 σ στθρές θρμοκρσίς,, 3. Η ξωτρική πιφάνι δν κτινοβολί προς το πριβάλλον. Ν υπολογισθί η θρμότητ που προσδίδτι σ κάθ πιφάνι λόγω ντλλγής κτινοβολίς. Στη συνέχι η κυλινδρική πιφάνι 3 διιρίτι σ δύο πιφάνις, 5 μ ίδιο μβδόν. Ν υπολογισθούν οι ιδικές θρμοροές / κι 5 / 5 κι ν διτυπωθί η σχέση που τις συνδέι μ την 3 / 3. Συντλστές όψως: R + F 0, F, F F R F 0, F F, F F 3 3 F F, F F, F F F Μτά την τομή της πιφάνις R R + + 3: F, F F, F, F F R R F F F, F F F Η θρμορροή σ κάθ πιφάνι ίνι: F σ( + F σ( F σ( + F σ( F σ( + F σ( Μτά την τομή ίνι: F σ( + F σ( F σ( + F σ( Λμβάνοντς υπόψη ότι 3 5, 3 5 κι F 3 F + F 5, F3 F+ F5ύκολ ποδικνύτι ότι 3 + 5

5 . Σφίρ διμέτρου D μ μλνή πιφάνι σ θρμοκρσί βρίσκτι ντός σφιρικής κοιλότητς διμέτρου D μ μλνή σωτρική πιφάνι, νώ ξωτρικά έχι ημισφιρική ολική ικνότητ κπομπής. Όπως φίντι στο σχήμ η ξωτρική σφιρική κοιλότητ έχι κυκλικό άνοιγμ διμέτρου D 3. Η θρμοκρσί του πριβάλλοντος ίνι. Ν υπολογισθούν η θρμοκρσί της ξωτρικής σφίρς κι η θρμορροή που προσδίδτι στην σωτρική σφίρ. Είνι: l + (3 cm ( cm l 7cm 3cm Από τη βιβλιογρφί βρίσκουμ πως: F 3 / l F F 0.83, F 0, sinθ 3 / θ 0,88rad 3 Το μβδόν του τμήμτος του σφιρικού φλοιού που λίπι ίνι: π π/ ( sinθ θ ϕ 0.8π cm, cm d d π π π cm, 6π cm, 3 9π cm F F F 0.3, F F F F F 0.9, F F F Ισοζύγιο θρμότητς στη πιφάνι : Α Α +Α Α +Α Α Fσ Fσ 3F3σ F3σ σ σ K Η θρμορροή που προσδίδτι στην σωτρική σφίρ ίνι: σ F σ + F 3.6W 3

6 5. Ν προσδιοριστί η πίδρση λπτής σφιρικής σπίδς κτινοβολίς κτίνς R μ ικνότητ κπομπής, που τοποθτίτι νάμσ σ δύο ομόκντρς σφίρς κτίνς R, R που βρίσκοντι σ θρμοκρσίς, κι ικνότητ κπομπής,. Θωρούμ ότι οι πιφάνις των σφιρών κι της σπίδς προστσίς ίνι διχυτικές κι γκρίζς μ ικνότητς κπομπής νξάρτητς πό την θρμοκρσί. Έστω D + + D + + D π R π R π R + + π R π R π R π R π R π R Αν δν υπάρχι σπίδ τότ: Μ σπίδ: σ ( D ( σ ( σ D D D + D a D+ D D + D σ ( σ ( a D+ D σ ( D D D + D a Επομένως ο λόγος της θρμότητς που μτφέρτι μ την σπίδ ως προς τη θρμότητ που μτφέρτι χωρίς σπίδ ίνι: σ( Τ Τ D D R R R D D D ( σ Τ Τ D R R R R R R R + + R R R + + R R + + R R R R R C Γι δδομέν R, R,, ο λόγος μιώντι κθώς η R C + R ικνότητ κπομπής μιώντι κι ο λόγος κτινών R / R υξάνι.

7 6. Δύο πράλληλς πλάκς πίρου μήκους κι πλάτους w βρίσκοντι σ πόστση d. Οι πλάκς ίνι τέλι μονωμένς ξωτρικά. Η πλάκ θρμίντι ομοιόμορφ μ ηλκτρική ντίστση μ ιδική θρμορροή q, νώ η πλάκ δν θρμίντι ( q 0. Ο πριβάλλων χώρος ίνι σ θρμοκρσί πόλυτου μηδέν. Ν βρθούν οι ολοκληρωτικές ξισώσις γι τον υπολογισμό των θρμοκρσιών κι που μτβάλλοντι κτά μήκος των πλκών γι ότν οι πλάκς ίνι μέλνς πιφάνις κι β διχυτικές κι γκρίζς. Οι συντλστές όψως νάμσ σ δύο πίρου μήκους λωρίδς d κι d ίνι: d dfd d d ( sinθ dy 3/ df d d 3/ ( y x d y x + d dx μέλνς πιφάνις, ισοζύγιο θρμότητς στη πλάκ : w/ w/ d q J( x G( x σ( x σ( y dfd d σ( x σ( y dy 3/ w/ w/ ( y x Εισάγουμ τις διάσττς ποσότητς: X x/ d, Y w/ d, w/ d, Θ σ / q, i, i i / ( X ( X Θ ( X + Θ ( X / ( Y X + / Θ Θ 3/ Αντίστοιχ στη πλάκ : dy / dy 3/ ( Y X + w/ w/ d q J( y G( y σ( y σ( x dfd d σ( y σ( x dx 0 3/ w/ w/ ( y x / Θ ( Y Θ ( Y / ( Y X + / q 0 Θ Y Θ Y 3/ dx / dx 3/ ( Y X +

8 β διχυτικές κι γκρίζς: ισοζύγι θρμότητς q J ( σ J σ q q 0 J ( σ J ( y σ ( y w/ w/ d q J J( y dfd d σ q σ( y dy 3/ / w w/ ( y x w/ q d σ σ( y dy 3/ w/ ( y x q w/ d 0 σ σ 3/ w/ x dx ( y x Εισάγουμ τις διάσττς ποσότητς: / Θ Θ dy ( X ( Y Θ ( X + ( Y ( Y X + Θ / 3/ / / ( Y ( X Θ ( Y Θ ( X / ( Y X + / 0 Θ Θ dx 3/ / dy + 3/ / ( Y X ( Y X dx + 3/ Το πρπάνω ποτέλσμ ίνι κριβώς ίδιο όπως κι στη πρίπτωση της μλνής Θ Y Θ Y. πιφάνις κι πομένως το, gray, black Αντικθιστώντς το ποτέλσμ υτό στη ξίσωση γι το Θ ( X κι χρησιμοποιώντς το ποτέλσμ γι Θ ( X έχουμ: /,black dy Θ ( X +, black ( Y 3/, black ( X Θ + / ( Y X Θ + Θ, gray Θ, black +

9 7. Γράψτ έν πρόγρμμ γι την πίλυση των δύο ολοκληρωτικών ξισώσων της Άσκησης Θρμική προστσί κρυογνικών συστημάτων: γράψτ έν σύντομο κίμνο που ν μην ξπρνά τις 0 γρμμές κι ν κλύπτι μ το κλύτρο δυντό τρόπο το σχτικό ντικίμνο. Τ κρυογνικά συστήμτ συνντώντι σ πολλές φρμογές όπως στη διάσπση του έρ στ συσττικά του, στην υγροποίηση ρίων γι μτφορά, στους μγνητικούς τομογράφους κθώς κι σ πιτχυντές σωμτιδίων κι σ ργοστάσι πυρηνικής σύντηξης. Σ όλ τ κρυογνικά συστήμτ πιτίτι η συντήρηση πολύ χμηλών θρμοκρσιών κι άρ η μίωση των θρμικών πωλιών ίνι πρίτητη. Στ ν λόγω συστήμτ οι πώλις λόγω συνγωγής συνήθως μιώνοντι μ την δημιουργί κνού. Κάποις φορές βέβι λόγω του κόστους, του βάρους λλά κι της πολυπλοκότητς της μόνωσης κνού προτιμάτι η πλή χρήση μονωτικών υλικών όπως φλιζόλ, φίμπργκλς λλά κι διάφορ ινώδη κι πορώδη υλικά. Από την άλλη μριά οι πώλις λόγω κτινοβολίς μιώνοντι μ ρκτές μθόδους. Μί μέθοδος ίνι η γκτάστση στον σπίδων κτινοβολίς κνό χώρο οι οποίς συνήθως ψύχοντι μτξύ της θρμοκρσίς δωμτίου κι της χμηλότρης κρυογνικής θρμοκρσίς του συστήμτος νώ κόμ κι μη-ψυχόμνς σπίδς βοηθάν στην μίωση των πωλιών λόγω κτινοβολίς. Μι δύτρη μέθοδος ίνι η λγόμνη πολυστρωμτική μόνωση ή υπρμόνωση στην οποί η πώλις λόγω κτινοβολίς μιώνοντι μ την γκτάστση πολλπλών στρωμάτων πό λπτά φύλλ υψηλής νκλστικότητς. Τέλος μι τρίτη πιλογή η πορώδης μόνωση στην οποί γίντι πλήρωση του κνού χώρου μ πορώδη υλικά χμηλής γωγιμότητς. 9. Υπολογίστ τη θρμοκρσί μίς πίπδης πλάκς που ίνι κτθιμένη σ ηλική κτινοβολί ισχύος 700 W/m νώ η θρμοκρσί πριβάλλοντος ίνι 5 o C άν η πιφάνι της πλάκς ίνι βμμένη μ μύρη μπογιά κι β μ λυκή μπογιά. Αγνοίστ τη μτφορά θρμότητς μ συνγωγή. Μύρη μπογιά: 0.97, Λυκή μπογιά: , sky 98Κ, surface? Ισοζύγιο θρμότητς πλάκς: ag S sun + askyssky esurfacessurface asky esurface a S : ικνότητ πορρόφησης πλάκς στη θρμοκρσί του ήλιου (5800Κ sky : ικνότητ πορρόφησης πλάκς στη θρμοκρσί του πριβάλλοντος (98Κ e surface : ικνότητ κπομπής πλάκς στη θρμοκρσί της πιφάνις surface μ μύρη μπογιά: a a e 0.97 S sky surface surface / Gsun + sky s 377Κ β μ λυκή μπογιά: a S 0., esurface asky 0.97 surface ag / S sun + sky esurfaces 3Κ

10 0. Ν υπολογιστί η μτφορά θρμότητς μ κτινοβολί νάμσ σ δύο πράλληλς πλάκς πολύ μγάλης πιφάνις που βρίσκοντι σ θρμοκρσίς 680 κι 0Κ κι έχουν τις ξής ημισφιρικές φσμτικές ικνότητς κπομπής: λ, 0. 3 λ, 0.8 λ 3 ( λ, λ, ( λ, λ, 0.3 λ 5 (Οι πιφάνις ίνι διχυτικές λλά δν ίνι γκρίζς Αφού οι πιφάνις δν ίνι γκρίζς, δηλδή κπέμπουν πιλκτικά σ σχέση μ το μήκος κύμτος, η θωρί κοιλοτήτων φρμόζτι ντός των φσμτικών ζωνών κι πλέον η μτφορά θρμότητς ξρτάτι πό το λ στη μορφή: ( λ, ( λ, E E + λ λ λb, λb, dqλ, dqλ, d (, (, λ, λ, λ ( E ( λ, E ( λ, λ + λ, ( λ, λ, ( λ, 3 5 Eλb, Eλb, Eλb, Eλb, Eλb, Eλb, dλ+ dλ+ dλ σ E λb, dλ E λb, dλ E λb,dλ σ + σ + 0 σ σ E σ λb, dλ+ E λb, dλ E λb,dλ σ + 0 σ 3 5 σ 0.3f f f 5 + σ 0.3 f f f W / m + λb, λb, q q dqλ, d 0 0 Απόδιξη της (: κολουθούμ την ίδι διδικσί μ υτή της πργράφου.3 λλά τώρ πιδή η πιφάνι δν ίνι γκρίζ φρμόζουμ τ ισοζύγι ξρτώμν πό το μήκος κύμτος (φσμτικά. Το ισοζύγιο θρμότητς στην πλάκ νά μονάδ πιφάνις κι μονάδ χρόνου ντός του φσμτικού διστήμτος dλ ίνι dq dj dg (* (, ( (, (, λb (, ( (, dj de + ρ λ dg de + a λ dg λ E λ dλ+ λ dg, Επιλύοντς γι την κτινοβόληση βρίσκουμ: (, λb (, ( λ, dj λ E, λ dλ dg Αντικθιστώντς το πρπάνω ποτέλσμ στο ισοζύγιο νέργις (* προκύπτι

