2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R
|
|
- Ίσις Τοκατλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. (i) f()= -3+ Η f() ορίζεται R Έχει Π.Ο ολόκληρο το R Για το Π.Τ της f() έχουµε : ος τρόπος = -3+= - - += - - () Το Π.Τ. της f() θα είναι οι τιµές που παίρνει το R. Από την σχέση () φαίνεται ότι : -.Άρα η f() θα έχει Π.Τ. το διάστηµα -, + ) ος τρόπος Έστω -3+=α. Θα βρούµε τις τιµές των α έτσι ώστε η εξίσωση -3+=α να έχει πραγµατική ρίζα. Όµως -3+=α -3+(-α)= () Η () έχει πραγµατικές ρίζες όταν : 9-(-α) 9-8+α α α - Έτσι έχουµε ότι το Π.Τ. της f() θα είναι το διάστηµα -, + ) Σηµείωση: =α(- ) + ) α> : Μορφή: Π.Τ. : (, ) ) α< : Μορφή : (, ) Π.Τ. :
2 (ii) f()= +cos Η f() έχει Π.Ο. το R. Τώρα για το Π.Τ. της f() κάνουµε τα γραφήµατα των συναρτήσεων : g()= και h()=cos. ηλαδή : - 3π -π π π -π 3π χ - ΣΧΗΜΑ Ι - π π - π π χ ΣΧΗΜΑ ΙΙ Τώρα από το σχήµα ΙΙ παρατηρούµε ότι η f() παίρνει όλες τις τιµές του R η f() θα έχει Π.Τ το R. (iii) f()= + Η f() ορίζεται σε όλο το Rεκτός από το =. Άρα θα έχει Π.Ο το R-{ } Τώρα για να βρούµε το Π.Τ της f() θέτουµε + =α και θα βρούµε τις τιµές του α για τις οποίες ικανοποιείται η εξίσωση : =α, +=α, -α+=, () 3 Τώρα επειδή το πολυώνυµο p()= - α+ είναι περιττού βαθµού (3ου) έχει τουλάχιστον µία πραγµατική ρίζα α R. Αυτό συµβαίνει διότι ξέρουµε ότι οι µιγαδικές ρίζες εµφανίζονται ανά ζεύγη, άρα το πολύ να έχει δύο µιγαδικές ρίζες οπότε αποµένει µια πραγµατική + Σηµείωση : Ένα πολυώνυµο βαθµού n έχει n ρίζες (πραγµατικές ή µιγαδικές) Η εξίσωση () έχει πραγµατική ρίζα α R η f() θα έχει Π.Τ. το R
3 3 (iv) f()= + Η f() ορίζεται σε όλο το R εκτός από το =. Άρα θα έχει Π.Ο το R-{ } Έστω Η εξίσωση () έχει πραγµατικές ρίζες όταν + =α, +=α, -α+=, () α - (α-)(α+) Άρα η f() θα έχει Π.Τ : (, ] [, ) (v) f()= + - Η f() είναι ορισµένη για όλες τις τιµές του για τις οποίες: - (-)(+) - (-)(+) Άρα η f() θα έχει Π.Ο. το [-,] Το Π.Τ της f() θα είναι το :, 5 α (α-)(α+) (vii) f()= - Η f() ορίζεται όταν - -, η f() θα έχει Π.Ο το R-{-,} Τώρα για να βρούµε το Π.Τ της f() θέτουµε : =α - +α =α =α ( -) =α -α α=+α = - α Άρα πρέπει : +α (+α)α, α α α - (α+)α Αυτό µας δίνει α -, α>. Έτσι έχουµε ότι το Π.Τ της f() είναι το: (-,-] (,+ )
4 . f()= Για <3 : f()=-(-5)+(-3)= Για 3 <5: f()= -(-5)-(-3)= 8- Για 5 : f()=(-5)-(-3)= -, <3 Άρα η f ορίζεται ως : f()= 8-, 3 <5 -, f()= (α) H f() ορίζεται σ όλο το Rεκτός από αυτές όπου µηδενίζεται ο παρονοµαστής Έχουµε ( )( ) = = -3 +3= -3 = 3 Απορρίπτεται -3 -= -3 = -3= ± =5 και = Άρα το Π.Ο της f() είναι το : R-{,5} (β) f ()=, f ()= + -6, f 3()=-3 ή f ()=, f ()= +-6, f 3()= -3 ή f ()= 3, f ()=, f ()=
5 5.3 f()= (i) = - Μετατόπιση του γραφήµατος κατα µονάδες προς τα δεξιά (ii) = + (iii) = Μετατόπιση του γραφήµατος της f() µονάδες προς τα πάνω Συνδυασµός των (i) και (ii) (iv) = +5 - Μετατόπιση του γραφήµατος κατά 5 µονάδες προς τα αριστερά και µονάδες προς τα κάτω f ()=5+, f ()=6+c (fof )()=(fof )(), f (6+c)=f (5+) 5(6+c)+=6(5+)+c 3+5c+=3++c c= c=5
6 6.6 f()=g()+h() g()= [f()+f(-)], h()= [f()-f(-)] g(-)= [f(-)+f()]= [f()+f(-)]=g() H g είναι άρτια h(-)= [f(-)-f()]= - [f()-f(-)]= -h() H h είναι περιττή - - (i) f()=e = [e +e ]+ [e -e ] - - (ii) f()=e sin= [e sin+e sin(-)]+ [e sin-e sin(-)] - - = [e sin-e sin]+ [e sin+e sin] - - (iii) f()= += [( +)+( -)]+ [( +)-( -)] (iv) f()= = = f()= (-)(+) - - Έστω g()= - και h()= - - g(-)= - =- =g() g άρτια (-) h(-)= = - = -h(-) h περιττή (-) - - ηλαδή η f() γράφεται ως άθροισµα µιας άρτιας και µιας περιττής συνάρτησης..7 (i) (ii) f()= -, ΠΟ..:[,] f ()=sin 3, Π.Ο.: R (f +f )()= - + sin 3 (f -f )()= - -sin 3 (iii) (f.f )()= -.sin 3 Οι πιο πάνω συναρτήσεις έχουν Π.Ο την τοµή των πεδίων ορισµών των f,f Άρα θα έχουν και οι τρεις Π.Ο. : [-,] f - (iv) ()= f sin3 Το Π.Ο της είναι η τοµή των Π.Ο των f,f εκτός τα σηµεία όπου µηδενίζεται η f ηλ. πρέπει - και sin3 - και 3,±π,±π,... f Άρα Π.Ο. της : [-,) (,] f
7 7 (v) (fo f )()= f (sin3)= -sin 3 Το Π.Ο της (fo f )() είναι εκείνα τα του Π.Ο της f για τα οποία οι τιµές f() ανήκουν στο Π.Ο της f(). Για την f() έχουµε ότι Για την f(f()) θα πρέπει f() sin 3 το οποίο ισχύει R Άρα η (fo f )() θα έχει Π.Ο : R (vi) (fo f )()= f ( - )=sin 3 - Όµοια µε το (v) : Για την f() έχουµε ότι R.Άρα πρέπει 3 - R Αυτό ισχύει για - ΠΟ..της fo f :[-,].8 Αν [ k,k+) τότε [ ] (i) f()= k =k, όπου k Z f()= M -3, αν -3,- -, αν -,- -, αν -,, αν,, αν,, αν,3 3, αν 3, M H f δεν είναι περιοδική Τώρα, R έχουµε = [ ] +ε, όπου ε [,) (ii) f()= -[ ] =ε (iii) [ ] f()= - = -ε χ χ Από τις γραφικές παραστάσεις παρατηρούµε ότι και στις δύο περιπτώσεις η f είναι περιοδική µε περίοδο Τ= -
8 8 (iv) f()=[sin] Στο διάστηµα [,π] έχουµε Ανάλογα αποτελέσµατα έχουµε για οποιοδήποτε διάστηµα µήκους π αν, π ) αν = π f()= αν ( π, π - αν ( π,π) αν =π -π -3π -π π π π H f είναι περιοδική µε Τ=π. -.9 =f() (ii) = -f(), α Β α α α α -Β (i) =f(), α (iii) =3f, a B 3Β α α 3α α α α (iv) =f(-α), α α B α α 3α α
9 9 p+q. f()=, -r, f() άρτια f(-)=f(), R +r -p+r p+r (i) f(-)= f() -p -+r = +r - rp+q+ qr = -p -q+pr+ qr pr-q= (pr-q)=, pr =q p+r p+pr p(+r) (ii) f()= = = =p, -r. Άρα η f είναι σταθερή διότι p σταθερά. +r +r +r. (α) f(+)=f()-f(),, R f()= f + = f - f =, R. Λόγω της πιο πάνω ιδιότητας (β) f(-)= -f(), R f(-)= -f() f()= -f() f()= f()=. (i) Θέτω f()=(+), - =(+) += = - f ()= - Τώρα για να βρούµε το Π.Ο. της f αρκεί να βρούµε το Π.Τ της f Έχουµε λοιπόν ότι. Άρα =(+) =6 (για η f είναι αύξουσα άρα την µικρότερη της τιµή την παίρνει για =). Η f() θα έχει Π.Τ. το [ 6,+ ) - Η 6,+ f () θα έχει Π.Ο. το (ii) f()= +3, -3 Έστω - = +3 = +3 = -3 f ()= -3 Το Π.Τ. της f είναι το [, + ) Το Π.Ο της - f () είναι το [, + ) (iii) f()=3 +5-, Η f() είναι µια παραβολή. Θα προσπαθήσουµε να την φέρουµε στην µορφή f()=α(- ) Έστω =3 +5-=3 + - = =3 + - () = 3 + = + = f ()= 6 Από την εξίσωση () παρατηρώ ότι Άρα το Π.Ο. της - f () είναι το 9 - Το Π.T. της f είναι το 9 -, + 9 -, +
10 (iv) f()= -5, Έστω = -5 = -5 - = = () =-5 - = - = - + f ()= Από την εξίσωση () παρατηρούµε ότι Άρα το Π.Τ της - f είναι το -, Το Π.T. της f είναι το -,.3. 3 f()=, f ()= = f() = 5 - f()=, Η f έχει ως αντίστροφη τον εαυτό της f ()= +c +c Ξέρουµε ότι - (f o f )()= R-{-c} +c +c f = = = +c +c +c+c +c+c +c +c = +c +c (+c) +(c - )=, R- c +c = και (c - )= c= - { }
2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται
Διαβάστε περισσότεραThanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ
thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >
Διαβάστε περισσότεραΑ. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)
ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!
ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info
Διαβάστε περισσότεραf (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
Διαβάστε περισσότεραΠαραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=
ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το
Διαβάστε περισσότεραΗ f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2
1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιrtyuiopasdfghjklzερυυξnmηq σwωψrβνtyuςiopasdρfghjklzcvbn mqwrtyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ qπςπζαwωτrtνyuτioρνμpκaλsdfghςj ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnαmqwrtyuiopasdfghjklz
Διαβάστε περισσότεραΘΕΜΑ A. Θεωρούµε τη συνάρτηση f:r R ώστε να ισχύει f(+f())=+f() για κάθε R. Να αποδείξετε ότι α. Η f είναι β. f(0)= και f() 0. (Μονάδες 0) Β. Έστω συν
ΤΡΙΩΡΟ ΙΑΓΩΝΙΣΜΑ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ A. Έστω πολυώνυµο P()=α ν ν +α ν ν + + α +α ο µε α ν 0, ν Ν * και o R. Να δείξετε ότι lim P() = P( ). o Β. Πότε δύο συναρτήσεις f και g λέγονται
Διαβάστε περισσότεραΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.
ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos
Διαβάστε περισσότεραόπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Διαβάστε περισσότεραΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου
Διαβάστε περισσότεραΆσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε
Διαβάστε περισσότεραΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)
ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές
Διαβάστε περισσότερα2.3 Ασκήσεις 19/09/2012
. Ασκήσεις 19/09/01 Ασκηση 1. ορισµού της Αν η συνάρτηση f έχει έναν από τους παρακάτω τύπους να ϐρεθεί το πεδίο a) x + x 5 b) x + 1 + x 5 c) tan x d) 1 x 1 tan + sin x x a) Παρατηρούµε ότι η ποσότητα
Διαβάστε περισσότερα1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = 4 6 6 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) v) 5 f() log vi) f() = 4 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.
Διαβάστε περισσότερα( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α
. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική
Διαβάστε περισσότεραΗ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο
Διαβάστε περισσότερα. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:
Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω
Διαβάστε περισσότερα5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,
Διαβάστε περισσότεραx 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Διαβάστε περισσότερα3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Μια συνάρτηση με πεδίο ορισμού το σύνολο Α, λέγεται περιοδική, όταν υπάρχει πραγματικός αριθμός Τ>0 τέτοιος, ώστε για κάθε να ισχύει ότι και ( ) και ( ). Ο αριθμός Τ
Διαβάστε περισσότερααβ (, ) τέτοιος ώστε f(x
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]
Διαβάστε περισσότερα2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ
. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ ΘΕΩΡΙΑ. Η γνησίως αύξουσα Συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε x, x µε x < x ισχύει : f ( x ) < f ( x ). Η
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ
ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:
Διαβάστε περισσότεραΚεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση
Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση
Διαβάστε περισσότεραΆσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.
http://elear.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 6ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =
ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,
Διαβάστε περισσότεραΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων
Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)
Διαβάστε περισσότεραΝα βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x
. Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)
Διαβάστε περισσότεραAPEIROSTIKOS LOGISMOS I
APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 3. Άσκηση : Προσδιορίστε, αν υπάρχουν, τις τιμές τού a για τις οποίες οι παρακάτω συναρτήσεις είναι συνεχείς. + +, αν >
Διαβάστε περισσότερα< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
Μονοτονία - Ακρότατα - Συμμετρίες συνάρτησης Μονοτονία Συνάρτησης Ορισμοί Α) Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα υποσύνολο Β του Πεδίου Ορισμού της όταν : για κάθε, B με < f( ) < f( ). Β) Μια
Διαβάστε περισσότερα4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Διαβάστε περισσότεραΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Διαβάστε περισσότεραΜαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001
Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου Ζήτηµα ο A.. ίνονται οι µιγαδικοί αριθµοί z, z. Να αποδείξετε ότι: z z z z. Μονάδες 7,5 Α.. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
Διαβάστε περισσότερα( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.
Κεφάλαιο - Συναρτήσεις I Πεδίο ορισµού συνάρτησης Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ίνονται οι συναρτήσεις: f( ) = +, (ii) f( ) = Να βρεθούν τα f( 0 ), f( ), f( ), f( α ), f( α+ β), f( α 5) ( ) ( ) f + h f, h Να
Διαβάστε περισσότεραΛύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010
Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι
Διαβάστε περισσότεραΑ ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5
Διαβάστε περισσότερα4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.
Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό.
Διαβάστε περισσότεραΦ2: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ
Φ: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΠΑΡΑΤΗΡΗΣΕΙΣ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραΙ. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)
Ι. Πραγματικές ΥΝΑΡΤΗΕΙ πραγματικής μεταβλητής (έως και ΑΝΤΙΤΡΟΦΗ). Η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα.. Δίνεται η συνάρτηση = f (). Οι τετμημένες των σημείων τομής της C
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
Διαβάστε περισσότεραΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.
ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Η γραφική παράσταση της συνάρτησης f (),. α) Να βρείτε την τιμή του λ R 5 β) Να βρείτε τις τιμές f και f γ) Να σχεδιάσετε τη γραφική παράσταση της f διέρχεται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: M Τετάρτη 6 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα Ε_ΜλΓΑ(α)
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
Διαβάστε περισσότερα6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ
1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,
Διαβάστε περισσότεραΕρωτήσεις κατανόησης σελίδας Κεφ. 1
Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ
Διαβάστε περισσότεραΗμερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Παρασκευή 8 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α1. Να δώσετε τους ορισμούς των: α) Γνησίως φθίνουσα συνάρτηση β) Ολικό ελάχιστο
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Διαβάστε περισσότεραΖητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)
Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω
Διαβάστε περισσότεραΚεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες
Διαβάστε περισσότεραf g µε ( ) ( ) { } gof f ( x ) g( f(x)) A 1 { }
ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ίνονται οι συναρτήσεις, R D Σύνθεση της µε τη ονοµάζεται µία νέα συνάρτηση οποίο ισχύει ότι D µε { } Σ= o η οποία είναι ορισµένη D για το και της οποίας η τιµή για κάθε τέτοιο ισούται
Διαβάστε περισσότεραΣυνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).
Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότεραµηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;
ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται
Διαβάστε περισσότεραΆσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 008-009: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε
Διαβάστε περισσότεραΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ
ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
-6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι
Διαβάστε περισσότερακι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει
Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Ιουνίου 005 Από τα κάτωι Θέµατα καλείσε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o α. Θεωρία: Θεώρηµα σελ. 7 σχολικού βιβλίου β. Θεωρία: Η απάντηση βρίσκεται στη σελ. 7 του σχολικού βιβλίου γ. α-σ β-σ γ-σ δ-λ ε-λ ΘΕΜΑ o α. Είναι: w z iz + ( α + βi i( α βi + α + βi αi
Διαβάστε περισσότερα8 Ακρότατα και µονοτονία
8 Ακρότατα και µονοτονία Πρόταση 8.1. Εστω ότι η y = f (x) είναι συνεχής σε κάποιο διάστηµα I και έχει παράγωγο σε κάθε εσωτερικό σηµείο του I. 1. Η y = f (x) είναι σταθερή στο I αν και µόνο να είναι f
Διαβάστε περισσότεραΑνισώσεις Γινόμενο και Ανισώσεις Πηλίκο
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()
Διαβάστε περισσότεραα) είξτε ότι f(0) 4 και g(0) 4. β) Na δειχθεί ότι: f() > g() για κάθε R. Μονάδες 6 Β. Έστω f:r R άρτια για την οποία ισχύουν ότι f ()5 και η γραφική π
ΤΡΙΩΡΟ ΙΑΓΩΝΙΣΜΑ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ :Ανάλυση:.8,. έως και.3 (Σχολικό) ΘΕΜΑ o Α. Έστω η συνάρτηση f() ν, ν Ν{0,}. Να δείξετε ότι η f είναι παραγωγίσιµη στο R και ισχύει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o A. Θεωρία σελ. 7 Β. Θεωρία σελ. 47 Γ. α. Σωστό β. Σωστό γ. Σωστό δ. Λάθος (βρίσκεται "κάτω" από τη γραφική παράσταση) ε. Λάθος (π.χ. ()
Διαβάστε περισσότερα1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0
ΣΩΣΤΑ ΛΑΘΟΣ. Για οποιουσδήποτε μιγαδικούς z, z με Re (z + z ) = 0, ισχύει: Re (z ) + Re (z ) = 0. Ισχύει η ισοδυναμία : i κ = i λ κ = λ για κάθε κ., λ ακεραίους αριθμούς. 3. Για κάθε μιγαδικό αριθμό z
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ
ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.
Διαβάστε περισσότεραΑ. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΜΑΘΗΜΑ 9 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.9: Ρητές Αλγεβρικές Παραστάσεις. Θεµατικές Ενότητες:. Ρητές Αλγεβρικές Παραστάσεις. Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Ρητή αλγεβρική παράσταση
Διαβάστε περισσότεραΣυναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των
Διαβάστε περισσότεραln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x)
983 ΘΕΜΑΤΑ. Να βρεθεί το όριο της συνάρτησης f στο µε f() + ( + ). Πρέπει >, άρα το πεδίο ορισµού της f είναι το (, ) εποµένως έχει νόηµα η αναζήτηση του ορίου της στο. Για >, έχουµε + + ln e οπότε + +
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β, 8B, 9 Έστω Α ένα υποσύνολο του Ονομάζουμε
Διαβάστε περισσότεραΟΙ πιο πάνω έννοιες εκφράζουν όπως λέμε τη μονοτονία της συνάρτησης.
3 Μονοτονία συναρτήσεων 3 Μονοτονία συναρτήσεων 3Α Μονοτονία συνάρτησης Έστω f μία συνάρτηση με πεδίο ορισμού Γνησίως αύξουσα συνάρτηση Η συνάρτηση f λέγεται γνησίως αύξουσα στο Δ αν για κάθε, Δ, με
Διαβάστε περισσότερα5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για
5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία Πολυώνυμα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου Ον/μο:. Γεν. Παιδείας Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία - 15-01-17 Πολυώνυμα Θέμα 1 ο : Α. Πότε μία συνάρτηση f λέγεται περιοδική με περίοδο T;
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα
Διαβάστε περισσότεραII. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
Διαβάστε περισσότεραΠροηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων
Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f() είναι O( g() ) αν υπάρχουν σταθερές C και 0, τέτοιες ώστε: f() C g() για κάθε 0
Διαβάστε περισσότεραx(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν
Διαβάστε περισσότεραMαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ
Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Διαβάστε περισσότεραΗμερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Κυριακή 9 Οκτωβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 Να δώσετε τους ορισμούς των: α) Ολικό μέγιστο συνάρτησης β) Γνησίως
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος
Διαβάστε περισσότεραΣ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ
Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις
Διαβάστε περισσότερα