Fizika 2. Optika: Geometrijska Fizikalna 2007/08
|
|
- Θεοδώρα Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Fizika 2 Optika: Geometrijska Fizikalna 2007/08 1
2 Svjetlost je... Svjetlost je ono što čini objekte oko nas vidljivima Svjetlost je jedini izvor boje Svjetlost je energija Svjetlost je i val i čestica Svjetlost putuje i međudjeluje s materijom...u geometrijskoj optici: - svjetlost se širi pravocrtno - brzina svjetlosti u nekom optičkom sredstvu je konstantna 2
3 ...u valnoj optici Svjetlost je elektromagnetski val, koji predstavlja istodobno širenje električnog,e, i magnetskog polja, H, u prostor. Ta dva polja su međusobno okomita; slika: Brzina elm. vala (svjetlosti) c 0, u vakuumu iznosi: c 0 = ,458 km/s = m s -1 Osnovne karakteristike vala: valna duljina, λ (m, 1nm=10-9 m) perioda, T (s) frekvencija, f ili ν (s -1, ili Hz) (sjetimo se relacije: c 0 =λ ν*, zašto?) C 0, brzina vala u vakuumu grafički prikaz vala *c 0 =Δs/Δt=λ/T= λ ν jednadžba za brzinu kod jednolikog gibanja duž pravca 3
4 ...u čestičnoj prirodi svjetlosti Svjetlost je foton ( čestica ), čija energija je proporcionalna frekvenciji, f, i naziva se kvant svjetlosti: E=h f, gdje je h Planckova konstanta koja iznosi 6, J s. Dokaz za čestičnu prirodu svjetlosti je pojava fotoelektričnog efekta. Objašnjenje ove pojave a time i kvantne (čestične) prirode svjetlosti dao je A. Einstein godine za što je dobio Nobelovu nagradu. 4
5 Vidljiva svjetlost (visible light) Područje frekvencije: (4-7.5) x Hz Područje valnih duljina: nm Energije kvanata svjetlosti: ev 5
6 što je dakle S V J E T L O S T?...naučit ćemo o tome u: - geometrijskoj optici - fizikalnoj (valnoj i čestičnoj) optici...s pripadnim pojavama i zakonitostima koji danas objašnjavaju svjetlost. 6
7 Geometrijska optika - zakoni geometrijske optike - jednoznačno preslikavanje; Gaussova optika - refleksija svjetlosti: ravna zrcala, sferna zrcala - lom svjetlosti: ravni sistemi (ravni dioptar) sferni sistemi (sferni dioptar, tanka leća,debela leća, fotoaparat,sistem leća, mikroskop) Geometrijska optika: u ovom dijelu optike svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =299,792,458 m/s= m s -1 u vakuumu. Svojstva svjetlosti objašnjena u: zakonima geometrijske optike Primjena svojstava svjetlosti koristi se u: procesu preslikavanja ravni sistemi (ravni dioptar,planparalelna ploča, prizma) leća, sistem leća optički instrumenti (fotoaparat, mikroskop) 7
8 Zakoni geometrijske optike 1. Zakon pravocrtnog širenja svjetlosti A zastor geometrijska sjena Ogib; svijetle i tamne pruge B Geometr. optika fizikalna optika Zakoni geometrijske optike 2. Zakon nezavisnosti širenja snopova svjetlosti I 1 I 2 Snopovi ne utječu jedan na drugoga Interferencija; svijetle i tamne pruge: 8
9 Zakoni geometrijske optike 3. Zakon refleksije, α = β α β Zrcalna (specular) refleksija Difuzna refleksija Difuzna refleksija; 9
10 Zakoni geometrijske optike 4. Zakon loma: (Snell-Descartes-ov zakon) sin u = sin l n n 2 1 Lom svjetlosti iz optički rjeđeg u optički gušće sredstvo Lom svjetlosti iz optički gušćeg u optički rjeđe sredstvo u c 1 > c 2 c 2 l l=90 0 l c 2 c 1 < c 2 u u gr u > u gr r Totalna refleksija Kada se svjetlost lomi iz optički gušćeg u optički rjeđe sredstvo,može se pojaviti totalna refleksija. Ona nastaje u slučaju kada je kut upada veći od graničnog kuta; slika u prethodnom slide-u. Zakon loma u slučaju graničnog loma glasi: sinu 1 1 sinu sin90 n gr = 0 gr = nsredstva pa je zadnji oblik jednadžbe ujedno i jednadžba graničnog kuta, koji određuje pojavu totalne refleksije. sr, 10
11 Primjena totalne refleksije: optička vlakna Primjena totalne refleksije: prizme u = 45 0 > u gr = 41, δ = 90 0 δ =
12 Lom svjetlosti na realnim optičkim sistemima Optički sistemi najčešće nisu idealni, što znači da sistem kod kojeg promatramo lom svjetlosti pokazuje i djelomično svojstvo refleksije. Faktori refleksije,r, i transmisije,t, definirani su kao omjeri reflektiranog,φ R,(ili transmitiranog, Φ T ) toka svjetlosti i ulaznog toka svjetlosti,φ 0. Φ R R = Φ 0 T ΦT = Φ 0 oba faktora su bezdimenzionalne veličine Realne prozirne ploheistodobni djelomični lom i refleksija Svjetlost koja nailazi na granicu između dva realna medija (optička sredstva, n 1 i n 2 ) djelomično se lomi i djelomično reflektira 12
13 Fresnel-ove jednadžbe ovisnost faktora refleksije i transmisije o indeksu loma optičkih sredstava Augustin-Jean Fresnel ( ), bio je francuski fizičar koji je dao veliki doprinos u području optike; posebno valne optike. - Refleksija i lom svjetlosti - Interferencija svjetlosti (Fresnelova zrcala) Fresnel je pokazao: faktori refleksije, R, i transmisije,t, ovise o indeksu loma na slijedeći način (uz pretpostavku nepolariziranih zraka svjetlosti koje upadaju pod malim upadnim kutovima na granicu medija, što znači da svjetlost upada gotovo okomito na površinu): 2 n1 n 4n1n2 2 R = T = 1 R = n1 + n ( n ) n2 2 Ako je prvo optičko sredstvo zrak (vakuum): n 1 =1, a drugo optičko sredstvo staklo: n 2 =1,5, tada je faktor refleksije R=4% a transmisije T=96%; provjerite. 13
14 djelomičan lom i refleksija; nastavak 4% n 1 r u mali kutovi (upada, loma, refleksije) n 2 l 96% lom svjetlosti na planparalelnoj ploči - paralelni pomak, d u 1 d u l 2 1 l 2 možemo pokazati da je paralelni pomak jednak: d = D sin( u l) cosl 14
15 Lom svjetlosti na prizmi; iz geometrije loma svjetlosti može se pokazati da je kut devijacije (skretanja) ulazne zrake svjetlosti jednak: δ = u 1 + l 2 - ϕ ϕ δ u 1 U 1 -l 1 l2 -u 2 l 1 u2 l 2 ϕ Prizma-disperzija svjetlosti Δδ = δ lj - δ cr širina spektra 15
16 Prizma- kutovi devijacije za krajnje linije spektra (plava i crvena linija) Dispersion: 16
17 Sunčev spektar Joseph von Fraunhofer ( ) bio je njemački optičar. Poznat je po otkriću tamnih apsorpcionih linija, nazvanim Fraunhoferovim linijama, u sunčevom spektru. Uz to je izradio posebna optička stakla i akromate (sistemi za ispravljanje kromatske aberacije) potrebna za gradnju teleskopa. 17
18 Sunčev spektar s Fraunhoferovim linijama i apsorpcijskim vrpcama vode iz atmosfere Tablica apsorpcionih Fraunhoferovih linija i pripadnih elemeneta; valne duljine u nm 18
19 Preslikavanje Preslikavanje u geometrijskoj optici je proces u kojem se svakoj točki predmeta, (P), jednoznačno pridružuje jedna točka slike, (S), pomoću optičkog sistema, (OS), koji točke slike stvara optičkom obradom (refleksijom ili lomom) svjetlosnih zraka. U preslikavanju je, dakle, prisutna veza između: P OS S, za koju ćemo pokazati da se može opisati jednoznačnom relacijom; jednadžbom konjugacije ili, jednostavnije, jednadžbom leće, 19
20 Preslikavanje..nastavak Jednoznačno preslikavanje omogućeno je dijelom geometrijske optike koju je definirao Gauss, pa taj dio nazivamo Gaussovom optikom. Uvjeti jednoznačnog preslikavanja zahtijevaju idealna svojstva optičkih sistema i svjetlosnih snopova koji s njima interagiraju; jer jedino takva svojstva omogućuju jednostavan matematički zapis i jednoznačno preslikavanje. Johann Carl Friedrich Gauss ( ), bio je njemački matematičar i znanstvenik, koji je dao veliki doprinos u matematici (analiza, diferencijalne jednadžbe) i fizici (elektrostatika, optika, astronomija); ponekad je nazivan i princem matematičara 20
21 Gaussovi uvjeti su definirani: a) Optički sistemi (zrcala, leće) moraju biti male zakrivljenosti, r, što znači gotovo ravni sistemi; tanke leće, b) Snopovi svjetlosti moraju biti uski, čiji otvori snopa (kut snopa, ε) moraju težiti prema nuli; ε 0. Gornji uvjeti mogu se jednostavnim crtežom prikazati na način, kojeg uvijek moramo imati na umu: P ε 0 Tanka leća, r OS S Tanke leće; jednadžba preslikavanja: 1 a 1 + = b 1 f, gdje je desna strana jednadžbe recipročna vrijednost žarišne udaljenosti, f, koja predstavlja jakost optičkog sistema, J: 1 J = dpt f ( m). Žarišna udaljenost povezana je geometrijom leće i optičkim sredstvom na način: 1 f = 1 1 ( n 1) r1 r2 21
22 Linearno povećanje definirano je kao omjer veličine slike, y, i predmeta, y: p = y y = b a = f f a, gdje su zadnja dva izraza izvedena iz preslikavanja. Ti izrazi pokazuju da povećanja ovise o optičkom sistemu, f, poziciji predmeta u odnosu na leću, a, o kojoj je ovisna i pozicija slike,b. Predznaci optičkih veličina: a, b i f definirani su u fizikalnoj konvenciji optičkih veličina procesa preslikavanja; vježbe iz fizike! Područja preslikavanja: gdje je d 0 =a, d i =b. Imajmo u vidu da je jednadžba leće hiperbola, u što ćete se uvjeriti kada prikažete eksplicitnu ovisnost b=f(a) 22
23 geometrijska optika; preslikavanje na lećama + leća predmet je u, paralelan snop zraka svjetlosti geometrijska optika; preslikavanje na lećama sabirna leća; predmet izvan 2f 23
24 geometrijska optika; preslikavanje na lećama sabirna leća; predmet je u 2f geometrijska optika; preslikavanje na lećama sabirna leća; predmet je unutar 2f 24
25 geometrijska optika; preslikavanje na lećama sabirna leća; predmet je u F,slika u geometrijska optika; preslikavanje na lećama sabirna leća; predmet je unutar F i leće 25
26 Nastajanje slike u mikroskopu L ok L ob F 1 P 1 S 1 P 2 F 1 a 1 >0 F 2 F 2 b 1 >0 a 2 >0 P uk = p ok p ob S 2 b 2 <0.. imaginarna...uvećana...obrnuta Sistem leća; divergentna leća daje realnu sliku L 2 (-) Realna slika (S 1 ) postaje Imaginarni predmet (P 2 ) F 2 P 1 L 1 (+) S 1 P 2 S 2 realna uvećana obrnuta F 1 -a 1 -b 1 p uk = p 1 p 2 d -a 2 b 2 26
27 Pogreške kod leća Uvjeti u kojima nastaju pogreške: a) Debele leće; zaobljeni sistemi (r konačno) b) Široki snop svjetlosti se koristi kod preslikavanja (ε 0 ) Gore navedeni uvjeti se realno koriste u radu optičkih instrumenata; oni dovode do pogrešaka u preslikavanju, koje moramo upoznati i znati kako se ispravljaju. Vrste porešaka: A) Sferna aberacija; uzrokovana konačnom (najčešće velikom) zaobljenošću leća. Pretpostavka: na optičke sisteme nailazi monokromatska svjetlost B) Kromatska aberacija; uzrokovana ulaskom vidljive svjetlosti i nastajanjem disperzije svjetlosti na optičkim sistemima. Obje (glavne) vrste pogrešaka uklanjaju se sistemima leća koje zadovoljavaju uvjete koje se približavaju jednoznačnom preslikavanju. 27
28 Sferna aberacija Širok paralelan snop zraka svjetlosti nailazi na debelu leću; sve zrake se nakon loma ne sastaju u žarištu slike nego stvaraju više žarišta stvarajući pogrešku longitudinalne aberacije koju mjerimo duž optičke osi. kromatska aberacija- Pogreška koja se javlja prolazom vidljive ( bijele ) svjetlosti kroz leću u procesu preslikavanja; uzrok pogreške je disperzija svjetlosti. Slike koje nastaju radi te pogreške su obojene onom bojom čiji lom je dominantan u ravnini u kojoj promatramo sliku. 28
29 Ispravljanje kromatske aberacije: akromatski dublet se izrađuje na način da šalje rubne dijelove spektra u jednu točku (plavu i crvenu boju); pogreška za žarište znatno je manja, (slika) Dublet se sastoji od: jače (+) leće slabije disperzivne moći (krunsko staklo) i slabije (-) leće jače disperzivne moći (flint staklo) Fizikalna optika Valna optika - interferencija - uređaji za interferenciju - ogib (difrakcija) - uređaji za ogib Čestična (korpuskularna) optika - fotoelektrični efekt 29
30 Fizikalna optika - Interferencija -Ogib Na slici je prikazan val na vodi iz jednog izvora a), i iz dva izvora b). Interferencija valova (i svjetlosnih valova) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. a) Općenito možemo reći: ako se dva vala, šireći se iz različitih izvora svjetlosti, sastanu u nekoj točki prostora oni se superponiraju ili zbrajaju dajući svjetlu ili tamnu prugu. b) 30
31 Osnovni uvjet potreban za konstruktivnu interferenciju (zbrajanje dva ili više vala; svjetla pruga u valovima vidljive svjetlosti) i destruktivnu interferenciju (potpuno poništenje dva ili više vala; tamna pruga u valovima vidljive svjetlosti) je: valovi moraju biti potpuno isti-koherentni, što znači da moraju imati iste valne duljine i iste amplitude λ 1 = λ 2, A 1 = A 2. Ako su valovi koherentni, tada zbrajanjem mogu dati konstruktivnu ili destruktivnu interferenciju: Δx Razlika putova za konstruktivnu interferenciju: = kλ k = 0,1,2,... Razlika putova za destruktivnu interferenciju: Δx = λ 2 ( 2 k 1) k = 1,2,... 31
32 Prostorna smještenost koherentnih valova i mjesto susreta u točkama P Thomas Young Thomas Young ) bio je engleski znanstvenik, čiji doprinos je velik u području optike (svjetlost, proces vida), mehanika, energetika.. U ovom izlaganju: valna priroda svjetlosti, interferencija, pokus na na dvije uske pukotine; double slit experiment, 1801., kojim je potvrđena valna priroda svjetlosti. 32
33 Young-ov pokus na dvije pukotine Iz geometrije uređaja: Kuta α, udaljenosti zastora od pukotina, rednog broja i položaja svijetle ili tamne pruge mogu su dobiti relacije za valnu duljinu svjetlosti. 33
34 Interferecija na tankim listićima 1 u r 2 3 D A C d l n B Razlika putova zraka svjetlosti je: Δx = 2 AB n AD = 2nd cos u Δx = svjetlo λ ( 2k 1) 2 Δx = kλ tama 34
35 Ogib ili ogibni uzorak monokromatska svjetlost uski otvor Optička mrežica (rešetka) 35
36 Geometrija promatranja maksimuma i minimuma: d sinα = kλ d sinα = λ ( 2k 1) 2 U jednadžbama za položaje ogibnih maksimuma ili minimuma m ili k predstavljaju redni broj maksimuma ili minimuma, α je kut pod kojim se promatraju svijetle (ili tamne) pruge, a d je konstanta optičke rešetke. Ogib na prepreci (ili optičkoj rešetci) S k položaj k-tog maksimuma: kλ = d sinα k T k d A B α k C α k S 0 položaj k-tog minimuma: (2k-1)λ/2= d sinα k Položaj nultog maksimuma, k=0, Δx=0 Iz trokuta ABC izlazi da je razlika putova: Δx = d sinα Ekran (zastor) 36
37 Primjer ogiba na optičkom mrežici: compact disc Staze (tracks) tvrdih diskova (compact disc) djeluju kao optičke rešetke. Različitim kutom ogiba pojedinih boja odvajaju se neke boje iz područja vidljive (bijele) svjetlosti. Staze su odvojene oko 1,6 μm, što odgovara broju oko 625 staza po milimetru; što odgovara uobičajenim laboratorijskim rešetkama. Iz uvjeta za položaje maksimuma možemo izračunati da je d sinα = kλ broj maksimuma za crvenu boju 2, te da se prvi maksimum promatra pod kutom oko Fizikalna optika - čestična(korpuskularna) priroda svjetlosti, fotoni svjetlosti 37
38 fotoelektrični efekt objašnjenje jednadžba fotoefekta E f = hc = λ W izl hc λ gr + E + eu kin, maks. shema fotoefekta 38
39 -energiju izlazećih elektrona možemo mjeriti zakočnim naponom Elektroni izlijeću iz tanke metalne folije pod utjecajem nekih dijelova vidljive svjetlosti odvojenih disperzijom na prizmi Područja elektromagnetskih valova γ-zrake nm UV zračenje nm IR, toplinsko zračenje μm radio valovi 0.3m - 30km λ X- zrake nm vidljiva svjetlost nm mikrovalovi mm 39
40 Hvala na pažnji, ali. ima još 40
Fizika 2. Fizikalna optika 2009/10
Fizika 2 Fizikalna optika 2009/10 1 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko
Διαβάστε περισσότεραFizika 2. Optika. Geometrijska optika 2009/10
Fizika 2 Optika Geometrijska optika 2009/10 1 2 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko
Διαβάστε περισσότεραŠto je svjetlost? Svjetlost je elektromagnetski val
Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)
Διαβάστε περισσότεραF2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
Διαβάστε περισσότεραGeometrijska optika Lom svjetlosti na ravnim sistemima
Zadaci - Geometrijska optika - Fizikalna optika - 2007/08 Geometrijska optika Lom svjetlosti na ravnim sistemima ravni dioptar planparalelna ploča prizma Koja svojstva svjetlosti poznajete? Što je svjetlost
Διαβάστε περισσότεραPriprema za državnu maturu
Priprema za državnu maturu G E O M E T R I J S K A O P T I K A 1. Valna duljina elektromagnetskoga vala približno je jednaka promjeru jabuke. Kojemu dijelu elektromagnetskoga spektra pripada taj val? A.
Διαβάστε περισσότεραFizika 2. Optika. Geometrijska optika 2009/10
Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1
Διαβάστε περισσότεραInterferencija svjetlosti
Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog
Διαβάστε περισσότεραInterferencija svjetlosti
Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog
Διαβάστε περισσότεραF2_K1_geometrijska optika test 1
F2_K1_geometrijska optika test 1 1. Granični lom i totalna refleksija. Izračunajte granični kut upada za sistem staklozrak, ako je indeks loma stakla 1,47. Primjena totalne refleksije na prizmi; jednakokračna
Διαβάστε περισσότεραIspitne teme, Fizika 2
Ispitne teme, Fizika 2 I Geometrijska optika 1. Svjetlost u geometrijskoj optici. Izvori svjetlosti; vrste. Objasnite divergentan, konvergentan i paralelen snop svjetlosti. Zakoni geometrijske optike.
Διαβάστε περισσότεραF2_K2, R: nastavni materijali s predavanja, preporučena literatura, web stranica katedre fizike;
F_K,.06.08.. Interferencija elektromagnetskih valova; posebno vidljive svjetlosti. Uvjeti za konstruktivnu i destruktivnu interferenciju. Opišite interferentni uzorak za monokromatsku i polikromatsku svjetlost
Διαβάστε περισσότεραc - brzina svjetlosti u vakuumu, v - brzina svjetlosti u sredstvu. Apsolutni indeks loma nema mjernu jedinicu i n 1.
Geometrijska optika_intro Zakoni geometrijske optike, zrcala, totalna refleksija, disperzija svjetlosti, leće, oko i načini korekcije vida Zakoni geometrijske optike 1. zakon pravocrtnog širenja svjetlosti
Διαβάστε περισσότεραIzbor zadataka Fizika 2
Izbor zadataka Fizika 2 (optika i fotometrija) Katedra fizike Grafičkog fakulteta, Zagreb, 2007/08 FIZIKA 2/1 1. Na optičku mrežicu pada okomito snop vidljive svjetlosti. Kolika je valna duljina crvene
Διαβάστε περισσότεραF2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008
F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju
Διαβάστε περισσότεραDvojna priroda čestica
Dvojna priroda čestica Kao mladi student Sveučilišta u Parizu, Louis DeBroglie je bio pod utjecajem teorije relativnosti i fotoelektričnog efekta. Fotoelektrični efekt je ukazivao na čestična svojstva
Διαβάστε περισσότεραZa teorijsko objašnjenje Youngova pokusa koristi se slika 2. Slika 2. uz teorijsko objašnjenje Youngovog pokusa
Valna optika_intro Interferencija svjetlosti, Youngov pokus, interferencija na tankim listićima, difrakcija svjetlosti na pukotini, optička rešetka, polarizacija svjetlosti, Brewsterov zakon Interferencija
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραSvjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo.
Poglavlje Svjetlost.....3..4..4...4...5..5...5...5.3..6..6...6...6.3..7..8. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti Ravno zrcalo Sferno zrcalo Lom svjetlosti
Διαβάστε περισσότεραFizika 2. Fizikalna optika 2008/09
Fizika 2 Fizikalna optika 2008/09 Što je svjetlost; što je priroda svjetlosti? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom sredstvu (optičkom sredstvu). U fizikalnoj
Διαβάστε περισσότερα4. Leće i optički instrumenti
4. Leće i optički instrumenti. Ključni pojmovi Leće, Besselova metoda, dijaprojektor, mikroskop, Keplerov i Galilejev teleskop. Teorijski uvod Jednadžba leće: Žarišna daljina tanke leće, udaljenost predmeta
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραFizika 2. Fizikalna optika. Predavanje 8. Dr. sc. Damir Lelas
Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (910/90/930/940/950) Fizika Predavanje 8 Fizikalna optika Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch ) Danas ćemo
Διαβάστε περισσότεραGeometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas
Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje 9 Geometrijska optika Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch ) Danas
Διαβάστε περισσότεραPITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE
PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE 1. Opišite svjetlosne izvore. Po čemu se oni razlikuju? 2. Opiši osjetljivost oka na različite valne duljine. 3. Definiraj (i pojasni) pojmove: točkasti svjetlosni
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραUVOD U KVANTNU TEORIJU
UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραVJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA
VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA Katedra fizike Grafičkog fakulteta Sveučilišta u Zagrebu Zagreb, 2006/07. 1 UVOD Optika je u širem smislu znanost o zračenju. Nekada je optika izučavala samo one
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραFizika 2. Optika. Geometrijska optika
Fizika Optika Geometrijska optika Geometrijska optika -empirijska, aproksimativa (vrijedi uz određee uvjete) -svjetlost se proučava kao pravocrta pojava koja se širi brziom c 0 =30 8 ms - u vakuumu -svojstva
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραFizika 2 Fizikalna optika
Fizika 2 Fizikalna optika Elektromagnetski valovi Polarizacija Što je svjetlost; što je priroda svjetlosti? OTKUDA DOLAZI? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom
Διαβάστε περισσότεραDijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Διαβάστε περισσότεραOptika Što je svjetlost?! Vrlo težak odgovor! Valna teorija
Optika Optika - Dio fizike. Znanost koja proučava svjetlosne pojave. Izvori svjetlosti: Sunce, zvijezde, užareni predmeti, plamen, električni izboj u plinovima i dr. Oko = detektor svjetlosti. Pomoću oka
Διαβάστε περισσότεραFizikalna optika SVJETLOST. -interferencija -difrakcija -polarizacija
Fizikalna optika geometrijska optika fizikalna (valna) optika zraka SVJETLOST val -interferencija -difrakcija -polarizacija Fizikalna optika Fizikalna optika - Zasniva se na valnoj teoriji svjetlosti.
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραGeometrijska optika 3. dio. -sferni dioptar -leće -sferne i kromatične aberacije
Geometrijska optika 3. dio -sferni dioptar -leće -sferne i kromatične aberacije Sferni dioptar Sferni dioptar - skup dvaju homogenih izotropnih optičkih sredstava različitih indeksa loma n 1 i n 2, rastavljenih
Διαβάστε περισσότεραINSTRUMENTNE ANALITIČKE METODE I. seminar
INSTRUMENTNE ANALITIČKE METODE I seminar šk.g. 2006/07. 4 selektori valnih duljina sastavila: V. Allegretti Živčić SELEKTORI VALNIH DULJINA filtri monokromatori (disperzni element) apsorpcijski interferencijski
Διαβάστε περισσότερα1. Transverzalni valni impuls koji se širi užetom u trenutku t = 0 opisan je jednadžbom
Valovi 1. Transverzalni valni impuls koji se širi užetom u trenutku t = 0 opisan je jednadžbom y = a3 a 2 x 2, gdje je a = 1 m (x i y takoder su izraženi u metrima). Maksimum impulsa je u toči x = 0 m.
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραPT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότερα(12.j.) 11. Dva paralelna vodiča nalaze se u vakuumu. Kroz njih prolaze struje I1 i I2, kako je prikazano na crteţu.
MAGNETIZAM (ispitni katalog) 11. Tri jednaka ravna magneta spojimo u jednu cjelinu, kao što je prikazano na slikama. Koji crteţ ispravno prikazuje razmještaj polova magneta nastalog nakon spajanja? (08.)
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραλ ν = metoda + = + = = =
Zadata (Mira, gimnazija) Polumjer zarivljenosti udubljenog zrala je 4 m, a predmet je od zrala udaljen a = f. Nañi položaj slie. Rješenje r = 4 m, a = f, b =? Sferno zralo je dio ugline površine, tj. ono
Διαβάστε περισσότερα6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραBIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραTOPLINA I TEMPERATURA:
GEOMETRIJSKA OPTIKA 1. U staklenoj posudi s ravnim dnom nalazi se sloj vode (n v =1,33) debljine 5 cm, a na njemu sloj ulja (n u =1,2) debljine 3 cm. Iz zraka na ulje upada svjetlost pod kutom 45, prolazi
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραProstorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
Διαβάστε περισσότεραZdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραPolarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραLorentzova sila sila kojom magnetsko polje djeluje na česticu naboja q koja se u njemu giba brzinom v
Lorentzova sila sila kojom magnetsko polje djeluje na česticu naboja q koja se u njemu giba brzinom v α je kut od v prema B pravilo desne ruke: ako je naboj pozitivan, isto kao i za Amperovu silu samo
Διαβάστε περισσότεραGrafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότεραNeka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Διαβάστε περισσότεραMATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότερα1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραSlika 2. Valna duljina i amplituda vala
Valovi i zvuk_intro Postanak i širenje vala u sredstvu, transverzalni i longitudinalni valovi, ovisnost brzine vala o svojstvima sredstva, faza točke vala i razlika u fazi dviju točaka vala, jednadžba
Διαβάστε περισσότεραFizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.
Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.
Διαβάστε περισσότεραValovi. Poglavlje 1. Zadatak 1.1 Uz koje uvjete za konstantu a, funkcija u(x, t) = x 2 + 4axt 4a 2 t 2 zadovoljava valnu jednadžbu: 2 u.
Poglavlje Valovi Zadatak. Uz koje uvjete za konstantu a, funkcija u(x, t) = x 2 + 4axt 4a 2 t 2 zadovoljava valnu jednadžbu: 2 u x 2 = 2 u v 2? (vidi sliku.) t2 2.8.6 t s.4.5 x m 2 4 6 u x,t.2.5 Slika.:
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (3. dio) (2. izdanje)
ZADACI IZ FIZIKE Riješeni ispitni zadaci, riješeni prijeri i zadaci za vježbu (3. dio) (. izdanje) Zadaci iz fizike (3. dio). izdanje. O oprugu čija je konstanta N - obješena je kuglica ase 0 g koja haronijski
Διαβάστε περισσότερα