Jankove grupe kao dizajni i jako regularni grafovi
|
|
- Άρχιππος Καζαντζής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Jankove grupe kao dizajni i jako regularni grafovi Vedrana Mikulić (vmikulic@math.uniri.hr) Odjel za matematiku Sveučilište u Rijeci 9. listopad 2008.
2 Djelovanje grupe na skup Definicija Grupa G djeluje na skup X ako postoji preslikavanje f : G X X takvo da vrijedi 1. f (g 1, f (g 2, x)) = f (g 1 g 2, x), x X, g 1, g 2 G, 2. f (1, x) = x, x X. Slika djelovanja elementa g G na element x X označava se g.x. Skup G x = {g G g.x = x} G naziva se stabilizator elementa x za djelovanje grupe G.
3 Na skupu X na kojega djeluje grupa G može se definirati relacija x y ( g G)g.x = y. Relacija je relacija ekvivalencije na skupu X. Klasa ekvivalencije elementa x s obzirom na relaciju, G.x = {g.x g G}, naziva se orbita elementa x za djelovanje grupe G. Propozicija Ako konačna grupa G djeluje na skup X, onda za svaki x X vrijedi G.x = [G : G x ].
4 Grupa G djeluje tranzitivno na skup X ako postoji element x X takav da je G.x = X. Propozicija Neka grupa G djeluje na skup X i neka je G x stabilizator elementa x X za djelovanje grupe G. Tada je G g.x = gg x g 1, g G. Posebno, ako G djeluje tranzitivno na skup X, onda su svi stabilizatori medusobno konjugirani.
5 Teorem Neka grupa G djeluje na skup X. Tada je F : G S(X ), preslikavanje koje svakom elementu g grupe G pridružuje bijekciju f g : X X, f g (x) = g.x, homomorfizam grupa (homomorfizam induciran djelovanjem grupe G na skup X ). Obrnuto, ako postoji homomorfizam F : G S(X ), onda grupa G djeluje na skup X. Homomorfizam F : G S(X ) naziva se permutacijska reprezentacija grupe G. Korolar (Caylejev teorem) Svaka konačna grupa je izomorfna nekoj permutacijskoj grupi.
6 Primjer Promotrimo djelovanje konačne grupe G množenjem slijeva na lijevi kvocijentni skup G/H = {gh g G}, H G. Preslikavanje je bijekcija te je preslikavanje f x : G/H G/H, f x (gh) = (xg)h, F : G S(G/H), g f g, monomorfizam. Definirano djelovanje je vjerno. Za svaka dva elementa g 1 H G/H i g 2 H G/H vrijedi g 1 H = g 1 g 1 2 g 2H = (g 1 g 1 2 ).g 2H pa je definirano djelovanje tranzitivno i vrijedi G.(gH) = G/H G H = H G H = {g G gh = H} = {g G g H} H.
7 Primitivne grupe Neka grupa G djeluje na skup X. Proširimo to djelovanje na skup podskupova skupa X na sljedeći način: x.s = {x.s s S}, S X. Definicija Neka grupa G djeluje tranzitivno na skup X i neka je X. Ako za svaki x G vrijedi x. = ili x. =, onda se skup naziva blok. Trivijalni blokovi: X, {x}, za svaki x X.
8 Definicija Ako grupa G djeluje tranzitivno na skup X tako da ne postoje netrivijalni blokovi, onda kažemo da je djelovanje primitivno i da je G primitivna grupa. Teorem Neka grupa G djeluje tranzitivno na skup X. To djelovanje je primitivno ako i samo ako je G x maksimalna podgrupa grupe G za svaki x X.
9 Primjer Grupa S 3 djeluje na skup X = {1, 2, 3}: g.x = g(x), g S 3, x X. S 3.1 = X tranzitivnost Stabilizator svakog elementa je grupa reda dva. Podgrupe reda dva grupe S 3 su maksimalne pa je opisano djelovanje primitivno. Primjer Neka je H maksimalna podgrupa konačne grupe G. Grupa G djeluje tranzitivno množenjem slijeva na lijevi kvocijentni skup G/H i G H = H, odnosno stabilizator od H je maksimalna podgrupa grupe G. Zbog tranzitivnosti, svi stabilizatori G gh, g G, su medusobno konjugirani pa je definirano djelovanje primitivno.
10 Incidencijske strukture Definicija Incidencijska struktura D je ured ena trojka (P, B, I), gdje su P i B neprazni disjunktni skupovi i I P B. Za incidencijsku strukturu u kojoj je svaka od v točaka stupnja r i svaki od b blokova stupnja k vrijedi vr = bk. Struktura D = (P, B, I ), gdje je P = B, B = P, I = {(x, P) (P, x) I} naziva se dualna struktura strukture D.
11 Definicija Neka su D = (P, B, I) i D = (P, B, I ) incidencijske strukture. Bijektivno preslikavanje f : P B P B je izomorfizam iz D na D ako vrijedi: 1. f preslikava P na P i B na B 2. (P, x) I (f (P), f (x)) I, P P i x B Ako je D = D, onda se preslikavanje f naziva automorfizam. Skup svih automorfizama je grupa s obzirom na kompoziciju funkcija i naziva se puna grupa automorfizama strukture D. Struktura D se naziva samodualna struktura ako je izomorfna svojoj dualnoj strukturi.
12 Neka je D = (P, B, I) konačna incidencijska struktura takva da je P = v i B = b. Označimo elemente skupa P sa P 1,..., P v i elemente skupa B sa x 1,..., x b. Matrica incidencije incidencijske strukture D je v b matrica M = (m ij ) m ij = { 1, (Pi, x j ) I, 0, (P i, x j ) / I.
13 Dizajni Definicija Konačna incidencijska struktura D = (P, B, I) je t (v, k, λ) dizajn ako vrijedi sljedeće: 1. P = v, 2. svaki element skupa B incidentan je s točno k elemenata skupa P, 3. svakih t elemenata skupa P incidentno je s točno λ elemenata skupa B. 2 (v, k, λ) dizajn naziva se blok dizajn.
14 Primjer peterokut 2 (6, 3, 2) dizajn
15 t (v, k, λ) dizajn takav da je v = b naziva se simetričan dizajn. Stupanj svake točke simetričnog dizajna jednak je stupnju svakog bloka tog dizajna, odnosno vrijedi k = r. Propozicija Ako je t (v, k, λ) simetričan dizajn, onda je t 2.
16 Primjer pg 2 (7, 3, 1) dizajn
17 Grafovi Definicija Neka je G = (V, E, I) konačna incidencijska struktura. G je graf ako je svaki element skupa E incidentan s dva (ne nužno različita) elementa iz skupa V. Graf bez petlji u kojemu su svaka dva vrha incidentna najviše s jednim bridom naziva se jednostavan graf. Matrica susjedstva grafa G s n vrhova (v 1,..., v n ) je n n matrica A. Element a ij matrice A je broj bridova incidentnih s vrhovima v i i v j.
18 Put u grafu G je netrivijalan niz v 0 e 1 v 1 e 2...e k v k u kojemu su svi vrhovi i svi bridovi medusobno različiti, pri čemu su v 0,..., v k, vrhovi grafa G i e i, i = 1,..., k, bridovi koji su incidentni s vrhovima v i 1 i v i. Graf G je povezan graf ako za svaka dva vrha tog grafa postoji put koji ih povezuje.
19 Graf u kojem su svi vrhovi jednakog stupnja k naziva se k regularan graf. Definicija Neka je G = (V, E, I) graf sa n vrhova. Graf G je jako regularan graf s parametrima (n, k, λ, µ) ako vrijedi: 1. G je jednostavan k regularan graf, 2. svaka dva susjedna vrha imaju točno λ zajedničkih susjednih vrhova, 3. svaka dva nesusjedna vrha imaju točno µ zajedničkih susjednih vrhova.
20 Primjer graf
21 Primjer Neka grupa G djeluje tranzitivno na skup X. Tada grupa G djeluje na skup X X na sljedeći način: g.(x 1, x 2 ) = (g.x 1, g.x 2 ). Skup {(x, x) x X } naziva se dijagonala skupa X. Broj orbita skupa X X za djelovanje grupe G naziva se rang grupe G. Za orbitu O skupa X X za djelovanje grupe G kažemo da je simetrična orbita ako vrijedi (x, y) O (y, x) O. Neka je G grupa parnog reda. Tada postoji barem jedna simetrična orbita D (različita od dijagonale) na skupu X X. G je grupa automorfizama grafa G(D) kojemu je X skup vrhova i D skup bridova. Ako je G grupa ranga tri, onda je G(D) jako regularan graf.
22 J. D. Key, J. Moori: Codes, Designs and Graphs from the Janko Groups J 1 and J 2 J. Combin. Math. Combin. Comput. 40 (2002),
23 Teorem (KM) Neka je Ω n člani skup, α element skupa Ω i neka je G konačna grupa koja djeluje primitivno na skup Ω. Neka je {α}, orbita za djelovanje stabilizatora G α na neki element β Ω, = {g.β g G α }. Tada je (1) B = {g. g G} n člani skup blokova simetričnog samodualnog 1 (n,, ) dizajna na kojega grupa G primitivno djeluje kao grupa automorfizama, (2) za δ Ω, skup E = {g.{α, δ} g G} je skup bridova povezanog regularnog grafa sa n vrhova na kojega grupa G primitivno djeluje kao grupa automorfizama.
24 Neka su β 1,..., β s elementi skupa Ω i neka je uz uvjet da je Ω. Tada je = G α.β 1... G α.β s, B = {g. g G} skup blokova samodualnog simetričnog 1 dizajna na kojega grupa G djeluje primitivno kao grupa automorfizama.
25 Lema Ako grupa G djeluje primitivno na simetričan dizajn D, onda se dizajn D može konstruirati na način opisan teoremom KM. Dokaz iz članka: Neka je D simetričan 1 (v, k, k) dizajn i neka je B skup blokova dizajna D. Tada je B = G.B za neki blok B B. Slijedi da je G = B G B. G djeluje primitivno na dizajn D pa je G B maksimalna podgrupa i G B = G α za neku točku α dizajna D. Zaključujemo da G α fiksira blok B te je B unija nekih G α orbita.
26 Dodatne napomene Alternativna definicija ranga grupe: rang tranzitivne permutacijske grupe G je broj orbita za djelovanje stabilizatora G x, x G. Slijedi da je graf iz grupe ranga tri konstruiran na način opisan teoremom KM jako regularan graf. Neka je G jednostavna primitivna permutacijska grupa. Tada postoji samo jedna trivijalna orbita za djelovanje stabilizatora G x, x G.
27 Grupe J 1 i J 2 Jankova grupa J 1 je jednostavna grupa reda te je AutJ 1 = J1. Grupa J 1 ima sedam maksimalnih podgrupa, do na konjugaciju, i odgovarajuće primitivne permutacijske reprezentacije na 266, 1045, 1463, 1540, 1596, 2926 i 4180 točaka. Jankova grupa J 2 je jednostavna grupa reda Puna grupa automorfizama grupe J 2 je izomorfna grupi J 2 : Z 2. Grupa J 2 ima devet maksimalnih podgrupa, do na konjugaciju, i devet primitivnih permutacijskih reprezentacija na 100, 280, 315, 525, , 1800, 2016 i točaka. Primjer u programskom paketu Magma
28 1 dizajni i grafovi konstruirani iz grupe J 1 Postoji točno 245 neizomorfnih samodualnih dizajna konstruiranih iz grupe J 1 (na način opisan teoremom KM). Grupa J 1 djeluje primitivno kao puna grupa automorfizama na konstruirane dizajne. Autori ističu da su testirali jaku regularnost konstruiranih grafova za neke od primitivnih reprezentacija grupe J 1, ali nisu dobili niti jedan jako regularan graf.
29 1 dizajni i grafovi konstruirani iz grupe J 2 Postoji točno 51 neizomorfnih samodualnih dizajna konstruiranih iz grupe J 2 (na način opisan teoremom KM). Grupa J 2 djeluje primitivno na sve konstruirane dizajne. Konstruirani dizajni imaju punu grupu automorfizama izomorfnu grupi J 2 ili grupi AutJ 2. Za svaki dizajn kojemu je puna grupa automorfizama izomorfna grupi AutJ 2 konstruiran je njemu izomorfan dizajn iz orbite iste duljine. Konstruirana su i tri jako regularna grafa s parametrima: (100,36,14,12), (280,135,70,60), (280,36,8,4). Graf na 100 vrhova konstruiran je iz permutacijske reprezentacije ranga tri, a grafovi na 280 vrhova iz permutacijske reprezentacije ranga četiri.
30 Hipoteza Autori pretpostavljaju da svaki dizajn D konstruiran na opisani način iz grupe G ima grupu AutG kao punu grupu automorfizama, osim u slučaju da je iz iste grupe konstruiran dizajn izomorfan dizajnu D. U tom slučaju je, prema njihovoj pretpostavci, grupa automorfizama izomorfna podgrupi grupe AutG.
31 Kodovi iz incidencijskih struktura Neka je D = (P, B, I) incidencijska struktura i M matrica incidencije strukture D. Stupci matrice M su vektori incidencije. Linearni kod C iz dizajna D je potprostor vektorskog prostora dimenzije P nad konačni poljem F razapet vektorima incidencije dizajna. Oznaka: [n, k, d] F n je dimenzija vektorskog prostora k je dimenzija potprostora razapetog vektorima incidencije d je najmanja težina (udaljenost od nul vektora) Automorfizam koda je permutacija komponetni vektora koda koja čuva potprostor.
32 Kodovi konstruirani iz grupe J 2 dizajn kod grupa automorfizama 1 (100, 36, 36) [100, 36, 16] 2 J 2 : Z 2 1 (280, 108, 108) [280, 14, 108] 2 J 2 : Z 2 1 (315, 64, 64) [315, 28, 64] 2 J 2 : Z 2 1 (315, 80, 80) [315, 36, 80] 2 J 2 : Z 2
Flag-tranzitivni linearni prostori
Flag-tranzitivni linearni prostori Andrea Švob (asvob@math.uniri.hr) 5. studenoga 2010. Andrea Švob (asvob@math.uniri.hr) () Flag-tranzitivni linearni prostori 5. studenoga 2010. 1 / 31 Djelovanja grupe
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ
LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :
4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
4 Funkcije. 4.1 Pojam funkcije
4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
3 Funkcije. 3.1 Pojam funkcije
3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Zadaci iz Linearne algebre (2003/4)
Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje
Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije.
Binarne relacije Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Kaže se i da je ρ binarna relacija sa skupa A u skup B (kao u [MP]).
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak
Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
Matematika 1 { fiziqka hemija
UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.
Šta je to relacija? U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Na primer, često se javlja potreba da se izvesni objekti uporede
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin
Matematika (PITUP) FOI, Varaždin Dio III Umijeće postavljanja pravih pitanja i problema u matematici treba vrednovati više nego njihovo rješavanje Georg Cantor Sadržaj Matematika (PITUP) Relacije medu
1 Aksiomatska definicija skupa realnih brojeva
1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Algebarske strukture
i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.
Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Funkcije. Predstavljanje funkcija
Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Predavanje 7. Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine. Dinko Osmanković
Predavanje 7 Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine Dinko Osmanković Kurs: Matematička logika i teorija izračunljivosti Sadržaj predavanja 1 Prirodni
Algebarske strukture. Braslav Rabar. 5. srpnja 2007.
Algebarske strukture Braslav Rabar 5. srpnja 2007. Def 1 Neka je S neprazni skup tada pod binarnom operacijom na skupu S razumijevamo svako preslikavanje : S S S, a ureden par (S, ) skupa i neke binarne
x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.
Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +
Algebarske strukture
Algebarske strukture vježbe prema predlošku i zadacima Martine Balagović i Marcele Hanzer natipkali, proširili i uredili Matija Bašić Aleksandar Milivojević Sanjin Ružić Sveučilište u Zagrebu Prirodoslovno-matematički
ELEMENTARNA MATEMATIKA 1
Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Linearna algebra I, zimski semestar 2007/2008
Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov
Linearna algebra
Linearna algebra 2 Siniša Miličić cinik@studentmathhr 2462004 Molim da se sve uočene greške i primjedbe pošalju na mail Ovaj dokument je javno dobro, te se smije neograničeno umnažati, mijenjati i koristiti
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18
OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.
ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA
Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama
Osnove matematičke analize
Osnove matematičke analize prof.dr.sc. Nikola Koceić Bilan FPMOZ Sveučilište u Mostaru FPMOZ Sveučilište u Mostaru 1 / Sadržaj 1 Topološka i metrička struktura normiranog vektorskog prostora R n. Konvergencija
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Prebrojavanje savršenih sparivanja
Prebrojavanje savršenih sparivanja Frane Kalebić Joško Mandić Damir Vukičević Snježana Braić Sadržaj 1 Uvod 1 2 Sparivanje u grafovima 3 2.1 Sparivanje u bipartitnom grafu..................... 5 2.2 Mađarska
Algebarske strukture bilješke s vježbi asistenta Filipa Najmana ak. god /12. natipkali i uredili Aleksandar Milivojević i Sanjin Ružić
Algebarske strukture bilješke s vježbi asistenta Filipa Najmana ak. god. 2011./12. natipkali i uredili Aleksandar Milivojević i Sanjin Ružić (skripta ne može zamijeniti vježbe) 1 Sadržaj 1 Grupe 3 1.1
Zadaća iz kolegija Metrički prostori 2013./2014.
Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić