PRAVILA ZA PRIPREMU I POLAGANJE USMENOG ISPITA IZ BIOHEMIJE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PRAVILA ZA PRIPREMU I POLAGANJE USMENOG ISPITA IZ BIOHEMIJE"

Transcript

1 Fakultet veterinarske medicine, Univerzitet u Beogradu Katedra za fiziologiju i biohemiju Predmet: Biohemija PRAVILA ZA PRIPREMU I POLAGANJE USMENOG ISPITA IZ BIOHEMIJE Nakon analize ispitnih rezultata u protekle dve školske godine, procene kretanja realnog znanja i razumevanja studenata i ostvarenosti ciljeva predmeta, Kolegijum nastavnika na predmetu Biohemija doneo je odluku da, počev od decembarskog ispitnog roka god. uvede usmeno ispitivanje kandidata. 1. U periodu od decembra do juna godine za usmeni ispit dolazi u obzir 20 "velikih" pitanja koja su se od ranije koristila za Test, sa pridodatih 4 pitanja koja su se u frakcionisanoj formi ranije pojavljivala kao "mala" ili "test" pitanja. Počev od juna godine biće aktiviran pun spisak pitanja usklađen sa materijom sa predavanja. Spisak pitanja se nalazi na kraju ovog dokumenta. 2. Usmeni ispit je javan i mogu mu prisustvovati studenti koji planiraju polaganje u nekom kasnijem roku. 3. Studenti treba da obrate pažnju na to da ubuduće prosto nabrajanje golih činjenica ne garantuje pozitivnu ocenu. Od velike važnosti je poznavanje biološkog i metaboličkog konteksta zadate teme. 4. Studentima se sugeriše da za pripremanje ispita koriste neki od brojnih zvaničnih kvalitetnih udžbenika biohemije. Princip kojeg se držimo je da ne ocenjujemo iz kojeg udžbenika su kandidati učili, već koliko znaju i razumeju programom predviđeno gradivo. 5. Struktura ispitnog procesa: a) Prvo se polaže praktični ispit (datum i grupe se zakazuju unapred). Forma i rok važenja praktičnog ispita se ne menjaju u odnosu na prethodni period. Praktični ispit položen u bilo kom ispitnom roku jedne šk. godine važi zaključno sa oktobarskim II ispitnim rokom naredne školske godine. b) U svakom ispitnom roku, svi kandidati koji imaju važeći praktični ispit polažu mali test čija je svrha da eliminiše studente koji nisu ovladali osnovnim činjenicama. Pitanja na eliminacionom testu će biti ista kao dosadašnja testpitanja. Test se radi dan/dva nakon praktičnog ispita (datum i grupe se zakazuju unapred); sadrži 10 pitanja koja se boduju sa po 1 poenom; trajanje 20 minuta; minimum za prolaz je 6 ostvarenih poena. 1

2 c) Potvrda izlaska na ispit i izvlačenje ispitivača: u zakazanom terminu studenti koji su stekli pravo izlaska na usmeni ispit okupljaju se radi potvrde izlaska i javnog izvlačenja ispitivača. Student izvlači ceduljicu sa imenom i upisuje se na spisak datog ispitivača u nekom od termina predviđenih za usmeni ispit. Broj kandidata u jednom terminu je ograničen na 5. Promena termina je moguća samo u dogovoru sa ispitivačem. d) Usmeni ispit: kandidat izvlači karticu koja sadrži ispitnu kombinaciju od 4 pitanja i dobija min. da se pripremi za izlaganje, koje treba da traje dodatnih min. Ispitne kombinacije su napravljene u više varijanti i redovno će se menjati. Zamena pitanja nije dozvoljena. Svaki odgovor se posebno ocenjuje ocenom od Na sva ispitna pitanja potrebno je odgovoriti za pozitivnu ocenu. Ispitivač zadržava pravo da kandidatu postavi dopunska pitanja ukoliko ocena balansira. 6. Odnos broja osvojenih bodova i konačne ocene: - Prisustvovanje nastavi 2x2 max. 4 poena - Provera rada na vežbama 3x2 max. 6 poena - Kolokvijumi u semestru 2x10 max. 20 poena Ukupno iz nastave max. 30 poena min. 15 poena - Praktični ispit 2x6 max. 12 poena min. 2 poena - Mali test 10x1 max. 10 poena min. 6 poena - Usmeni ispit 4x12 max. 48 poena min. 28 poena UKUPNO ZA OCENU max. 100 poena min. 51 poen Beograd, god. Glavni predmetni nastavnik Prof. dr Ivan B. Jovanović 2