11 λb ( ( dj λ, E λ, dλ λ, dq dj E d dj ( λb ( λ, λ,, λ, λ, Γι ν χρησιμοποιήσουμ την πρπάνω ξίσωση θ ν γνωρίζουμ την κτινοβόλο ισχύ dj. Μι δύτρη έκφρση γι την κτινοβόλο ισχύ dj προκύπτι υπολογίζοντς την κτινοβόληση dg της πιφάνις πό την πιφάνι : dg dj Αντικθιστώντς το πρπάνω ποτέλσμ στην (* προκύπτι dq dj dj (*** Αντίστοιχ προκύπτι ( λ, ( λ dq E d dj ( λb ( λ, λ,, κι dq dj dj Συνδυάζοντς τις ξισώσις προκύπτι: ( λ, ( λ, E E + λ λ λb, λb, dq dq dj dj d (, (, λ, λ, λ

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4

ΜΑΘΗΜΑ. ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ ΘΕΩΡΗΤΙΚΟΣ κι ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΑΣΚΗΣΕΙΣ στο ΚΕΦ. 4 ρ. Α. Μγουλάς Νοέµριος 5 ) Ν υπολογιστί το ηλκτρικό πδίο που δηµιουργί µι τέλι γώγιµη κοίλη σφίρ

Διαβάστε περισσότερα

ΠΥΚΝΩΤΕΣ Μία διάταξη για την αποθήκευση φορτίου.

ΠΥΚΝΩΤΕΣ Μία διάταξη για την αποθήκευση φορτίου. Πυνωτής : ΠΥΚΝΩΤΕΣ Μί διάτξη γι την ποθήυση φορτίου. Κτνλώντι νέργι γι την συνάθροιση του φορτίου άρ ποθυύτι ηλτριή δυνμιή νέργι Δυνμιό μτλλιής σφίρς V 4π o V νάλογο του C V ισχύι γνιότρ γι οποιοδήποτ

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2012:

Θέματα Εξετάσεων Φεβρουαρίου 2012: ΑΡΙΘΜΗΙΚΗ ΑΝΑΛΥΣΗ ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΔΙΔΑΣΚΟΝΕΣ: Ι. ΑΝΑΓΝΩΣΟΠΟΥΛΟΣ - Κ.Χ. ΓΙΑΝΝΑΚΟΓΛΟΥ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξτάσων Φβρουρίου : ΘΕΜΑ μονάδς Κμπύλη ezier δημιουργίτι πό σημί

Διαβάστε περισσότερα

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α 3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )

Διαβάστε περισσότερα

Κεφάλαιο 2: Μετάδοση θερμότητας με ΑΚΤΙΝΟΒΟΛΙΑ

Κεφάλαιο 2: Μετάδοση θερμότητας με ΑΚΤΙΝΟΒΟΛΙΑ Κφάλαιο : Μτάδοση θρμότητας μ ΑΚΤΙΝΟΒΟΛΙΑ Συντλστής όψως Στο προηγούμνο κφάλαιο μλτήσαμ κυρίως τις ιδιότητς ακτινοβολίας που κπέμπται, απορροφάται και αντανακλάται από μία πιφάνια Τώρα ξτάζουμ την ανταλλαγή

Διαβάστε περισσότερα

ΦΒ σύστημα. Ενεργειακοί υπολογισμοί ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Υπολογισμοί. Στιγμιαία ισχύς, P m και ημερήσια ενέργεια, H t P ΦΒ STC

ΦΒ σύστημα. Ενεργειακοί υπολογισμοί ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Υπολογισμοί. Στιγμιαία ισχύς, P m και ημερήσια ενέργεια, H t P ΦΒ STC ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ σύστμ Ενργικοί υπολογισμοί Γ. ΒΙΣΚΑΔΟΥΡΟΣ Ι. Φργκιδάκς Φ. Μυρομτάκς κι S οπου R d,, m m S S S 24h 0 m, ο λόγος πίδοσς. Στιγμιί ισχύς, m κι μρήσι νέργι, R m S R Ανφρόμνοι σ χρονικές πριόδους

Διαβάστε περισσότερα

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΘΕΜΑ Σώμ τλί θύγρμμη πιβρδνόμνη ίνηση μ πιβράδνση k, όπ k θτιή στθρά ι τ μέτρ της τχύτητς. Αν γι = ίνι = ι =,ν πλγιστύν: ) η τχύτητ ως σνάρτηση τ χρόν.

Διαβάστε περισσότερα

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x ξισώσις ου θµού ωµτρική ϖίλυση ξισώσων ου θµού Οι ρχίοι Έλληνς µθηµτικοί κθιέρωσν την κτσκυή γωµτρικών σχηµάτων µ κνόν κι ιήτη. Τρις τέτοις κτσκυές θ µλτήσουµ στη συνέχι. Κάθ µι ϖό υτές τις κτσκυές ίνι

Διαβάστε περισσότερα

1.4. ε ε. E 1 ε E 2. ε ε γ. β ε. Λύση α) Έχουμε ότι: ε = β γ 2. γ E 1 γ. β γ. γ β ΔΡΑΣΤΗΡΙΟΤΗΤΑ

1.4. ε ε. E 1 ε E 2. ε ε γ. β ε. Λύση α) Έχουμε ότι: ε = β γ 2. γ E 1 γ. β γ. γ β ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1.4. Πυθόριο θώρημ ΡΣΤΗΡΙΟΤΗΤ 1 ίνοντι οκτώ ίσ ορθοώνι τρίων μ κάθτς πλυρές, κι υποτίνουσ κι τρί ττράων μ πλυρές,, ντίστοιχ. ) Ν υπολοίστ τ μδά, Ε, Ε 1, Ε 2 των διπλνών τριώνων κι ττρώνων. ) Ν τοποθτήστ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ MAXWELL Συγγρφή Επιέλι: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3 0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση

Διαβάστε περισσότερα

Π Α Ν Ο Ρ Α Μ Α Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ) Β ΛΥ Κ Ε Ι Ο Υ σελίδα 1 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ C 1

Π Α Ν Ο Ρ Α Μ Α Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ) Β ΛΥ Κ Ε Ι Ο Υ σελίδα 1 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ C 1 Π Ν Ο Ρ Μ Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΤΕΥΘΥΝΗ) Β ΛΥ Κ Ε Ι Ο Υ σλίδ 1 ΚΥΚΛΟ ΟΡΙΜΟ : Ονομάζτι ο ωμτικός τόπος (.τ.) των σημίων του πιπέδου που πέχουν στθή πόστση, ( > ), πό έν συκκιμένο

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

ΠΟΤΕ ΔΥΟ ΤΡΙΓΩΝΑ ΕΙΝΑΙ IΣΑ

ΠΟΤΕ ΔΥΟ ΤΡΙΓΩΝΑ ΕΙΝΑΙ IΣΑ ΠΟΤ ΥΟ ΤΡΙΩΝ ΙΝΙ IΣ Πότ δύο Τρίων ίνι ίσ; ύο τρίων ίνι ίσ ότν τυτίζοντι! (μ μτφορά, στροφή, νάκλση ή κάποιο συνδυσμό π υτά) Στροφή νάκλση Μτφορά Τ τρίων που έχουν το ίδιο σχήμ κι μέθος ίνι ΙΣ Τρίων. ντίστοιχ

Διαβάστε περισσότερα

( ) Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας

( ) Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας 3.3 Ασκήσις σχολικού ιλίου σλίδς 3 A Oµάδς. Ν ρίτ τη ξίσωση της έλλιψης σ κθµιά πό τις πρκάτω πριπτώσις : (i Ότ έχι στίς τ σηµί Ε (, 0 κι Ε(, 0 κι µγάλο άξο 0 (ii Ότ έχι στίς τ σηµί Ε (0, 5 κι Ε(0, 5 κι

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΩΝΙΚΩΝ ΤΟΜΩΝ

ΤΥΠΟΛΟΓΙΟ ΚΩΝΙΚΩΝ ΤΟΜΩΝ Μθημτικά Β Λυκίου Θτική & Τν/κή Κτύθυνση ΤΥΠΟΛΟΓΙΟ ΤΩΝ ΚΩΝΙΚΩΝ ΤΟΜΩΝ Κύκλος Πολή Έλλιψη Υπολή Επιμέλι: Γηγόης Μπξνίδης Μθημτικός.1. Κ Υ Κ Λ Ο Σ Οισμός: Ο γωμτικός τόπος των σημίων Μ του πιπέδου, γι τ

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Είνι γνωστό ότι γι πολλά ορισµέν ολοκληρώµτ δεν υπάρχουν νλυτικές µέθοδοι κριβούς επίλυσής τους. Ετσι λοιπόν έχουν νπτυχθεί προσεγγιστικές µέθοδοι υπολογισµού τέτοιων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό

Διαβάστε περισσότερα

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

( ) y ) άγνωστη συνάρτηση, f (, )

( ) y ) άγνωστη συνάρτηση, f (, ) 6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές

Διαβάστε περισσότερα

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας. . Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν

Διαβάστε περισσότερα

Κεφάλαιο 5. Εφαρµογές των Θεωρηµάτων οµής. Έστω F ένα σώµα, V ένας διανυσµατικός χώρος πεπερασµένης διάστασης επί του

Κεφάλαιο 5. Εφαρµογές των Θεωρηµάτων οµής. Έστω F ένα σώµα, V ένας διανυσµατικός χώρος πεπερασµένης διάστασης επί του Κφάιο 5 Εφρµογές των Θωρηµάτων οµής 5 Μέτη µις γρµµιής πιόνισης :V V µέσω των Θωρηµάτων οµής Έστω έν σώµ, V ένς δινυσµτιός χώρος ππρσµένης διάστσης πί του ι : V V µι γρµµιή πιόνιση Όπως ξέρουµ το V φοδιάζτι

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

Γ Λυκείου. 6 Μαρτίου Θεωρητικό Μέρος Θέµα 1 ο

Γ Λυκείου. 6 Μαρτίου Θεωρητικό Μέρος Θέµα 1 ο Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 1 Θεωρητικό Μέρος Θέµ 1 ο Γ Λυκείου 6 Μρτίου 1 A. Μι χορδή βιολιού µε τ δύο άκρ της στερεωµέν, τλντώνετι µε συχνότητ 1 Ηz. Στο πρκάτω σχήµ φίνοντι δύο

Διαβάστε περισσότερα

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ . ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ. Η γενική µορφή της β βάθµις εξίσωσης + β + γ 0, 0. Οι λύσεις της β βάθµις εξίσωσης β 4γ Η εξίσωση + β + γ 0, 0 Ότν > 0 Έχει δύο ρίζες άνισες, τις, Ότν 0 Έχει µί διπλή ρίζ,

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας Θέμα Ένα σημιακό φρτί Q τπθτίται στ κέντρ νός υδέτρυ σφαιρικύ αγώγιμυ κλύφυς ακτινών R και R. Να υπλγιστί τ παγόμν φρτί

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, E-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η δημοσίευση του Γιάννη Φιορεντίνου γι το πρόβλημ της βρχυστόχρονου ήτν μι πρό(σ)κληση. Διβάζοντς την εκφώνηση του προβλήμτος ποφάσισ ν δώσω μι πλήρη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( ) 19/11/9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9-1 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθσµία παράδοσης /1/9 Άσκηση 1 Η γνική µορφή νός ΗΜ κύµατος δίνται από E E sin k r ωt (1) ( ) Α) Το µέτρο του πλάτους πλάτος

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΟΣΤΑΤΙΚΗΣ Συγγφή Επιμέλι: Πνγιώτης Φ. Μίς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146) Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών

Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών Προτεινόµενες Ασκήσεις στ Στοιχεί δύο Ακροδεκτών πό το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργρη Πρόβληµ. Σ' έν πηνίο µε υτεπγωγή =5H το ρεύµ έχει τη µορφή του Σχ.. Σχεδιάστε την τάση στ άκρ του

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ 1. Σωστό το γ. Σωστό το γ. Σωστό το γ 4. Σωστό το δ

Διαβάστε περισσότερα

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις

Διαβάστε περισσότερα

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.

Διαβάστε περισσότερα

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004 Άσκηση (5 µονάδες) ΦΥΕ 4 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 9 ΙΟΥΛΙΟΥ 4 Τρί σηµεικά φορτί τοποθετούντι στις κορυφές ενός τετργώνου πλευράς όπως φίνετι στο σχήµ. Υπολογίστε την διεύθυνση κι το µέτρο του ηλεκτρικού

Διαβάστε περισσότερα

3.3 Άριστο Επίπεδο Αποθεµάτων

3.3 Άριστο Επίπεδο Αποθεµάτων 3.3 Άριστο Επίπεδο Αποθεµάτων - ο λογισµός της επιχείρησης εκτείνετι σε δύο χρονικές περιόδους. - έχει την δυντότητ ν δηµιουργήσει ποθέµτ την πρώτη περίοδο τ οποί θ πουλήσει την δεύτερη. - Η πόφση πργωγής

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Συµπάγεια και οµοιόµορφη συνέχεια

Συµπάγεια και οµοιόµορφη συνέχεια 35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της

Διαβάστε περισσότερα

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ.

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ. 1 9.7 σκήσεις σχολικού βιβλίου σελίδς 03 0 ρωτήσεις κτνόησης 1. Στ πρκάτω σχήµτ ν υπολογιστούν οι τιµές των x κι ψ. () O x Ρ 3 Θ x 6 Κ Τ Ν Σ O 1 ψ Λ (β) Ζ O (γ) Στο σχήµ () Στο σχήµ (β) Στο σχήµ (γ) Ρ.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)

Διαβάστε περισσότερα

Ένα Φρένο Σε Μια Τροχαλία

Ένα Φρένο Σε Μια Τροχαλία Ένα Φρένο Σ Μια Τροχαλία Η ομογνής ράβδος του σχήματος έχι μάζα ΜΡ και μήκος = και μπορί να στρέφται ως προς κάθτο άξονα που διέρχται από το σημίο μ την βοήθια άρθρωσης. Πάνω στη ράβδο και σ απόσταση /4

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα

EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα EI.3 ΛΕΟΝΑΣΜΑΤΑ.Αξί κτνάλωσης.λεόνσμ κτνλωτή 3.Κόστος προμηθευτή 4.λεόνσμ προμηθευτή 3.Συνολικό πλεόνσμ. ργμτική ξί (Χρησιμότητ) της κτνάλωσης Η ντίστροφη συνάρτηση ζήτησης: = () έχει κτρχήν την γνωστή

Διαβάστε περισσότερα

2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ

2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΜΕΡΟΣ. Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ 87. Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Χρκτηριστικά στοιχί νός ινύσμτος ) Έν σημίο που ίνι η ρχή κι λέτι σημίο φρμοής του ινύσµτος κι έν σημίο που ίνι το πέρς (τέλος) του ινύσµτος. Το ιάνυσµ,

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005 ΚΛΑ ΟΣ ΠΕ 70 ΑΣΚΑΛΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείµενο» Κυρική 10-4-2005 Α.

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι:

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι: Σάββτο, 7 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Έστω συνάρτηση, η οποί είνι συνεχής σε έν διάστηµ Δ. Ν ποδείξετε ότι: Αν (>0 σε κάθε εσωτερικό σηµείο x του Δ, τότε η είνι γνησίως ύξουσ σε

Διαβάστε περισσότερα

Συμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2

Συμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2 ΚΕΦ. 3 Η Αρχή των Ήρωνος-Fermat 3.3-8 Συμπλήρωμα 2 δαφίου 3.3: Το νικό μταβολικό πρόβλημα ια συναρτησιακό ολοκληρωτικού τύπου μ ολοκληρωτέα συνάρτηση F κατά 2 τμήματα C, ορισμένο πί καμπυλών που τέμνουν

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. ) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος

Διαβάστε περισσότερα

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Μάθηµα 18 ο, 19 Νοεµβρίου 2008 (9:00-10:00).

Μάθηµα 18 ο, 19 Νοεµβρίου 2008 (9:00-10:00). Μάθηµα 8 ο, 9 Νοµβρίου 008 (9:00-0:00) Άσκηση 4 Θωρούµ κβαντικό σύστηµα ύο πιπέων, ηλαή έχουµ ύο ιιοκαταστάσις της νέργιας, Ĥ Ε και Ĥ Ε, τις οποίς ν γνωρίζουµ Ενώ για τον τλστή Α, γνωρίζουµ τις ιιοκαταστάσις

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΟ Ν. ΠΕΡΑΜΟΥ ΣΧ. ΕΤ Επαναληπτικές ασκήσεις

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΟ Ν. ΠΕΡΑΜΟΥ ΣΧ. ΕΤ Επαναληπτικές ασκήσεις 1. Ν ρίτ το ΕΚΠ των ριθμών: ) 2, 3, 4 ) 2, 4, 8 ) 3, 5, 6 )4, 7, 9 Επνλπτικές σκήσις 2. Ο ριθμός των σλίων νός ιλίου ίνι μτξύ των ριθμών 100 κι 150. Ότν μτράμ τις σλίς νά 5 ή νά 6, ν πρισσύι κμί. Ν ρίτ

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα