Fizika 2. Optika. Geometrijska optika
|
|
- Πόντος Δοξαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Fizika Optika Geometrijska optika
2 Geometrijska optika -empirijska, aproksimativa (vrijedi uz određee uvjete) -svjetlost se proučava kao pravocrta pojava koja se širi brziom c 0 =30 8 ms - u vakuumu -svojstva svjetlosti objašjea su zakoima geometrijske optike
3 Zakoi geometrijske optike. Zako pravocrtog šireja svjetlosti: U homogeom prozirom sredstvu svjetlost se širi pravocrto. zastor A B geometrijska sjea Ogib; svijetle i tame pruge Geometr. optika fizikala optika Zako pravocrtog šireja svjetlosti vrijedi za velike prepreke; kod malih prepreka javlja se ogib radi očitovaja vale prirode svjetlosti (slika, zrake se šire u svim smjerovima). U blizii velikih masa (pr. Suce) zraka svjetlosti skreće-opća teorija relativosti
4 . Zako ezavisosti šireja sopova zraka svjetlosti: Ako jeda sop zraka svjetlosti prolazi kroz drugi sop, jeda a drugog e utječu (ako izvori isu kohereti). I I Sopovi e utječu jeda a drugoga Iterferecija; svijetle i tame pruge (kohereti izvori)
5 3. Zako refleksije (odbijaja): kut upada jedak je kutu refleksije θ = θ Ulaza zraka, reflektiraa zraka i ormala se alaze u istoj ravii 5
6 3. Zako refleksije = Zrcala (specular) refleksija Difuza refleksija
7 Zrcala refleksija Zrcala refleksija je refleksija od glatke površie Reflektirae zrake su paralele jeda s drugom 7
8 Difuza refleksija Difuza refleksija je refleksija od hrapave površie Reflektiraa zrake širi se u različitim smjerovima Površia se poaša kao glatka površia sve dok su varijacije površie puo maje od vale duljie svjetlosti 8
9 zrcala refleksija difuza refleksija 9
10 STAKLO Jedosmjero zrcalo Jedosmjero zrcalo je samo čisto staklo prozora. Koferecijska soba (svjetlo) Svjetla soba Tama soba Reflektirao svjetlo iz svijetle sobe sakriva trasmitirao svjetlo iz zatamjee sobe za promatraje Soba za promatraje (tamo)
11 Fermat-ov pricip; svjetlost se širi putem ajkraćeg vremea refleksija:
12 4. Zako refrakcije (loma) Kada zraka svjetlosti putuje kroz traspareta medij (optičko sredstvo) i dolazi a graicu s drugim trasparetim medijem, dio eergije se reflektira, a dio ulazi u drugi medij Zraka koji ulazi u drugi medij mijeja smjer kretaja; kažemo da se lomi a graici između dva optička sredstva Ulaza zraka, reflektiraa zraka, lomljea zraka i ormala leže u istoj ravii. Sop svjetlosti iz zraka ulazi u (a) vodu ( =,33) ili (b) dijamat ( =,4) pod kutom od 60 u odosu a ormalu
13 Lom svjetlosti Put svjetlosti iz jedog u drugo optičko sredstvo je reverzibila Na primjer, zraka koja putuje od A do B lomi se prema okomici ( lom iz rjeđeg u gušće sredstvo) Ako je zraka kreula iz B, pratiti će putaju BA do točke A pa se lomi od okomice (lom iz gušćeg u rjeđe sredstvo) Ulaza zraka zrak staklo ormala Reflektiraa zraka Lomljea zraka 3
14 Zraka je upada zraka Zraka je reflektiraa zraka Zraka je lomljea zraka (zrak/staklo) Zraka je itero reflektiraa u staklu Zraka je lomljea zraka (staklo/zrak) 4
15 4. Zako refrakcije (loma): Lomljea zraka je u ravii upade zrake, a omjer siusa kuta upada i loma je kostata broj koji je ideks loma. (Sell-Descartes-ov zako) si u si l rel si u = si l Lom svjetlosti iz optički rjeđeg u optički gušće sredstvo u Sredstvo < c c Lom svjetlosti iz optički gušćeg u optički rjeđe sredstvo c l l Sredstvo C u c c 5
16 Zako loma (Sell-Descartes-ov zako) Willebrord Sel va Roye si si v je brzia svjetlosti u prvom sredstvu, a v je brzia svjetlosti u drugom v v Fizikali smisao ideksa loma 6
17 U vremeu Δt, zraka kreće od A do B, a zraka kreće od A'do C Lom svjetlosti Sredstvo, brzia svjetlosti v v c Iz trokuta AA'C i ACB, mogu se aći svi omjeri koji opisuju zako loma Sredstvo, brzia svjetlosti v si si A'C AC AB AC v t AC v t AC si v si v si si 7
18 Ideks loma Brzia svjetlosti u bilo kojem materijalu je maja od brzie u vakuumu Ideks loma, (apsoluti ideks loma), medija defiira se kao aps brzia svjetlosti u vakuumu brzia svjetlostiu mediju c c aps uvijek!!! Relativi ideks loma rel c c c c c c rel ili rel 8
19 Ideks loma za vakuum (i za zrak), = za ostala sredstva apsoluti ideks loma ili ideks loma > Fizikalo začeje ideksa loma: omjer brzia svjetlosti u dva optička sredstva (relativi ideks loma); tj. bezdimezioali broj koji pokazuje koliko puta je brzia svjetlosti u ekom optičkom sredstvu maja od brzie u vakuumu (apsoluti ideks loma) 9
20 Svjetlost u mediju Svjetlost ulazi sa lijeve strae Svjetlost može iteragirati s elektroom Pri tome elektro može apsorbirati svjetlost, oscilirati i poovo emitirati elmag zračeje Apsorpcija i zračeje uzrokuju da se prosječa brzia svjetlosti koja se kreće kroz optički gušće sredstvo smajuje 0
21 Frekvecija između medija Kad svjetlost prelazi iz jedog medija u drugi, jezia frekvecija se e mijeja brzia vala i vala duljia se mijejaju vale frote se e gomilaju, iti su stvoree iti su uištee a graici, frekvecija mora ostati ista
22 Ideks loma Frekvecija ostaje ista kako val putuje iz jedog medija u drugi v = ƒλ ƒ = ƒ ali v v pa je i λ λ Omjer ideksa loma dva medija može se izraziti kao omjer v v c c
23 Još o ideksu loma Prethoda relacija može biti pojedostavljea za usporedbu vale duljie i ideksa loma: λ = λ U zraku, =, pa se ideks loma materijala može se defiirati u pomoću valih duljia u vakuumu u sredstvu 3
24 4
25 Neki ideksi loma 5
26 Totala refleksija Totala refleksija se može dogoditi kada svjetlo pokušava prijeći iz sredie s većim ideksom loma u srediu s ižim ideksom loma Zrake e,f,g prikazuje totalu refleksiju 6
27 Pri prolasku svjetlosti iz optički gušćeg u optički rjeđe sredstvo za posebi upadi kut (graiči kut) kut loma će biti 90 graiči kut loma Za kut upada veći od graičog kuta, zraka se u potpuosti reflektira gr si gr za 7
28 Lom svjetlosti iz optički gušćeg u optički rjeđe sredstvo: - zrake, ; lom, kut loma, l u, kuta upada - zrake, ; graiči lom, l = 90 0, u=u graiči =u gr zrake, ; TOTALNA REFLEKSIJA, kut u u gr C l l=90 0 c c 3 u u gr u u gr r 3 8
29 Totala refleksija Kada se svjetlost lomi iz optički gušćeg u optički rjeđe sredstvo,može se pojaviti totala refleksija. Oa astaje u slučaju kada je kut upada veći od graičog kuta; slika u prethodom slide-u. Zako loma u slučaju graičog loma glasi: si u za gr 0 si 90 _ sr sredstva sredstva zrak si u pa je zadji oblik jedadžbe ujedo i jedadžba graičog kuta, koji određuje pojavu totale refleksije. gr si u gr sr sr sr 9
30 Totala refleksija
31 Primjea totale refleksije: optička vlaka 3
32 Optička vlaka, totala refleksija Traspareta jezgra je okružea oblogom Obloga ima iži od jezgre To omogućava da se svjetlo u jezgri totalo reflektira a graici Kombiacija je obložea zaštitom oblogom 3
33 Primjea totale refleksije: prizme u = 45 0 u gr = 4, = 90 0 =
34 Optičke fatamorgae u atmosferi doja fatamorgaa (iferior mirage) - cesta, pustija gorja fatamorgaa (superior mirage) - more (otok u moru), avio z dt dz T z T 0 dt dz 0 Temperatura opada u smjeru osi z; u tom smjeru se povećava ideks loma zraka (lom iz optički gušćeg u optički rjeđe sredstvo, lom od okomice) Temperatura raste u smjeru osi z; u tom smjeru se smajuje ideks loma zraka (lom iz optički rjeđeg u optički gušće sredstvo, lom prema okomici) 34
35 35
36 Pojava fatamorgae a autocesti dolazi zbog toga što se ideks loma postupo mijeja zbog ugrijaog zraka. Promatra č Direkta zraka Zraka A usmjerea blago prema dolje 36
37 37
38 Što uzrokuje fatamorgau ebo oko.09 Ideks loma Vrući asfalt uzrokuje gradijet (promjeu) ideksa loma čija se vrijedost povećav kao što se povećava udaljeost od ceste 38
39 39
40 40
41 4
42 4
43 43 43 Fermat-ov pricip: stvari put što ga svjetlost prijeđe između dviju točaka je takav da je za taj put potrebo ajmaje vrijeme. Ovaj pricip aziva se pricipom ajmajeg vremea. Primjer: lom svjetlosti S O P h b a x u i l t i t t t i i t i t i t i v v x a b v x a x h v x dx dt v x a b v x h v v t si si 0 ) ( ) ( ) ( OP SO
44 Fermatov pricip: Zako refleksije Fermatov pricip: svjetlosa zraka putuje od točke A do točke B u mediju duž puta za koji je potrebo ajkraće vrijeme propagacije. Zako refleksije: AB DOP x y y x y y 3 3 (x 3, y 3 ) DOP AB - duljia optičkog puta fiksiramo koordiate - x, y, x, y 3 3 θ r θ i y (0, y ) ddop y y y y 3 AB 0 dy x y y x3 y3 y 0 y y y y 3 x y y x y y 3 3 (x, y ) x 0 si si i si si i r r
45 Fermatov pricip: Zako loma DOP x x y x x y AB i t 3 3 (x, y ) A fiksiramo koordiate - x, y, x, y 3 3 y x i (x, 0) t i t (x 3, y 3 ) i d OPL x x x x i t 3 AB 0 dx x x y x3 x y3 0 t x x x3 x x x y x x y si si i i t t si si i i t t DOP- duljia optičkog puta 45
46 lom svjetlosti a plaparaleloj ploči - paraleli pomak, d u u l d l pokažimo možemo pokazati da je d jedak: d D si( u cos l l) D si u si u si u 46
47 47 l l u u A B C d D C l l u D d l l u d l u ABC l ABC cos ) si( cos D AB & ) ABsi( ) si( AB d cos AB D u l u u Izvod jedadžbe:
48 paraleli pomak, d (cm) Za zadau ploču izračuati su paraleli pomaci iz jedadžbe: d D si u si u si u 4 3 PP ploca, ideks loma, =,5 debljia ploce, D = 4 cm 0 jedadzba: d = f(u) kalkulator Origi u(st) d (cm) , ,775 50,536 70, , , kut upada, u ( 0 ) 48
49 49 Određivaje ideksa loma pomoću prizme mi mi si si si si mi si si mi
50 mi si si Kut devijacije prizme kuta = 60 0 i ideksa loma =,5; možemo opaziti da je kut miimuma devijacije jedak 50 mi 37 0 za kut upada 48 0.
51 INDEKS LOMA OVISAN O VALNOJ DULJINI: maja vala duljiaveći ideks loma. Na prizmi to opažamo kao disperziju polikromatske svjetlosti; to zači da se maja vala duljia (boja, šara) lomi pod većim kutom što uzrokuje razdvajaje boja: spektar 5
52 Disperzija 9 Za dai materijal, ideks loma ovisi o valoj duljii svjetlosti koja prolazi kroz materijal Ova ovisost (ideksa loma) o λ zove se disperzija Sellov zako ukazuje da se svjetlo različitih valih duljia lomi pod različitim kutovima kada pada a materijal koji lomi svjetlost 5
53 Prizma-disperzija svjetlosti lj - cr širia spektra cr lj 53
54 Kako se tvori duga Duga se stvora disperzijom u sitim kapljicama vode. Svaka pojedia kap kiše koja pada a zemlju šalje sve dugie boje prema promatraču. Vrh duge je crve, a do je ljubičasto. 54
55 55
Fizika 2. Optika. Geometrijska optika 2009/10
Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Što je svjetlost? Svjetlost je elektromagnetski val
Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)
( ) ( ) ( + ) ( ) ( ) 2 2 ( ) [ > ] ( ) 2
Zadatak 8 (Dio, gimazija) Predmet i slika trebaju biti udaljei 00 cm. Gdje treba postaviti leću žariše daljie 6 cm da bi se dobila reala slika? Rješeje 8 d = 00 cm = m, f = 6 cm = 0.6 m, a =? Leće su prozira
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Fizika 2. Optika. Geometrijska optika 2009/10
Fizika 2 Optika Geometrijska optika 2009/10 1 2 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Fizika 2. Optika. Geometrijska optika Zakon loma na sfernoj granici Preslikavanje lomom
Fizika Optika Geometrijska optika Zako loma a seroj graici Preslikavaje lomom Zako loma a seroj graici promotrimo dva prozira sredstva koja imaju idekse loma i Graica između ta dva sredstva je sera površia
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
c - brzina svjetlosti u vakuumu, v - brzina svjetlosti u sredstvu. Apsolutni indeks loma nema mjernu jedinicu i n 1.
Geometrijska optika_intro Zakoni geometrijske optike, zrcala, totalna refleksija, disperzija svjetlosti, leće, oko i načini korekcije vida Zakoni geometrijske optike 1. zakon pravocrtnog širenja svjetlosti
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Fizika 2. Optika: Geometrijska Fizikalna 2007/08
Fizika 2 Optika: Geometrijska Fizikalna 2007/08 1 Svjetlost je... Svjetlost je ono što čini objekte oko nas vidljivima Svjetlost je jedini izvor boje Svjetlost je energija Svjetlost je i val i čestica
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Priprema za državnu maturu
Priprema za državnu maturu G E O M E T R I J S K A O P T I K A 1. Valna duljina elektromagnetskoga vala približno je jednaka promjeru jabuke. Kojemu dijelu elektromagnetskoga spektra pripada taj val? A.
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Fizika 2. Fizikalna optika 2008/09
Fizika 2 Fizikalna optika 2008/09 Što je svjetlost; što je priroda svjetlosti? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom sredstvu (optičkom sredstvu). U fizikalnoj
Optika Što je svjetlost?! Vrlo težak odgovor! Valna teorija
Optika Optika - Dio fizike. Znanost koja proučava svjetlosne pojave. Izvori svjetlosti: Sunce, zvijezde, užareni predmeti, plamen, električni izboj u plinovima i dr. Oko = detektor svjetlosti. Pomoću oka
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Geometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas
Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje 9 Geometrijska optika Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch ) Danas
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ
Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008
F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Geometrijska optika Lom svjetlosti na ravnim sistemima
Zadaci - Geometrijska optika - Fizikalna optika - 2007/08 Geometrijska optika Lom svjetlosti na ravnim sistemima ravni dioptar planparalelna ploča prizma Koja svojstva svjetlosti poznajete? Što je svjetlost
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE
PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE 1. Opišite svjetlosne izvore. Po čemu se oni razlikuju? 2. Opiši osjetljivost oka na različite valne duljine. 3. Definiraj (i pojasni) pojmove: točkasti svjetlosni
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Zadatak 081 (Nina, gimnazija) Monokromatska svjetlost valne duljine 1.16 µm pada okomito na dvije planparalelne ploče koje čine = 0.
Zaatak 08 (Nia, gimazija) Mookromatska svjetlost vale uljie.6 µm paa okomito a vije plaparalele ploče koje čie kli. Ualjeost viju susjeih tamih pruga je 0 mm. Koliki je kut meñu pločama? Rješeje 08 =.6
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa
.vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi
VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA
VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA Katedra fizike Grafičkog fakulteta Sveučilišta u Zagrebu Zagreb, 2006/07. 1 UVOD Optika je u širem smislu znanost o zračenju. Nekada je optika izučavala samo one
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Svjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo.
Poglavlje Svjetlost.....3..4..4...4...5..5...5...5.3..6..6...6...6.3..7..8. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti Ravno zrcalo Sferno zrcalo Lom svjetlosti
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε
Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Interferencija svjetlosti
Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
Fizika 2 Fizikalna optika
Fizika 2 Fizikalna optika Elektromagnetski valovi Polarizacija Što je svjetlost; što je priroda svjetlosti? OTKUDA DOLAZI? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:
Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
5. Brzina svjetlosti
5. Brzina svjetlosti 1. Ključni pojmovi Frekvencija i brzina svjetlosti, zakon loma, indeks loma, goniometar, prizma, permitivnost i permeabilnost vakuuma 2. Teorijski uvod Brzina svjetlosti: Iz Maxwellovih
MODELIRANJE OTVORENOG VODOTOKA (OPEN-CHANNEL FLOW)
MODELIRANJE OTVORENOG VODOTOKA (OPEN-CHANNEL FLOW) Promatrajmo strujaje fluida u otvoreom vodotoku. Popreči presjeci kaala mogu biti različiti pr. pravokuti, trapezi i sl., dok se kod prirodih vodotoka
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
F2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
OPTIČKA SVOJSTVA PAPIRA
OPTIČKA SVOJSTVA PAPIRA Papir svjetlosne zrake može apsorbirati, propustiti ili reflektirati. Kada svjetlost pada na papir jedan dio svjetlosnih zraka se odbije pod istim kutem pod kojim je i upao (zrcalna
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.