Jankove grupe kao dizajni i jako regularni grafovi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Jankove grupe kao dizajni i jako regularni grafovi"

Transcript

1 Jankove grupe kao dizajni i jako regularni grafovi Vedrana Mikulić (vmikulic@math.uniri.hr) Odjel za matematiku Sveučilište u Rijeci 9. listopad 2008.

2 Djelovanje grupe na skup Definicija Grupa G djeluje na skup X ako postoji preslikavanje f : G X X takvo da vrijedi 1. f (g 1, f (g 2, x)) = f (g 1 g 2, x), x X, g 1, g 2 G, 2. f (1, x) = x, x X. Slika djelovanja elementa g G na element x X označava se g.x. Skup G x = {g G g.x = x} G naziva se stabilizator elementa x za djelovanje grupe G.

3 Na skupu X na kojega djeluje grupa G može se definirati relacija x y ( g G)g.x = y. Relacija je relacija ekvivalencije na skupu X. Klasa ekvivalencije elementa x s obzirom na relaciju, G.x = {g.x g G}, naziva se orbita elementa x za djelovanje grupe G. Propozicija Ako konačna grupa G djeluje na skup X, onda za svaki x X vrijedi G.x = [G : G x ].

4 Grupa G djeluje tranzitivno na skup X ako postoji element x X takav da je G.x = X. Propozicija Neka grupa G djeluje na skup X i neka je G x stabilizator elementa x X za djelovanje grupe G. Tada je G g.x = gg x g 1, g G. Posebno, ako G djeluje tranzitivno na skup X, onda su svi stabilizatori medusobno konjugirani.

5 Teorem Neka grupa G djeluje na skup X. Tada je F : G S(X ), preslikavanje koje svakom elementu g grupe G pridružuje bijekciju f g : X X, f g (x) = g.x, homomorfizam grupa (homomorfizam induciran djelovanjem grupe G na skup X ). Obrnuto, ako postoji homomorfizam F : G S(X ), onda grupa G djeluje na skup X. Homomorfizam F : G S(X ) naziva se permutacijska reprezentacija grupe G. Korolar (Caylejev teorem) Svaka konačna grupa je izomorfna nekoj permutacijskoj grupi.

6 Primjer Promotrimo djelovanje konačne grupe G množenjem slijeva na lijevi kvocijentni skup G/H = {gh g G}, H G. Preslikavanje je bijekcija te je preslikavanje f x : G/H G/H, f x (gh) = (xg)h, F : G S(G/H), g f g, monomorfizam. Definirano djelovanje je vjerno. Za svaka dva elementa g 1 H G/H i g 2 H G/H vrijedi g 1 H = g 1 g 1 2 g 2H = (g 1 g 1 2 ).g 2H pa je definirano djelovanje tranzitivno i vrijedi G.(gH) = G/H G H = H G H = {g G gh = H} = {g G g H} H.

7 Primitivne grupe Neka grupa G djeluje na skup X. Proširimo to djelovanje na skup podskupova skupa X na sljedeći način: x.s = {x.s s S}, S X. Definicija Neka grupa G djeluje tranzitivno na skup X i neka je X. Ako za svaki x G vrijedi x. = ili x. =, onda se skup naziva blok. Trivijalni blokovi: X, {x}, za svaki x X.

8 Definicija Ako grupa G djeluje tranzitivno na skup X tako da ne postoje netrivijalni blokovi, onda kažemo da je djelovanje primitivno i da je G primitivna grupa. Teorem Neka grupa G djeluje tranzitivno na skup X. To djelovanje je primitivno ako i samo ako je G x maksimalna podgrupa grupe G za svaki x X.

9 Primjer Grupa S 3 djeluje na skup X = {1, 2, 3}: g.x = g(x), g S 3, x X. S 3.1 = X tranzitivnost Stabilizator svakog elementa je grupa reda dva. Podgrupe reda dva grupe S 3 su maksimalne pa je opisano djelovanje primitivno. Primjer Neka je H maksimalna podgrupa konačne grupe G. Grupa G djeluje tranzitivno množenjem slijeva na lijevi kvocijentni skup G/H i G H = H, odnosno stabilizator od H je maksimalna podgrupa grupe G. Zbog tranzitivnosti, svi stabilizatori G gh, g G, su medusobno konjugirani pa je definirano djelovanje primitivno.

10 Incidencijske strukture Definicija Incidencijska struktura D je ured ena trojka (P, B, I), gdje su P i B neprazni disjunktni skupovi i I P B. Za incidencijsku strukturu u kojoj je svaka od v točaka stupnja r i svaki od b blokova stupnja k vrijedi vr = bk. Struktura D = (P, B, I ), gdje je P = B, B = P, I = {(x, P) (P, x) I} naziva se dualna struktura strukture D.

11 Definicija Neka su D = (P, B, I) i D = (P, B, I ) incidencijske strukture. Bijektivno preslikavanje f : P B P B je izomorfizam iz D na D ako vrijedi: 1. f preslikava P na P i B na B 2. (P, x) I (f (P), f (x)) I, P P i x B Ako je D = D, onda se preslikavanje f naziva automorfizam. Skup svih automorfizama je grupa s obzirom na kompoziciju funkcija i naziva se puna grupa automorfizama strukture D. Struktura D se naziva samodualna struktura ako je izomorfna svojoj dualnoj strukturi.

12 Neka je D = (P, B, I) konačna incidencijska struktura takva da je P = v i B = b. Označimo elemente skupa P sa P 1,..., P v i elemente skupa B sa x 1,..., x b. Matrica incidencije incidencijske strukture D je v b matrica M = (m ij ) m ij = { 1, (Pi, x j ) I, 0, (P i, x j ) / I.

13 Dizajni Definicija Konačna incidencijska struktura D = (P, B, I) je t (v, k, λ) dizajn ako vrijedi sljedeće: 1. P = v, 2. svaki element skupa B incidentan je s točno k elemenata skupa P, 3. svakih t elemenata skupa P incidentno je s točno λ elemenata skupa B. 2 (v, k, λ) dizajn naziva se blok dizajn.

14 Primjer peterokut 2 (6, 3, 2) dizajn

15 t (v, k, λ) dizajn takav da je v = b naziva se simetričan dizajn. Stupanj svake točke simetričnog dizajna jednak je stupnju svakog bloka tog dizajna, odnosno vrijedi k = r. Propozicija Ako je t (v, k, λ) simetričan dizajn, onda je t 2.

16 Primjer pg 2 (7, 3, 1) dizajn

17 Grafovi Definicija Neka je G = (V, E, I) konačna incidencijska struktura. G je graf ako je svaki element skupa E incidentan s dva (ne nužno različita) elementa iz skupa V. Graf bez petlji u kojemu su svaka dva vrha incidentna najviše s jednim bridom naziva se jednostavan graf. Matrica susjedstva grafa G s n vrhova (v 1,..., v n ) je n n matrica A. Element a ij matrice A je broj bridova incidentnih s vrhovima v i i v j.

18 Put u grafu G je netrivijalan niz v 0 e 1 v 1 e 2...e k v k u kojemu su svi vrhovi i svi bridovi medusobno različiti, pri čemu su v 0,..., v k, vrhovi grafa G i e i, i = 1,..., k, bridovi koji su incidentni s vrhovima v i 1 i v i. Graf G je povezan graf ako za svaka dva vrha tog grafa postoji put koji ih povezuje.

19 Graf u kojem su svi vrhovi jednakog stupnja k naziva se k regularan graf. Definicija Neka je G = (V, E, I) graf sa n vrhova. Graf G je jako regularan graf s parametrima (n, k, λ, µ) ako vrijedi: 1. G je jednostavan k regularan graf, 2. svaka dva susjedna vrha imaju točno λ zajedničkih susjednih vrhova, 3. svaka dva nesusjedna vrha imaju točno µ zajedničkih susjednih vrhova.

20 Primjer graf

21 Primjer Neka grupa G djeluje tranzitivno na skup X. Tada grupa G djeluje na skup X X na sljedeći način: g.(x 1, x 2 ) = (g.x 1, g.x 2 ). Skup {(x, x) x X } naziva se dijagonala skupa X. Broj orbita skupa X X za djelovanje grupe G naziva se rang grupe G. Za orbitu O skupa X X za djelovanje grupe G kažemo da je simetrična orbita ako vrijedi (x, y) O (y, x) O. Neka je G grupa parnog reda. Tada postoji barem jedna simetrična orbita D (različita od dijagonale) na skupu X X. G je grupa automorfizama grafa G(D) kojemu je X skup vrhova i D skup bridova. Ako je G grupa ranga tri, onda je G(D) jako regularan graf.

22 J. D. Key, J. Moori: Codes, Designs and Graphs from the Janko Groups J 1 and J 2 J. Combin. Math. Combin. Comput. 40 (2002),

23 Teorem (KM) Neka je Ω n člani skup, α element skupa Ω i neka je G konačna grupa koja djeluje primitivno na skup Ω. Neka je {α}, orbita za djelovanje stabilizatora G α na neki element β Ω, = {g.β g G α }. Tada je (1) B = {g. g G} n člani skup blokova simetričnog samodualnog 1 (n,, ) dizajna na kojega grupa G primitivno djeluje kao grupa automorfizama, (2) za δ Ω, skup E = {g.{α, δ} g G} je skup bridova povezanog regularnog grafa sa n vrhova na kojega grupa G primitivno djeluje kao grupa automorfizama.

24 Neka su β 1,..., β s elementi skupa Ω i neka je uz uvjet da je Ω. Tada je = G α.β 1... G α.β s, B = {g. g G} skup blokova samodualnog simetričnog 1 dizajna na kojega grupa G djeluje primitivno kao grupa automorfizama.

25 Lema Ako grupa G djeluje primitivno na simetričan dizajn D, onda se dizajn D može konstruirati na način opisan teoremom KM. Dokaz iz članka: Neka je D simetričan 1 (v, k, k) dizajn i neka je B skup blokova dizajna D. Tada je B = G.B za neki blok B B. Slijedi da je G = B G B. G djeluje primitivno na dizajn D pa je G B maksimalna podgrupa i G B = G α za neku točku α dizajna D. Zaključujemo da G α fiksira blok B te je B unija nekih G α orbita.

26 Dodatne napomene Alternativna definicija ranga grupe: rang tranzitivne permutacijske grupe G je broj orbita za djelovanje stabilizatora G x, x G. Slijedi da je graf iz grupe ranga tri konstruiran na način opisan teoremom KM jako regularan graf. Neka je G jednostavna primitivna permutacijska grupa. Tada postoji samo jedna trivijalna orbita za djelovanje stabilizatora G x, x G.

27 Grupe J 1 i J 2 Jankova grupa J 1 je jednostavna grupa reda te je AutJ 1 = J1. Grupa J 1 ima sedam maksimalnih podgrupa, do na konjugaciju, i odgovarajuće primitivne permutacijske reprezentacije na 266, 1045, 1463, 1540, 1596, 2926 i 4180 točaka. Jankova grupa J 2 je jednostavna grupa reda Puna grupa automorfizama grupe J 2 je izomorfna grupi J 2 : Z 2. Grupa J 2 ima devet maksimalnih podgrupa, do na konjugaciju, i devet primitivnih permutacijskih reprezentacija na 100, 280, 315, 525, , 1800, 2016 i točaka. Primjer u programskom paketu Magma

28 1 dizajni i grafovi konstruirani iz grupe J 1 Postoji točno 245 neizomorfnih samodualnih dizajna konstruiranih iz grupe J 1 (na način opisan teoremom KM). Grupa J 1 djeluje primitivno kao puna grupa automorfizama na konstruirane dizajne. Autori ističu da su testirali jaku regularnost konstruiranih grafova za neke od primitivnih reprezentacija grupe J 1, ali nisu dobili niti jedan jako regularan graf.

29 1 dizajni i grafovi konstruirani iz grupe J 2 Postoji točno 51 neizomorfnih samodualnih dizajna konstruiranih iz grupe J 2 (na način opisan teoremom KM). Grupa J 2 djeluje primitivno na sve konstruirane dizajne. Konstruirani dizajni imaju punu grupu automorfizama izomorfnu grupi J 2 ili grupi AutJ 2. Za svaki dizajn kojemu je puna grupa automorfizama izomorfna grupi AutJ 2 konstruiran je njemu izomorfan dizajn iz orbite iste duljine. Konstruirana su i tri jako regularna grafa s parametrima: (100,36,14,12), (280,135,70,60), (280,36,8,4). Graf na 100 vrhova konstruiran je iz permutacijske reprezentacije ranga tri, a grafovi na 280 vrhova iz permutacijske reprezentacije ranga četiri.

30 Hipoteza Autori pretpostavljaju da svaki dizajn D konstruiran na opisani način iz grupe G ima grupu AutG kao punu grupu automorfizama, osim u slučaju da je iz iste grupe konstruiran dizajn izomorfan dizajnu D. U tom slučaju je, prema njihovoj pretpostavci, grupa automorfizama izomorfna podgrupi grupe AutG.

31 Kodovi iz incidencijskih struktura Neka je D = (P, B, I) incidencijska struktura i M matrica incidencije strukture D. Stupci matrice M su vektori incidencije. Linearni kod C iz dizajna D je potprostor vektorskog prostora dimenzije P nad konačni poljem F razapet vektorima incidencije dizajna. Oznaka: [n, k, d] F n je dimenzija vektorskog prostora k je dimenzija potprostora razapetog vektorima incidencije d je najmanja težina (udaljenost od nul vektora) Automorfizam koda je permutacija komponetni vektora koda koja čuva potprostor.

32 Kodovi konstruirani iz grupe J 2 dizajn kod grupa automorfizama 1 (100, 36, 36) [100, 36, 16] 2 J 2 : Z 2 1 (280, 108, 108) [280, 14, 108] 2 J 2 : Z 2 1 (315, 64, 64) [315, 28, 64] 2 J 2 : Z 2 1 (315, 80, 80) [315, 36, 80] 2 J 2 : Z 2

Flag-tranzitivni linearni prostori

Flag-tranzitivni linearni prostori Flag-tranzitivni linearni prostori Andrea Švob (asvob@math.uniri.hr) 5. studenoga 2010. Andrea Švob (asvob@math.uniri.hr) () Flag-tranzitivni linearni prostori 5. studenoga 2010. 1 / 31 Djelovanja grupe

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

3 Funkcije. 3.1 Pojam funkcije

3 Funkcije. 3.1 Pojam funkcije 3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Zadaci iz Linearne algebre (2003/4)

Zadaci iz Linearne algebre (2003/4) Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje

Διαβάστε περισσότερα

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije.

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Binarne relacije Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Kaže se i da je ρ binarna relacija sa skupa A u skup B (kao u [MP]).

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Šta je to relacija? U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Na primer, često se javlja potreba da se izvesni objekti uporede

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin Matematika (PITUP) FOI, Varaždin Dio III Umijeće postavljanja pravih pitanja i problema u matematici treba vrednovati više nego njihovo rješavanje Georg Cantor Sadržaj Matematika (PITUP) Relacije medu

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Predavanje 7. Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine. Dinko Osmanković

Predavanje 7. Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine. Dinko Osmanković Predavanje 7 Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine Dinko Osmanković Kurs: Matematička logika i teorija izračunljivosti Sadržaj predavanja 1 Prirodni

Διαβάστε περισσότερα

Algebarske strukture. Braslav Rabar. 5. srpnja 2007.

Algebarske strukture. Braslav Rabar. 5. srpnja 2007. Algebarske strukture Braslav Rabar 5. srpnja 2007. Def 1 Neka je S neprazni skup tada pod binarnom operacijom na skupu S razumijevamo svako preslikavanje : S S S, a ureden par (S, ) skupa i neke binarne

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture Algebarske strukture vježbe prema predlošku i zadacima Martine Balagović i Marcele Hanzer natipkali, proširili i uredili Matija Bašić Aleksandar Milivojević Sanjin Ružić Sveučilište u Zagrebu Prirodoslovno-matematički

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

Linearna algebra

Linearna algebra Linearna algebra 2 Siniša Miličić cinik@studentmathhr 2462004 Molim da se sve uočene greške i primjedbe pošalju na mail Ovaj dokument je javno dobro, te se smije neograničeno umnažati, mijenjati i koristiti

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama

Διαβάστε περισσότερα

Osnove matematičke analize

Osnove matematičke analize Osnove matematičke analize prof.dr.sc. Nikola Koceić Bilan FPMOZ Sveučilište u Mostaru FPMOZ Sveučilište u Mostaru 1 / Sadržaj 1 Topološka i metrička struktura normiranog vektorskog prostora R n. Konvergencija

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Prebrojavanje savršenih sparivanja

Prebrojavanje savršenih sparivanja Prebrojavanje savršenih sparivanja Frane Kalebić Joško Mandić Damir Vukičević Snježana Braić Sadržaj 1 Uvod 1 2 Sparivanje u grafovima 3 2.1 Sparivanje u bipartitnom grafu..................... 5 2.2 Mađarska

Διαβάστε περισσότερα

Algebarske strukture bilješke s vježbi asistenta Filipa Najmana ak. god /12. natipkali i uredili Aleksandar Milivojević i Sanjin Ružić

Algebarske strukture bilješke s vježbi asistenta Filipa Najmana ak. god /12. natipkali i uredili Aleksandar Milivojević i Sanjin Ružić Algebarske strukture bilješke s vježbi asistenta Filipa Najmana ak. god. 2011./12. natipkali i uredili Aleksandar Milivojević i Sanjin Ružić (skripta ne može zamijeniti vježbe) 1 Sadržaj 1 Grupe 3 1.1

Διαβάστε περισσότερα

Zadaća iz kolegija Metrički prostori 2013./2014.

Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić

Διαβάστε περισσότερα