3 SPISAK PITANJA ZA PERIOD OD DECEMBRA VAŽENJE: ZAKLJUČNO SA APRILOM god PITANJA ZA OVAJ PERIOD SU ODŠTAMPANA CRNOM BOJOM I - BIOLOŠKI MOLEKULI (5) 1. - Aminokiseline Opšta struktura, glavne fizikohemijske osobine i klasifikacija aminokiselina; priroda peptidne veze; biološki značajni peptidi Građa proteina Nivoi građe proteina uz odgovarajući primer: primarna, sekundarna, suprasekundarna, tercijarna i kvaternarna struktura Struktura i funkcija proteina: mioglobin (Mb) i hemoglobin (Hb) Trodimenzionalna građa apoproteinskog dela Mb i Hb i funkcionalna struktura hema; mehanizam vezivanja i otpuštanja O2 sa kinetičkim svojstvima; alosterni efekat kod Hb Struktura i funkcija proteina: kolegen i imunoglobulin G (IgG) Opisati trodimenzionalnu građu i biološku funkciju kolagena i IgG Mehanizam i optimalni uslovi za delovanje enzima Modeli funkcionisanja katalitičkog centra (Fišer, Košland); mehanizam uticaja temperature, ph, aktivatora i inhibitora na enzimsku aktivnost sa kinetičkim posledicama Izoenzimi i multienzimski kompleksi Pojam i biološki smisao izoenzima, građa i funkcija LDH; pojam i biološki smisao multienzimskih kompleksa, navesti primer Energetika i kinetika enzim-katalizovane reakcije Osnovni termodinamički pojmovi: ukupna energija ( H), slobodna energija ( G) i entropija ( S); endergone i egzergone reakcije, kuplovane reakcije, značaj energije aktivacije ( G*) pri enzimskoj katalizi; Mihaelis-Menten kinetika enzimske reakcije (kinetika zasićenja) Modulacija enzimske aktivnosti Alosterna i kovalentna modulacija enzimske reakcije sa odgovarajućim primerima; kovalentna aktivacija zimogena Struktura bioloških membrana Opšta struktura i fizikohemijske osobine glicerofosfatida; fosfolipidni dvosloj; proteini membrane; glikokaliks Transport kroz membranu Pore, kanali, pasivni i aktivni transport, endo i egzocitoza. 11. Prenos (transdukcija) hormonskih signala na ćelijskoj membrani Receptori, mehanizmi transdukcije, sekundarni glasnici, biološki efekti. II - METABOLIZAM (15) A. Konvergencija kataboličkih puteva Transportni (respiracioni) lanac elektrona i sinteza ATP Metabolički smisao i povezanost sa drugim metaboličkim procesima; sakupljane, pretvaranje i konzervacija metaboličke energije; ključne komponente RL i njihova organizacija; proton-motorna sila i sinteza ATP. 3

4 13. - Ciklus limunske kiseline komponente CLK i njihova organizacija; energetski bilans (ATP); katabolički aspekti CLK i anaplerotske reakcije; osnove regulacije i suština "respiracione kontrole CLK". B. Metabolizam ugljenih hidrata Varenje ugljenih hidrata Enzimska razgradnja u digestivnom traktu, resorpcija i transport; unos glukoze u ćelije, međusobno pretvaranje (interkonverzija) heksoza Pentozofosfatni put komponente PFP i njihova organizacija (oksidativna i neoksidativna grana i metabolički scenariji za njihovu aktivaciju). 16. Glikoliza komponente glukolize i njihova organizacija (pripremna i oksidativna faza); aerobna i anaerobna glukoliza; energetski bilans (ATP); osnove regulacije Glukoneogeneza i resinteza glukoze Pojam i metabolički smisao glukoneogeneze i resinteze glukoze, povezanost sa drugim metaboličkim procesima; glukoplastični molekuli; ključne komponente procesa i njihova organizacija Glikogenoliza (razlaganje glikogena) i regulacija Metabolički smisao glikogenolize i povezanost sa drugim metaboličkim procesima; ključne komponente procesa i njihova organizacija; regulacija glikogenolize (detaljno) Glikogeneza (sinteza glikogena) i regulacija Metabolički smisao glikogeneze i povezanost sa drugim metaboličkim procesima; ključne komponente procesa i njihova organizacija; regulacija glikogeneze (detaljno). C. Metabolizam lipida Varenje lipida Emulgovanje i enzimska razgradnja u digestivnom traktu; resorpcija i reesterifikacija; transport u krvi: lipoproteini krvne plazme klasifikacija građa i uloge Metabolizam triglicerida i glicerofosfatida Mobilizacija triglicerida u adipocitima (sa osnovama regulacije) i transport do tkiva; sinteza triglicerida i glicerofisfatida β-oksidacija masnih kiselina komponente β-omk i njihova organizacija; oksidacija polinezasićenih MK i MK sa neparnim brojem C-atoma; energetski bilans (ATP) Sinteza acetonskih tela Metabolički smisao i povezanost sa drugim metaboličkim procesima; poremećaji matabolizma koji uslovljavaju nastanak ketoze; ključne komponente sinteze AcT i njihova organizacija Sinteza masnih kiselina komponente multienzimskog kompleksa sintaze masnih kiselina i organizacija 4

5 procesa sinteze Sinteza holesterola komponente i organizacija procesa (nastanak HMG-KoA, polimerizacija i ciklizacija); alosterna regulacija HMK-KoA reduktaze. D. Metabolizam azotnih jedinjenja Varenje proteina Enzimska razgradnja u digestivnom traktu, resorpcija i transport Metabolizam proteina i aminokiselina Pul (rezervoar) AK u organizmu; metaboličko poreklo i sudbina slobodnih aminokiselina; strategija razgradnje aminokiselina u jetri: transaminacija, oksidativna dezaminacija, dekarboksilacija; sudbina aminoazota i C-skeleta AK Sinteza uree Metabolički smisao uree i povezanost sa drugim metaboličkim procesima; ključne komponente procesa i njihova organizacija; energetski bilans (ATP) Katabolozam aminokiselina koje daju piruvat Katabolizam aromatičnih aminokislina, fenilketonurija i alkaptonurija Katabolizam hemoglobina Razlaganje u RES, žučne boje (pojam i značaj direktnog i indirektnog bilirubina) transport bilirubina u krvnom serumu; konjugacija i lučenje; transformacije u crevima i entero-hepatorenalno kruženje Katabolizam purinskih nukleotida komponente procesa i njihova organizacija; mokraćna kiselina (urat) i njen klinički značaj. E. Integracija metabolizma Insulin i glukagon u regulaciji metabolizma Metabolička sudbina piruvata i acetil-koa Međusobno pretvaranja ugljenih hidrata i masti (tov životinja) Specifičnosti metabolizma preživara Biološki značaj preživanja, mikroflora buraga, metabolizam ugljenih hidrata, lipida i proteina u buragu, metaboličke adaptacije preživara. III - OSNOVI MOLEKULSKE GENETIKE (4) Struktura RNK i DNK a) Biohemijski sastav i morfologija polinukleotidnih lanaca; Votson-Krikovi principi građe DNK. b) Građa i uloga histona; pakovanje DNK u jedru eukariota Replikacija (udvajanje) udvajanje i reparacija (popravka) DNK a) Biološki smisao replikacije; osnovni principi replikacije; ključne komponente procesa i njihova organizacija; tok replikacije: inicijacija, elongacija i terminacija. b) Tačkasta oštećenja i reparacija DNK Transkripcija (sinteza RNK) i posttranskripciona obrada a) Biološki smisao transkripcije; osnovni principi transkripcije; ključne komponente procesa i njihova organizacija; tok transkripcije: inicijacija, elongacija i terminacija. 5

6 b) Posttranskripciona obrada primarnog transkripta irnk (5'-cap, splajsing, 3'- poliadenilacija), trnk i rrnk u eukariotskim ćelijama Translacija (sinteza proteina) a) Biološki smisao tranlacije; osnovni principi translacije; ključne komponente procesa i njihova organizacija; tok tranlacije: inicijacija, elongacija i terminacija. b) Mehanizam delovanja antibiotika na nivou translacije. 6

ISPITNA PITANJA ZA USMENI DIO ISPITA

ISPITNA PITANJA ZA USMENI DIO ISPITA UNIVERZITET CRNE GORE MEDICINSKI FAKULTET MEDICINSKA BIOHEMIJA ISPITNA PITANJA ZA USMENI DIO ISPITA STUDIJSKI PROGRAM MEDICINA I ENZIMOLOGIJA 1. Opšte osobine enzima i struktura molekula enzima 2. Izoenzimi.

Διαβάστε περισσότερα

PITANJA ZA USMENI ISPIT IZ BIOHEMIJE

PITANJA ZA USMENI ISPIT IZ BIOHEMIJE PITANJA ZA USMENI ISPIT IZ BIOHEMIJE PROTEINI STRUKTURA I FUNKCIJE 1. Struktura proteina nivoi organizacije molekula 2. Proteini koji transportuju kiseonik hemoglobin i mioglobin ENZIMI 1. Opšte osobine

Διαβάστε περισσότερα

VODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA...

VODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA... SADRŽAJ UVOD 1 1. BIOHEMIJA ĆELIJE... 1-1 1.1 UVOD... 1-2 1.2 ĆELIJA KAO OSNOVNA ŽIVA JEDINICA TELA... 1-2 1.3 VANĆELIJSKA TEČNOST UNUTRAŠNJA OKOLINA... 1-2 1.4 BIOELEMENTI I BIOMOLEKULI... 1-3 1.5 ĆELIJA

Διαβάστε περισσότερα

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

ISPITNA PITANJA OSNOVI BIOHEMIJE

ISPITNA PITANJA OSNOVI BIOHEMIJE UNIVERZITET PRIVREDNA AKADEMIJA, NOVI SAD STOMATOLOŠKI FAKULTET PANČEVO ISPITNA PITANJA OSNOVI BIOHEMIJE Prof. dr Esma R. Isenović 1. Biohemija kao nauka, zadaci izučavanja i discipline 1. Koja je definicija

Διαβάστε περισσότερα

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN akademska godina 2012./2013. ljetni semestar

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN akademska godina 2012./2013. ljetni semestar FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU IZVEDBENI LAN akademska godina 2012./2013. ljetni semestar Naziv kolegija: Biokemija Naziv studija: Medicinska biokemija Godina i semestar studija:

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVEDBENI NASTAVNI PLAN

IZVEDBENI NASTAVNI PLAN Medicinski fakultet Sveučilišta u Rijeci Kolegij: BIOKEMIJA Voditelj: prof. dr.sc. Robert Domitrović Suradnici: prof.dr.sc Jadranka Varljen, doc.dr.sc. Dijana Detel, doc.dr.sc. Jelena Marinić, dr.sc. Sunčica

Διαβάστε περισσότερα

IZVEDBENI NASTAVNI PLAN

IZVEDBENI NASTAVNI PLAN Medicinski fakultet Sveučilišta u Rijeci Kolegij: Biokemija Voditelj: Doc. dr.sc. Dijana Detel Suradnici: Prof.dr.sc. Robert Domitrović, doc.dr.sc. Jelena Marinić, dr.sc. Sunčica Buljević Katedra: Zavod

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Biohemija proteina i nukleinskih kiselina

Biohemija proteina i nukleinskih kiselina Biohemija proteina i nukleinskih kiselina Biohemija proteina i nukleinskih kiselina Predavanja: Profesor Vesna Niketić vniketic@chem.bg.ac.rs Docent Natalija Polović polovicn@chem.bg.ac.rs Vežbe: Dr Natalija

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

IZVEDBENI NASTAVNI PLAN

IZVEDBENI NASTAVNI PLAN Medicinski fakultet Sveučilišta u Rijeci Kolegij: Biokemija II Voditelj: red. prof. dr. sc. Robert Domitrović Suradnici: doc. dr. sc. Dijana Detel, doc. dr. sc. Jelena Marinić, dr. sc. Sunčica Buljević,

Διαβάστε περισσότερα

CIKLUS LIMUNSKE KISELINE (CLK)

CIKLUS LIMUNSKE KISELINE (CLK) SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE CIKLUS LIMUNSKE KISELINE (CLK) Doc. dr. sc. Dragana Vuk Metabolička sudbina piruvata 1. Oksidacijska dekarboksilacija piruvata 2. Ciklus

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Lobulus: Funkcionalna jedinica jetre

Lobulus: Funkcionalna jedinica jetre Fiziologija jetre ANATOMIJA JETRE PORTNI HILUS Lobulus: Funkcionalna jedinica jetre Nepravilna poliedarna prizma ( 0.7x2.0 mm) v.portae a.hepatica laminae hepatis,lamina terminalis Portna trijada Žučni

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA

NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA ANIMACIJE!!! REPLIKACIJA https://www.youtube.com/watch?v=tnkwgcfphqw TRANSKRIPCIJA https://www.youtube.com/watch?v=jqiwwjqf5d0 TRANSKRIPCIJA I TRANSLACIJA https://www.youtube.com/watch?v=-k8y0atkkai

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

HORMONSKA REGULACIJA METABOLIZMA

HORMONSKA REGULACIJA METABOLIZMA HORMONSKA REGULACIJA METABOLIZMA HORMONSKA REGULACIJA METABOLIZMA - Definicija - Bazalni metabolizam - Faktori od uticaja: METABOLIZAM - Zastupljenost skeletnih mišića u ukupnoj telesnoj masi - Uzrast

Διαβάστε περισσότερα

Organele života i smrti

Organele života i smrti MITOHONDRIJE Organele života i smrti OTKRIĆE MITOHONDRIJA 1857. Albert Kolliker uređeni nizovi granula u mišićnim ćelijama 1893. Richard Altman bioblasti vrsta bakterija? 1. menjaju oblik 2. umnožavaju

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

IZVEDBENI NASTAVNI PLAN

IZVEDBENI NASTAVNI PLAN Sveučilište u Rijeci Medicinski fakultet University of Rijeka Faculty of Medicine Braće Branchetta 20 51000 Rijeka CROATIA Phone: +385 (0)51 651 111 www.medri.uniri.hr Kolegij: Biokemija Voditelj: doc.dr.sc.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

CILJNA MESTA DEJSTVA LEKOVA

CILJNA MESTA DEJSTVA LEKOVA FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

3/25/2016. Hemijske komponente ćelije

3/25/2016. Hemijske komponente ćelije Hemijske komponente ćelije Molekuli u ćeliji Najbitniji molekuli u ćeliji su poznati. Putevi sinteze i razgradnje su poznati za većinu ćelijskih konstituenata. Hemijska energija pokreće biosintezu. Organizacija

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

TRANSLACIJA. Doc. dr Snežana Marković

TRANSLACIJA. Doc. dr Snežana Marković TRANSLACIJA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu BIOSINTEZA PROTEINA - TRANSLACIJA U toku translacije dolazi do specifičnog

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

METABOLIZAM PROTEINA

METABOLIZAM PROTEINA METABOLIZAM PROTEINA PREGLED METABOLIZMA AMINO KISELINA Hranom unijeti proteini se razgrađuju do amino kiselina, koje se apsorbuju, prenose cirkulacijom i preuzimaju u ćelije različitih tkiva. Amino kiseline

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore

Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama. Hloroplast

Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama. Hloroplast Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama Hloroplast Procesom ćelijskog disanja deponovana energija u šećerima erima prevodi se u ATP i druge energetske metabolite. Istovremeno se

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

METABOLIZAM PROTEINA

METABOLIZAM PROTEINA METABOLIZAM PROTEINA PREGLED METABOLIZMA AMINO KISELINA Hranom unijeti proteini se razgrađuju do amino kiselina, koje se apsorbuju, prenose cirkulacijom i preuzimaju u ćelije različitih tkiva. Amino kiseline

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

METABOLIZEM OGLJIKOVIH HIDRATOV

METABOLIZEM OGLJIKOVIH HIDRATOV METABOLIZEM OGLJIKOVIH HIDRATOV KAKO CELICA DOBI GLUKOZO IN OSTALE MONOSAHARIDE? HRANA ZNOTRAJCELIČNI GLIKOGEN ali ŠKROB razgradnja s prebavnimi encimi GLUKOZA in ostali monosaharidi fosforilitična cepitev

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Biohemija nukleinskih kiselina. Genetska informacija

Biohemija nukleinskih kiselina. Genetska informacija Biohemija nukleinskih kiselina Genetska informacija deoksiribonukleinske kiseline (DNK) ribonukleinske kiseline (RNK) DNK je nosilac naslednih informacija u ćeliji, dok RNK učestvuju u prenošenju tih informacija

Διαβάστε περισσότερα

Regulacija ekspresije gena kod prokariota

Regulacija ekspresije gena kod prokariota Regulacija ekspresije gena kod prokariota Bakterije Jednoćelijski organizmi koji nemaju jedro i druge organele. Geni u najvećem broju slučajeva ne poseduju introne i većina gena organizovana je u operone.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

METABOLIZAM UGLJENIH HIDRATA

METABOLIZAM UGLJENIH HIDRATA METABOLIZAM UGLJENIH HIDRATA 14.02.2018. Zbirni pregled glikolize i ciklusa trikarboksilnih kiselina Glikoliza omogućava oksidaciju glukoze u uslovima sa ili bez O 2. U uslovima prisustva O 2,

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

uniformno konvergira na [ 2, 2]?

uniformno konvergira na [ 2, 2]? Građevinski fakultet Univerziteta u Beogradu 27.6.2015. ZAVRXNI ISPIT IZ MATEMATIKE 3 Prezime i ime: Broj indeksa: 1. Definisati diferencijabilnost funkcije u = u(x, y, z) u taqki (0, 1, 2). 2. Definisati

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

KATABOLIZAM UGLJENIH HIDRATA

KATABOLIZAM UGLJENIH HIDRATA KATABOLIZAM UGLJENIH HIDRATA 20.02.2018. SINTEZA I RAZGRADNJA GLIKOGENA Glikogen je homopolimer glukoze, oblik u kojem se ugljeni hidrati čuvaju u životinja. Čuvanjem glukoze u obliku glikogena

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Inzulin, glukagon i. Prof. dr. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu

Inzulin, glukagon i. Prof. dr. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu Inzulin, glukagon i šećerna erna bolest Prof. dr. Zoran Valić Katedra za fiziologiju Medicinski fakultet u Splitu sudjelovanje u probavi dva važna hormona: inzulin i glukagon (važni za regulaciju metabolizma

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

ENZIMI KAO CILJNA MESTA DEJSTVA LEKOVA. Enzimi kao ciljna mesta dejstva lekova

ENZIMI KAO CILJNA MESTA DEJSTVA LEKOVA. Enzimi kao ciljna mesta dejstva lekova FARMACEUTSKA HEMIJA 1 ENZIMI KAO CILJNA MESTA DEJSTVA LEKOVA Predavač: Prof. dr Slavica Erić Enzimi kao ciljna mesta dejstva lekova -enzimi učestvuju u hemijskoj reakciji ali pri tome ostaju nepromenjeni

Διαβάστε περισσότερα

Osnovne karakteristike 3-D strukture molekula DNK i RNK

Osnovne karakteristike 3-D strukture molekula DNK i RNK Osnovne karakteristike 3-D strukture molekula DNK i RNK Rendgenska strukturna analiza (vlakana) DNK Watson-Crickov model (B) DNK Zašto dvostruki heliks? Polimorfizam DNK: kanonske (standardne/prosečne)

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα