Uvod. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju. Što je kemija i što izučava kemija
|
|
- Ἀριστόβουλος Κολιάτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Uvod Što je kemija i što izučava kemija Znanost koja se bavi proučavanjem prirode, tj. prirodnih pojava nazivamo prirodnom znanošću. Kemija je prirodna znanost koja proučava tvari od kojih je sastavljen svemir, ispituje njihov sastav, svojstva i građu te istražuje promjene tvari. 1
2 Fizičke i kemijske promjene Fizičke promjene Pri fizičkim promjenama ne mijenja j se kemijski sastav tvari. Primjer: zagrijavanje platinske žice. Kemijske promjene Pri kemijskim promjenama mijenja se sastav tvari Primjer: zagrijavanje magnezijske žice 2Mg + O 2 2 MgO. Prirodni zakon Iz sličnosti većeg broja iskustvenih činjenica izvodi se zakonitost. Hipoteze i teorije Hipoteze i teorije su slikovite predodžbe ili jednadžbe kojima se nastoji tumačiti prirodne zakonitosti. 2
3 Kemijska znanost je toliko opširna da se tijekom svog razvitka podijelila na uža znanstvena područja (grane): anorganska kemija organska kemija fizikalna (fizička) kemija analitička kemija biokemija kemijska tehnologija itd. Većina uporabnih tvari i predmeta koji nas okružuju proizvodi su kemijske industrije. Svemir je sastavljen od materije koja je u neprestanom gibanju i postoji u dva oblika: 1. kao čestice (elementarne i složenije) i njihove agregacije, koje nazivamo tvarima; karakterizira ih fizička veličina masa 2. kao polje sila (gravitacijsko, elektromagnetsko, nuklearno); karakterizira ih fizička veličina energija. Obasuoblikačvrsto povezana međusobnom pretvorbom, a njihov odnos je matematički izražen Einsteinovom jednadžbom ekvivalencije mase i energije (Albert Einstein, g.): E = m c 2 (c = m s 1 ) 3
4 Čiste tvari Vrste tvari Bilo koji stupanj organizacije (sređenosti) materije naziva se tvar (ili supstancija). ) Tvari se u prirodi mogu podijeliti u dvije skupine: 1. Homogene tvari 2. Heterogene tvari 4
5 Homogene tvari Čiste tvari Homogene smjese i otopine Kemijske elemente Kemijske spojeve Homogene tvari Homogene tvari su tvari koje su u svakom svom dijeliću jednakog sastava. Dijele se na: a) Čiste tvari homogene tvari točno određenog i stalnog kemijskog sastava i drugih karakterističnih konstantnih svojstava. Primjerice, čisto Fe: ρ =7,86gcm 3 ; t t =1535 o C; magnetično je itd. b) Homogene smjese i otopine su homogene tvari sastavljene od smjese čistih tvari (vodena otopina šećera, otopina alkohola u vodi itd.). Homogenim smjesama pripadaju i tzv. čvrste ili kristalne otopine (zlato za nakit čvrsta je otopina srebra u zlatu) i plinske smjese (zrak). 5
6 Heterogene tvari Sastavljene su od međusobno odijeljenih dijelova homogenih tvari (granit, mlijeko, dim, magla) heterogene smjese homogenih tvari. Primjeri: granit sastavljen je od triju homogenih tvari, tvrdih kristalića kremena, sjajnih ljuskica tinjca i bijelih kristalića glinenca magla čestice tekućine raspršene u plinu. Osnovne karakteristike svake smjese: - sastav smjese je promjenjiv - svaka tvar u smjesi zadržava svoja karakteristična fizikalna i kemijska svojstva - svojstvasmjeseoviseokoličini i o svojstvima tvari koje ju tvore - pojedine sastojke možemo odijeliti pogodnim postupcima 6
7 Odjeljivanje čistih tvari iz njihovih homogenih i heterogenih smjesa naziva se frakcioniranje. Postupci frakcioniranja: otapanje, filtriranje, sedimentiranje i plivanje, centrifugiranje, dekantiranje, dijaliza, flotacija, magnetsko odjeljivanje, destilacija, kondenzacija, sublimacija, ekstrakcija, frakcijska kristalizacija, frakcijsko otapanje, frakcijska difuzija, termodifuzija, kromatografija i ionska izmjena. Otapanjem se odjeljuju topljive tvari u pogodnom otapalu od neotopljenih filtriranjem, sedimentiranjem ili centrifugiranjem. Filtriranjemi se odjeljuju j suspendirane tvari (talog) od tekućine. Sedimentiranjem i plivanjem odjeljuju se tvari kod kojih je suspendirana tvar znatno specifički teža, odnosno lakša od tekućine. Uzastopni postupak sedimentiranja i odlijevanja tekućine iznad taloga naziva se dekantiranje. Centrifugiranje je sedimentiranje pod utjecajem centrifugalne sile. 7
8 Magnetskim odjeljivanjem odjeljuju se magnetične tvari od onih koje nisu magnetične. Destilacijom se odjeljuju j j tekuće, lakše hlapljive pj tvari iz otopine, pri čemu zaostanu teže hlapljive tvari. Sublimacija je izravan prijelaz iz čvrstog u plinovito agregacijsko stanje i obratno (npr. I 2,HgCl 2 ). Ekstrakcija se temelji na različitoj topljivosti neke tvari u dva otapala koja se ne miješaju. Svojstva čistih tvari se mogu podijeliti na fizička i kemijska. Fizička svojstva se očituju pri fizičkim promjenama i karakteristična su ako ne ovise o veličini, odnosno stanju razdijeljenja (gustoća, tvrdoća, talište i vrelište, kristalni oblik, kalavost, topljivost, električna i termička vodljivost) Boju tvari ne možemo smatrati karakterističnim fizičkim svojstvom jer ovisi o razdjeljenju (primjer: HgO; krupni kristalići crvene boje, sitni kristalići žute boje). 8
9 Karakteristična fizička svojstva su karakteristične konstante uz točno određene vanjske uvjete i agregacijsko stanje tvari. Mogu se podijeliti na: - intenzivna, koja su neovisna o količini tvari (talište, vrelište, gustoća itd.) - ekstenzivna, kojaoviseokoličini tvari (volumen, masa, energija itd.). Kemijska svojstva se očituju prilikom kemijskih promjena čistih tvari, tj. kada pri kemijskim ki reakcijama prelaze u neke druge tvari. Npr. željezo se otapa i reagira sa kiselinama. Vrste čistih tvari Čiste tvari dijele se na kemijske elemente i spojeve. Spoj Analiza Sinteza Elementi natrijev klorid natrij + klor Kemijski spojevi mogu se razložiti kemijskim postupcima na jednostavnije tvari, kemijske elemente. 9
10 Kemijski element je jednostavna čista tvar koja se ne može nikakvim fizikalnim ili kemijskim postupkom razložiti na drugu čistu tvar drugog kemijskog sastava (jednostavniju tvar). Kemijski element je skup svih istovrsnih atoma s istim brojem protona u jezgri. Elementarna tvar sadrži atome istog kemijskog elementa. Kemijski spojevi su složene čiste tvari koje se mogu kemijskim postupcima rastaviti na elementarne tvari (analiza), odnosno mogu nastati kemijskom reakcijom iz tih elementarnih tvari (sinteza). Analiza je niz fizikalnih i kemijskih postupaka rastavljanja kemijskog spoja na elementarne tvari ili postupaka kojima se želi doznati sastav različitih uzoraka (kvalitativna i kvantitativna analiza). Dobivanje novih tvari iz već poznatih naziva se sinteza. 10
11 Atom je najmanja čestica koja još zadržava svojstva elementa, a složene je strukture koja mu omogućujedase kemijski spaja s drugim atomima i tako izgrađuje tvari. Udruživanjem istovrsnih atoma nastaju elementarne tvari - kemijski elementi, a udruživanjem raznovrsnih atoma kemijski spojevi. Elementarne tvari dijele se na metale, nemetale i polumetale l (metaloide). t l Do danas je poznato 118 elemenata (92 nađeno u prirodi) Elementi u prirodi dolaze u spojevima s drugim elementima ili samorodni (Au, Pt, Hg, Ag, Cu, C, S, N 2 2, O 2, plemeniti plinovi). Pri sobnoj temperaturi i tlaku 11 elemenata su plinovi (H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn), 2 su tekućine (Hg, Br), a svi ostali elementi su čvrste tvari. Jöns Jakob Berzelius predložio je početkom 19. stoljeća kemijske simbole elemenata prema njihovim latinskim imenima (npr. Cu, lat. cuprum). 11
12 F. W. Clarke - sastav Zemljine kore Zastupljenost kemijskih elemenata u zemljinoj kori, hidrosferi i atmosferi maseni udio (%) Element maseni udio (%) kisik 49,20 silicij 25,67 aluminij 7,50 željezo 4,71 kalcij 3,39 natrij 2,63 kalij 2,40 magnezij 1,93 Zakoni kemijskog spajanja po masi 1. Zakon o održanju mase 2. Zakon stalnih omjera masa 3. Zakon umnoženih omjera 4. Zakon spojnih masa 12
13 Zakon o održanju mase (A. L. Lavoisier, potkraj 18. st.) Nikakve promjene ne mogu se opaziti u ukupnoj masi svih tvari koje sudjeluju u nekoj kemijskoj reakciji. Zakon je potvrdio H. Landolt početkom 20. stoljeća s točnošću mjerenja 1:10 7. Za izolirani reakcijski sustav vrijedi da je ukupna masa i energija stalna zakon o održanju materije. Zakoni kemijskog spajanja po volumenu 1. Gay-Lussacov zakon spojnih volumena 2. Avogadrov zakon 13
14 Gay-Lussacov zakon spojnih volumena (J. L. Gay-Lussac, g.) Volumeni plinova koji međusobno reagiraju ili nastaju kemijskom reakcijom odnose se kao mali cijeli brojevi kada su mjerenja obavljena pri stalnom tlaku i temperaturi. K( ): 4H 2 O + 4e 2H 2 + 4OH A(+): 4OH O 2 + 2H 2 O+ 4e 2H 2 O 2H 2 +O 2 Iz ukupne reakcije se vidi da iz 2 mola vode elektrolizom nastaje 2 mola vodika i 1 mol kisika, što znači i da su volumeni tih plinova u odnosu 2:1 (mali cijeli brojevi). Anoda Katoda Hofmannov aparat V(H 2 ) : V(O 2 ) = 2 : 1 14
15 Avogadrov zakon (A. Avogadro, g.) Najmanje čestice nekog plina nisu slobodni atomi, već skupine malog broja atoma koje je Avogadro nazvao molekulama (lat. molliculus = sitan). Avogadrova hipoteza: Plinovi jednakog volumena pri istoj temperaturi i tlaku sadrže isti broj molekula. Iz Avogadrovog zakona mogu se izvući dva važna zaključka: 1. Ako plinovi istog volumena sadrže isti broj molekula, onda se mase plinova jednakog volumena odnose kao mase molekula l tih plinova, odnosno kao M r tih plinova. 2. Ako različiti plinovi istog volumena sadrže isti broj molekula, onda i obratno, isti broj molekula bilo kojeg plina zauzima u identičnim fizičkim uvjetima isti volumen. Taj volumen plina naziva se molarnim volumenom (V mo ) i pri normalnim okolnostima (temperaturi od 0 o C i tlaku od Pa) iznosi 22,4 dm 3 mol 1. 15
Tvari 1. lekcija
1. lekcija Tvari 1. Tvari Uvod Kemija je prirodna znanost koja proučava sastav, građu i svojstva tvari, reakcije među tvarima i čimbenike koji utječu na kemijske reakcije. Tvari izgrađuju sve što nas okružuje.
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)
Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Osnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET OPĆA KEMIJA MIRA LEGIN KOLAR DAMIR HRŠAK. Sisak, 2008.
1 SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET OPĆA KEMIJA MIRA LEGIN KOLAR DAMIR HRŠAK Sisak, 008. SADRŽAJ 1. UVOD......5. TVARI......6.1. PODJELA TVARI......6.. STRUKTURA ATOMA......9.. ATOMNA JEZGRA......11.4.
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Prirodne znanosti kemija
Prirodne znanosti kemija 1. Kemija proučava: sastav građu svojstva i promjene tvari 2. Ostale su prirodne znanosti: fizika biologija astronomija geologija molekularna biologija 3. Vrste kemijske industrije:
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Kemija je znanost o tvarima i njihovim promjenama. Kemijska znanost toliko je opširna da se tijekom svog razvitka podijelila na uža područja:
PRIRODNE ZNANOSTI I KEMIJA Prirodne znanosti su znanosti koje proučavaju prirodu i prirodne pojave Tri osnovne prirodne znanosti su: fizika, kemija i biologija Kemija proučava tvari od kojih je sastavljen
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
B. Perić, Kemijsko računanje, HDKI/Kemija u industriji, Zagreb, M. Sikirica, Stehiometrija, Školska knjiga, Zagreb, 1999.
Literatura Predavanja I. Filipović, S.Lipanović, Opća i anorganska kemija, I dio, Školska knjiga, Zagreb, 1995. Seminar B. Perić, Kemijsko računanje, HDKI/Kemija u industriji, Zagreb, 2006. M. Sikirica,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima
Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
VJEŽBE IZ OPĆE I ANORGANSKE KEMIJE
SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE ZAVOD ZA OPĆU I ANORGANSKU KEMIJU VJEŽBE IZ OPĆE I ANORGANSKE KEMIJE INTERNA SKRIPTA Zagreb, 2009. GRADIVO I POKUSI radno mjesto stranica
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa
Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton,
Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, neutron Građa atoma Pozitron, neutrino, antineutrino Beta
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija
Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Postupak rješavanja bilanci energije
Postupak rješavanja bilanci energije 1. Postaviti procesnu shemu 2. Riješiti bilancu tvari 3. Napisati potreban oblik jednadžbe za bilancu energije (zatvoreni otvoreni sustav) 4. Odabrati referentno stanje
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
KEMIJSKO RAČUNANJE. uvod DIMENZIJSKA ANALIZA. odnosi masa reaktanata i produkata zakon o održavanju masa različito zadana količina reaktanata
KEMIJSKO RAČUNANJE uvod odnosi masa reaktanata i produkata zakon o održavanju masa različito zadana količina reaktanata MOLNA METODA: pristup određivanja količine produkata (reaktanata) kemijskom reakcijom
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
VOLUMEN ILI OBUJAM TIJELA
VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE
Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
KLASIFIKACIJA PRIRODNIH NAUKA
KLASIFIKACIJA PRIRODNIH NAUKA BIOFIZIKA BIOLOGIJA BIOHEMIJA FIZIKA HEMIJA FIZIČKA HEMIJA VODIČ KROZ MODERNU NAUKU 1. Ako je zeleno ili mrda, to je biologija 2. Ako smrdi, to je hemija 3. Ako ne funkcioniše,
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
TEHNIČKA TERMODINAMIKA
UVOD TEHNIČKA TERMODINAMIKA dr. sc. Dražen Horvat, dipl.ing. Zagreb, ožujak 2006. TERMODINAMIKA = znanost o energiji ENERGIJA = sposobnost da se izvrši rad ili mogućnost da se uzrokuju promjene PRINCIP
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Fizika Biologija i druge prirodne nauke. Dva glavna vida materije su masa i energija. E = m c 2
HEMIJA je nauka o materiji i njenim promenama Fizika Biologija i druge prirodne nauke Dva glavna vida materije su masa i energija. Ajnštajnova veza između energije i materije E = m c 2 Materija ima dualna
UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 01. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE α Autor: IVANA SRAGA Grafički urednik: Mladen Sraga BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Osnove kemije i fizike
1 Osnove kemije i fizike 10 Tvar, masa i sila 10 Rad i energija 11 Atomi i elementarne čestice 13 Elektricitet 14 Kemijske veze 17 Mol i koncentracija 17 Difuzija 19 Kemijske reakcije 21 Voda 25 Kiseline,
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane