Proračun potrebnog broja vozila II 1/13
|
|
- Ἑρμογένης Σκλαβούνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Proračun potrebnog broa vozla II 1/13 Analtčke metode za odredvana potrebnog broa vozla Jedan od naznačanh aktora ko utču na unkconsane sstema rukovana materalom e bro sredstava ko se nalaze u sstemu. Dmenzonsane, odnosno utvrdvane potrebnog broa sredstava velčne voznog, l parka mehanzace ma poseban znača predstavla centraln problem tehnološkog uoblčavana logstčkh sstema rukovana materalom, a rešavanu ovog problema moguće e prć na vše načna pa se, otuda, sreću razlčte metode prstup. Jasno da e potreban bro pretovarnh sredstava moguće procent na baz utvrdvana transportnog cklusa sredstava, ukolko se ma u vdu da e potreban bro sredstva posledca raspoložvog vremena za realzacu zahteva vremena potrebnog ednom sredstvu da realzue zahtev. ( VREME POTREBNO JEDNOM VOZILU DA IZVRSI ZADATAK BROJ VOZILA ( VREME ZA KOJE JE POTREBNO IZVRSITI ZADATAK Od početka 8-h godna prošlog veka pa do danas razven e čtav nz analtčkh modela odredvana broa pretovarnh sredstava, ko vremena traane poednh aza pretovarnog procesa tretrau kao determnstčke velčne. Ov model odnose se, po pravlu, na odredvne broa automatsk vodenh vozla AGVS, al se t prstup mogu uspešno prment na blo kou drugu vrstu transportno manpulatvnh vozla.
2 Proračun potrebnog broa vozla II 2/13 Ov prstup predstavlau uopštene metoda utvrdvana transportnog, odnosno pretovarnog cklusa, er obuhvatau čekane sredstava na početak realzace zahteva, prsustvo praznh vožn, zastoe, uopšte, zadržavane u drugm neproduktvnm azama tehnološkog procesa (punene batera,...). U suštn, dea pomenuth analtčkh modela este u densanu načna na ko se utvrdue traane "neproduktvnh" aza pretovarnog procesa (slobodno, prazna vožna ukolko se rad o premeštanu sredstva do mesta realzace novog pretovarnog zahteva, zasto punene batera), pr čemu se za proračun vremena utovara, stovara vožne opterećenog sredstva, kao vremena vožne u neopterećenom smeru, sprovod proračun transportnog cklusa Naveden analtčk model analzrau realzacu procesa na mrež, dakle skup pretovarnh zahteva zmedu parova čvorova date transportne mreže G(N,A), gde e N {1,...,,,..., n} skup čvorova, a A skup grana (,). Svako gran (,) A prdružen e nenegatvn skalar d ko reprezentue nakraće rastoane uzmeđu čvorova,. Ukolko se uvedu sledeće oznake: t L [sec] vreme utovara u čvoru t U [sec] vreme stovara u čvoru v [m/sec] brzna kretana vozla P D 3 D 4 P P D 5 8 P 5 D 2 P D P 4 6
3 Proračun potrebnog broa vozla II 3/13 T [sec] raspoložv vremensk perod [-] bro pretovarnh zahteva zmedu čvorova, tada se za posmatranu transportnu mrežu G(N,A), ukupno vreme realzace produktvnh aza procesa može utvrdt na osnovu proračuna ukupne dužne poednh aza transportnh cklusa ko se realzuu zmedu parova čvorova, to est: ukupan bro operaca utovara, prevoza stovara t L t U ( d ) v ukupno vreme u otpremnm mestma na utovaru (T L ) ukupno vreme u premnm mestma na stovaru (T U ) ukupno vreme opterećenh vožn (T LT ) Deo raspoložvog vremenskog peroda T sredstva provode u stanma slobodno, prazna vožna, punene batera zasto
4 Proračun potrebnog broa vozla II 4/13 Vreme koe sredstva provode u ovm stanma, t. neproduktvnm azama procesa, unkca su velkog broa aktora kao što su: načn upravlana procesom, karakterstke sredstava, karakterstke zahteva, konguraca sstema, sl. Tako vreme koe sredstvo provod u stanma slobodno, prazna vožna zasto (blokada), navše zavs od koncepta kontrole, dnamke pravla dspečrana rutrana koa se prmenuu, vremena koe sredstvo provod u stanu punene batera (navše zavs od vrste batera koe se nalaze na vozlu, načna punena vrste zadatka na kome e sredstvo angažovano) Za procenu traana neproduktvnh, aza pretovarnog procesa razveno e vše metoda, koe Snrech 21, klaskue u tr grupe: Proste ednodmenzone metode, kod koh se procena neproduktvnh tokova vozla može ocent kao "navna". Ove metode su označene kao ednodmenzone zbog čnence da e pretpostavlena ednstvena ednca tereta da se realzaca tokova na mrež ne optmzue. U ovu kategoru svrstan su prstup koe predlažu Maxwell Muckstadt 1982 Egbelu 1987 Kompleksne ednodmenzone metode podrazumevau nešto kompleksn preczn prstup ko uklučue respektovane prmenenh pravla dspečrana, a u ovu kategoru svrstan su prstup koe predlažu Egbelu 1987 Malmborg 1991
5 Proračun potrebnog broa vozla II 5/13 Všedmenzone metode podrazumevau ntegracu problema odredvana potrebnog broa sredstava sa nekom drugom klasom problema koa e sa ovm drektno povezana. Naveden prstup nsu, medutm, edn ko se u lteratur predlažu, er e reč o veoma razveno oblast u okvru koe zanteresovan čtalac može pronać velk bro publkovnh rezultata stražvana otuda razlčth prstupa. Snrech Tanchoco 1992 predlažu model za utvrdvane potrebnog broa AGV, ormulšuć dvokrterumsku unkcu mnmzace ukupnh troškova maksmzace skoršćena kapacteta sredstava Raota dr. 1998, ormulšu model bazran na mks celobronom programranu, sa clem mnmzace praznh vožn Hung P.C Lu F.H. 21, predlažu analtčk prstup za ocenu broa AGV, za sluča kada sredstva manpulšu vše razlčth tovarnh ednca Johnson 21, predlaže analtčk model za procenu praznh vožn za dva često koršćena pravla dspečrana FCFS (prv došao prv opslužen) NVR (pravlo nablžeg vozla), to u uslovma stohastčkh transportnh zahteva. PROSTE JEDNODIMENZIONE METODE Egbelu 1987 predlaže dve ednostavne metode određvana broa vozla, odnosno za procenu vremena koe vozlo provede u "neproduktvnm" stanma.
6 Proračun potrebnog broa vozla II 6/13 PRVI METOD KOJI PREDLAŽE EGBELU Naednostavn prstup bazran e na pretpostavc da e vreme praznh vožn (ET) poznata unkca vremena koe vozlo provede u vožn pod teretom (T LT ), to est ET φ(t LT ). Pr tome, korste se vrednost sledećh parametra: e [-] skoršćenost vozla b [-] deo vremena u kome e vozlo blokrano c [-] deo vremena koe vozlo provede neangažovano t b [-] vreme koe vozlo provede na punenu batera U ovom slučau potreban bro vozla utvrdue se koršćenem sledećeg zraza: N ( d) V +ϕ(t LT) + ( tl + tu) e ( T t ) ( 1 + b + c) b Značano e naglast da se u praktčno prmen za unkcu ET φ(t LT ) načešće korst oblk ET k T LT, gde se za vrednost koecenta k mogu korstt skustvene l procenene vrednost, a za ncalnu ocenu mogu se korstt vrednost koe preporučue Kulwec 1982, gde se navod da e odnos vremena kada vozlo realzue prazne vožne, kada e neangažovano kada e blokrano 2%, 4% 15%, respektvno, od ukupnog vremena vožne opterećenog sredstva.
7 Proračun potrebnog broa vozla II 7/13 DRUGI METOD KOJI PREDLAŽE EGBELU Naredn, takođe veoma ednostavan metod ko se predlaže, (Egbelu 1987), za deu ma analzu transportnh tokova u utovarno stovarnm mestma. Tok kroz utovarno stovarno mesto denše se kao: NF k k : : Ako u prozvolno utovarno stovarno mesto, sa mesta dolaz sredstava, ako se z stog čvora, ka čvoru k otprema k sredstava, bro sredstava NF koa nakon realzace stovara u čvoru neće bt utovarena potom upućena prema ednom od k utovarnh mesta može se odredt na baz gorneg zraza Promenlva NF, može mat sledeću vrednost: NF > NF < sredstvma NF - u čvor e vše vozla ušlo nego što e zašlo, pa se avla však praznh sredstava - u čvor e ušlo mane vozla nego što e zašlo, pa se avla potreba za praznm čvor se nalaz u stanu ravnoteže. Imauć ovo u vdu, lako se može procent očekvano rastoane koe će preć sredstva koa neopterećena napuštau čvor. Dakle, pod pretpostavkom da su prosečna rastoana praznh opterećenh vozla ednaka, ukupan put ko predu vozla krećuć se zmedu utovarno stovarnog mesta, ostalh čvorova na mrež e: k
8 Proračun potrebnog broa vozla II 8/13 ET 1 d NF > Medutm, s obzrom da koncept radnh mesta koa sredstva opslužuu može podrazumevat zčk dslocrane utovarne, odnosno stovarne pozce ednog te stog utovarno stovarnog mesta to se u slučau kada e z čvora, koršćenem svh l dela prspelh sredstava, potrebno otpremt k sredstava, do k odredšnh čvorova, poavlue zahtev za praznom vožnom zmedu th dslocrnh delova stovarnog utovarnog dela čvora. Put ko se u tom slučau prelaz, ukolko e prosečno rastoane stovarne utovarne pozce čvora d INT, može se predstavt zrazom: NF ET 2 mn, k d k INT D ET 2 P : : k Imauć u vdu prethodne zraze potreban bro vozla moguće e odredt koršćenem zraza N [( d) + ET1 + ET2 ] V + ( tl + tu) e ( T t ) ( 1 + b + c) b
9 Proračun potrebnog broa vozla II 9/13 METOD KOJI PREDLAŽU MAXWELL I MUCKSTADT Metod ko predlažu Maxwell Muckstadt 1982, za procenu praznh vožn korst model transportnog zadatka lnearnog programrana. Ako se premna stanca kod koe e NF > shvat kao zvoršte č kapactet e NF, s obzrom da se nakon prema robe u čvoru poavlue naveden bro praznh vozla, a otpremna stanca, kod koe e NF <, shvat kao odredšte koa zahteva NF praznh vozla, očgledno e da se problem optmalnog rasporedvana vozla koa se nalaze u zvorštma, po odredštma, može ormulsat kao transportn zadatak lnearnog programrana, sa unkcom cla koa treba da mnmzra ukupn preden put praznh vozla pr transeru zmedu premnh otpremnh stanca. Shodno tome, ako promenlva odlučvana x predstavla bro vozla ko se premešta zmedu premne stance otpremne stance, za poznata rastoana zmedu stanca d, mnmzaca ukupne dužne praznh vožn ET može se ormulsat kao Mn k x x x k ET NF NF x d NF NF > < (1) (2), (3)
10 Proračun potrebnog broa vozla II 1/13 Ogrančene (1) garantue da bro vozla ko se premešta z čvora odgovara raspoložvom brou vozla u tom čvoru, a ogrančene (2), analogno, obezbedue da raspoložv bro praznh vozla u čvoru odgovara brou vozla koa su u ta čvor prspela. Takode, u mrežnm ormulacama, ova ogrančena se često označavau kao ogrančena konzervace tokova l ogrančena balansa tokova. U tabelarno orm, na ednostavnom prmeru, problem se može predstavt kao na slc a rešene e moguće utvrdt blo u tabelarno orm kako e to uobčaeno za Transportn zadatak, l pak koršćenem date ormulace prmenom nekog od solvera (Logware, Excel, CPLEX, LINDO, LP_Solve ko rad pod Lnux-om,...). Tabelarn oblk ormulace problema NF 1 NF 2 NF 3 NF > d 1a NF < a b c NF a NF b NF c OD DO a b c Slobodna vozla 1 d 1a d 1b d 1c NF 1 2 d 2a d 2b d 2c NF 2 3 d 3a d 3b d 3c NF 3 4 d 4a d 4b d 4c NF 4 Zahtev za vozlma NF a NF b NF c NF 4 4 d 4c
11 Proračun potrebnog broa vozla II 11/13 Nakon što se na baz prezentranog modela utvrd vreme praznh vožn, pr čemu ova prstup dae rešene koe predstavla donu grancu vremena praznh vožn, potreban bro vozla može se sračunat koršćenem zraza N [( d ) + ET] V + ( tl + tu ) e ( T t ) ( 1 + b + c) b KOMPLEKSNE JEDNODIMENZIONE METODE Metode koe se mogu svrstat u ovu kategoru podrazumevau nešto kompleksn preczn prstup ko uklučue respektovane prmenenh pravla dspečrana. Tako se u ednom od prvh radova z ove oblast (Egbelu 1987), proračun vremena praznh vožn bazra na prmen FCFS (rst come rst serve, t. prv došao prv opslužen) pravla dspečrana na pretpostavc slučane poave zahteva za vozlma u utovarnm stancama. Za sluča prmene ovog pravla dspečrana prvo slobodno vozlo, koe se poav u neko od premnh stanca stovarnh čvorova, bće upućeno do prve od otpremnh stanca utovarnh čvorova gde se poavo zahtev. Ukolko se uoč matrca broa pretovarnh zahteva (tokova) zmedu parova čvorova, tada e, uz pretpostavku da su poava zahteva za praznm vozlma oslobadane praznh vozla slučanog karaktera, moguće densat sledeće verovatnoće.
12 Proračun potrebnog broa vozla II 12/13 Matrca broa pretovarnh zahteva zmedu parova čvorova, TOKOVI U ČVOR OD SVIH OSTALIH ČVOROVA TOKOVI IZ ČVORA I DO SVIH OSTALIH ČVOROVA Verovatnoća p, da će naredno slobodno vozlo bt potrebno u čvoru, da b z tog čvora transportovalo teret do nekog drugog odredšnog čvora, odnosno verovatnoća p, da će naredno slobodno vozlo postat raspoložvo nakon stovara u čvoru odredue se prema p k k k p, k
13 Proračun potrebnog broa vozla II 13/13 Jasno e da poznavane ovh verovatnoća, medusobno nezavsnh, omogućue da se utvrd verovatnoća p, da prozvolno vozlo upućeno u otpremnu stancu utovarn čvor, dolaz z premne stance stovarnog čvora p p p Otuda, očekvan bro praznh vožn zmedu premnh stanca otpremnh stanca - g znos: g p p Za poznatu matrcu rastoana zmedu čvorova može se procent na baz: ET d g d, ukupna dužna praznh vožn, ET Shodno tome, potreban bro vozla moguće e odredt koršćenem zraza N [( d) + ET] V + ( tl + tu) e ( T t ) ( 1 + b + c) b
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Metoda najmanjih kvadrata
Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Prema tome, kao sredstva koja uvrštavamo u portfolio pojavljuju se sredstvo 3, sa najvećim iznosom Sharpe-ovog indeksa, i sredstvo 2.
Prmer 7. 1) Da su podac za r sredsva u peroda osmarana, R 1,518 R 3, 031 R3 3, 9533 r 1 1, 0383 r 0, 837 r 3 1, 48 r 1 r 0,1919 r 1 r 3 0, 698 r r 3 0, 1801 na osnovu dah sumranh vrednos odred očekvanu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
NAVODNJAVANJE MODELI DISTRIBUCIJE VODE U SISTEMIMA ZA NAVODNJAVANJE ŠKOLSKA 2016/2017 UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET
UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET NAVODNJAVANJE ŠKOLSKA 2016/2017 MODELI DISTRIBUCIJE VODE U SISTEMIMA ZA NAVODNJAVANJE Predmetn profesor: dr Mloš Stanć, dpl. građ. nž. Predmetn asstent: Željko
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A
Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Projektovanje integrisanih kola. I. I. Uvod Uvod - sistem projektovanja. Sadržaj:
Projektovanje ntegrsanh kola Potpuno projektovanje po narudžbn Sadržaj: Sadržaj: I. I. Uvod Uvod - sstem projektovanja II. II. MOS Analza Proceskola prmenom računara III. III. Potpuno Optmzacja projektovanje
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Kola u ustaljenom prostoperiodičnom režimu
Kola u ustalenom prostoperiodičnom režimu svi naponi i sve strue u kolu su prostoperiodične (sinusoidalne ili kosinusoidalne funkcie vremena sa istom kružnom učestanošću i u opštem slučau različitim fazama
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke
Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
KOPOLIMERIZACIJA. UGRADNJA VIŠE RAZLIČITIH MONOMERA u istu makromolekulu Je li stupnjevita polimerizacija tipa A 2. kopolimerizacija?
KOPOLIERIZIJ UGRDNJ VIŠE RZLIČITIH ONOER u stu maomoleulu Je l stunevta olmezaca ta oolmezaca? ltenauć (zmenčn) oolme KOPOLIERIZIJ POLIURETNI Stunevta oolmezaca: ugadna vše azlčth monomea ste unconalnost
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu