RĂSUCIREA (TORSIUNEA)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "RĂSUCIREA (TORSIUNEA)"

Transcript

1 5 RĂSUCREA (TORSUNEA) 5 Generliăţi Secţiune unei bre cu ouă xe e simerie ese suusă l răsucire ură că orsorul forţelor ce cţioneză e secţiune brei, clcul în ror cu cenrul e greue l secţiunii, se reuce l un culu, l crui momen re irecţi normlă l secţiune (fig 5) Fig 5 Piesele solicie frecven l răsucire sun rborii e rnsmisie şi rcurile elicoile Suiul soliciării e răsucire se v efecu enru bre cu secţiune circulră su inelră l cre ioez lui Bernoulli ( secţiunilor lne) ese confirmă 5 Tensiuni şi eformţii Penru clculul e rezisenţă l răsucire ese necesr să se sbilescă felul ensiunii cre re, lege e isribuţie e secţiune şi mărime cesei înr-un

2 80 ATERALELOR ELEENTE DE REZSTENŢA unc În ces sco se consieră o bră reă cu secţiune circulră e surfţ cărei s- rs o reţe e reunghiuri curbilinii eermine e generore şi lne rlele normle l x brei (fig 5, ) Fig 5 Aunci cân br ese soliciă l răsucire rin momenul (fig 5, b) se consă că: - lnele e secţionre brei rlele iniţil rămân rlele, eci se verifică ioez lui Bernoulli rivin lneie secţiunilor; - br nu-şi moifică imensiunile în sens longiuinl su rnsversl, rezulân că în secţiunile rnsversle nu r ensiuni normle σ; - generorele evin elice e eglă înclinre, c urmre reunghiurile evin rlelogrme oriă exisenţei ensiunilor ngenţile cre rouc roire unei secţiuni fţă e lă secţiune; ensiunile ngenţile cre r sun eci ereniculre e rză Din coniţi e echivlenţă mecnică (fig 5, c) rezulă : ra (5) A Se izoleză un elemen e bră e lungime x şi e rză r Generore BB se roeşe cu unghiul γ, uă eformre elemenului (fig 5) uânu-se scrie: rϕ γ x (5)

3 5 RĂSUCREA (TORSUNEA) 8 Porivi legii lui Hooke: Fig 5 Înlocuin e γ in reli (5) în (5) se obţine: G γ (5) Gr ϕ, (5) x cee ce ră că ensiune ngenţilă vriză linir cu rz, fiin mximă l exerior şi nulă în cenrul secţiunii Dcă se inrouce exresi ensiunii in relţi (5) în (5) se obţine: Exresi r A A Din relţiile (5) şi (56) rezulă ϕ G x A r A (55) rerezină momenul e inerţie olr l secţiunii () sfel că: ϕ G (56) x r (57) Tensiune ngenţilă mximă re în uncele cele mi ere e cenrul secţiunii (fig 5, ) şi re exresi: une W ese moulul e rezisenţă olr l secţiunii rmx, (58) W Penru secţiune circulră W π, ir enru secţiune inelră 6

4 8 ATERALELOR W ELEENTE DE REZSTENŢA π D 6 D În bz rinciiului uliăţii ensiunilor ngenţile, se rouc ensiuni ngenţile şi în secţiune longiuinlă (fig 5, b) Fig 5 Din relţi (56) se obţine unghiul ϕ cu cre se roesc ouă secţiuni siue l isnţ x un e cellă, ϕ x (59) G Roire relivă inre secţiunile e l ceele brei ese: ϕ x, (50) G l ir cân, G, sun consne în lungul brei, su e numie orţiuni, l ϕ şi reseciv G Unghiul e răsucire secifică ese: ili ϕ (5) G i θ, (5) G rousul G fiin numi moul e rigiie l răsucire Din relţi (58) rezulă formulele enru clculul e rezisenţă l brelor e secţiune circulră solicie l răsucire: i

5 5 RĂSUCREA (TORSUNEA) 8 - enru imensionre W nec ; (5) - enru verificre ef ; (5) W - clculul cciăţii e încărcre W (55) fiin rezisenţă misibilă merilului l solicire e răsucire c ef ef 5 Clculul rborilor e rnsmisie Arborii e rnsmisie sun elemene e mşini cre rnsmi ueri (culuri) rin inermeiul unor roţi De obicei, se u uerile rnsmise e roţile mone e rbore (exrime în kw) şi urţi rborelui (în ro/min) Lucrul mecnic elemenr l culului lic rborelui ese θ, ir uere coresunzore ese: momenul cre soliciă rborele fiin: une viez unghiulră (în r/s) ese θ P ω, (56) P, (57) ω π n ω, n fiin urţi (în ro/min) 0 omenul e răsucire in secţiune fiin egl cu momenul exerior in (57) rezulă: 0 P [ knm] (58) π n Arborii e rnsmisie se imensioneză, e obicei, in ouă coniţii: coniţi e rezisenţă Alicân relţi (5) se obţine: W nec Penru secţiune ese circulră vem: P (59) π n

6 8 ATERALELOR π 6 ELEENTE DE REZSTENŢA P P, rezulân 65 π n n Dcă secţiune ese inelră: π D 6 D 0 0 π n 6 P, obţinânu-se P n 65, une k /D ( k ) coniţi e eformţie cere c imensionre rborelui să se fcă sfel c unghiul e răsucire secifică să nu eăşescă o numiă vlore imusă Din licre l limiă relţiei (5) θ θ, se obţine G (50) Gθ π Penru secţiune circulră rezulă,, Gθ π Gθ ir enru secţiune inelră π D D Gθ π ( k ) Gθ, D L rbori, e obicei θ 0,5 /m 0,5 π/ r/mm În urm imensionării, în cele ouă coniţii, se oă imerul cu vlore ce mi mre Alicţi Să se imensioneze rborele unui moor in figur 55 cre rimeşe uere P kw l urţi n 80 ro/min şi rnsmie uerile P kw şi P 0 kw l ouă mşini că: ) 0 P, b) θ 0,5 /m Se u G 8, 0 P Să se clculeze ooă şi roire relivă inre roţile şi Rezolvre Se clculeză momenele e răsucire cu relţi (58) şi se obţine: ( ) ,66 knm;,06 knm π 80 π 80 Dimensionre rborelui în cele ouă siuţii:

7 5 RĂSUCREA (TORSUNEA) 85 W nec nec ) licân relţi (5) rezulă 6, ,8 5,8 0 mm, e une 0 56,5 0 mm π b) licân relţi (50) se obţine 6, mm, e une 8, 0 0,5π , mm π Fig 55 Se oă enru rbore sre exemlu 75 mm Roire relivă inre roţile şi se eermin cu relţi (5): 6 0 ϕ r 8, 0 π 75 ( 0, ,06 000) 8, 0 5 Clculul rcurilor elicoile Un rc elicoil se confecţioneză, în generl, in sârm e oţel, e un numi imeru, cre se înfăşoră uă o numiă ehnologie, e un cilinru sub form unei elice (fig 56, ) Disnţ R e l x cilinrului l x sârmei, se numeşe rză e înfăşurre Asur rcului cţioneză forţ F Reucân cesă forţă în cenrul e greue l unei secţiuni sârmei se obţine o forţă F şi un momen FR

8 86 ATERALELOR ELEENTE DE REZSTENŢA (fig56,b) Descomunân forţ F şi momenul uă norml şi ngen l secţiune se obţine: - o forţă xilă N Fsinα, - o forţă ăieore T Fcosα, - un momen e orsiune cosα FRcosα, - un momen încovoieor i sinα FRsinα, une α rerezină unghiul e înclinre sirei rcului Fig 56 L rcurile elicoile cu sire srânse unghiul α ese fore mic (α < 5 ) şi c urmre se oe consier cosα şi sinα 0, sfel încâ eforurile in sire sun T F şi reseciv FR Prin urmre rcurile sun solicie l forfecre şi răsucire: ensiune rezulnă în rc fiin: f F F, A π W FR π 6 6FR + π R (5) Înrucâ rorul /(R)<<, se consieră că ensiune în rc ese ce rousă numi e solicire e răsucire: 6FR (5) π,

9 5 RĂSUCREA (TORSUNEA) 87 C urmre eformării rcului forţ F căă o elsre f numiă săge rcului Penru sbilire relţiei e clcul săgeţii rcului se consieră un elemen e lungime s inr-o siră l cre secţiune in A ese resuusă fixă ir secţiune in B se roese cu ϕ, forţ F elsânu-se cu săge elemenr f, c în figur 57 Fig 57 Din figur 57 rezulă : BC R Rϕ, CD BCϕ, cosϕ cosϕ CE f CD cosϕ Rϕ s π Dr: ϕ, FR,, s Rα, rezulân G f FR π G α 6FR Săge coresunzore unei sire ese f f, G ir ce coresunzore înregului rc cu i sire 6FR i f f i (5) G su π 0 6Fi R f (5) G

10 88 ATERALELOR ELEENTE DE REZSTENŢA Dimensionre rcului se fce sfel încâ s fie ineliniă â coniţi e rezisenţă câ şi ce e eformţie Uilizn relţi (5) se obţine: 6FR, (55) π une (00600) P l oţeluri enru rcuri Prin folosire relţiei (5) rezulă : 6Fi Gf R (56) Înrucâ rcurile se relizeză cu rore k R/ recize rin norme su snre, relţi nerioră oe fi scrisă sub form: 6Fik, (57) Gf une f ese săge imusă rcului Din licre relţiilor (55) şi (57) se lege vlore ce mi mre obţinuă enru imerul sârmei Înălţime rcului în sre comrimă (fig 56) rebuie sfel sbiliă încâ înre ouă sire vecine să exise o numiă isnţă, crei vlore minimă se i e obicei egl cu / şi eci: h i + ( i ) În sre nesoliciă, înlţime H rcului ese h H + f Alicţi Să se eermine vlore forţei F cre cţioneză rcul concorului elecric in figur 58 enru rouce elsre s, mm Să se clculeze oo ensiune mximă in rc Se u: R 0 mm, 8 mm, i sire, G 0 P Fig 58

11 5 RĂSUCREA (TORSUNEA) 89 Rezolvre Din exresi săgeţii rezulă sg, 0 8 su F 0, 8N, 6R i 6 0 F ir ensiune mximă în rc ese 6FR 6 0,8 0 6,P π π 8 55 Bre sic neeermine l răsucire Problemele sic neeermine l răsucire se rezolvă e bz coniţiilor e echilibru sic şi coniţiilor e eformţie Alici Arborele bimelic form in oi cilinri in merile iferie resţi unul în celll, c în figur 59, ese solici l răsucire e momenul 0 Să se clculeze ensiunile mxime in rbore Fig 59 Rezolvre Din coniţi e echilibru sic 0 +, ir in coniţi e eformţie, ţinân sem c cei oi cilinri lucreză îmreună l l ϕ ϕ, ică rezulă : G G P P

12 ELEENTE DE REZSTENŢA ATERALELOR, 0 0 G G G G G G + +, D omenele e inerţie olre le celor oi rbori sun:, D D π π Penru c rborele să rezise rebuie c:, 90

TORSIUNEA BARELOR DREPTE

TORSIUNEA BARELOR DREPTE 7.1. Generliăţi CAPITOLUL 7 TORSIUNEA BARELOR DREPTE Torsiune (răsucire) ese solicire redominnă din rborii mşinilor, dr ese înâlniă şi în le czuri, de exemlu l şsiurile de uovehicole, consrucţiile melice

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Se cere determinarea caracteristicilor geometrice pentru secţiunea antisimetrică din figura de mai

Se cere determinarea caracteristicilor geometrice pentru secţiunea antisimetrică din figura de mai Seminr 7. Crcteristici geometrice l suprfeţe plne II.. Secţiune compusă cu profile lminte jos: Se cere determinre crcteristicilor geometrice pentru secţiune ntisimetrică din figur de mi fig.1 Poziţi centrului

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Capitolul 17. Asamblari cu strângere proprie

Capitolul 17. Asamblari cu strângere proprie Cpiolul 17 Amblri cu rângere proprie T.17.1. Ce un mblrile rbore-buuc prin rângere proprie? T.17.. Indici câev exemple de uilizre mblrilor cu rângere proprie (prin prere). T.17.3. Ce vnje prezin mblrile

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

MECANICĂ*N* NC. CINEMATICĂ NC. CINEMATICĂ 1

MECANICĂ*N* NC. CINEMATICĂ NC. CINEMATICĂ 1 MEANIĂ*N* N. INEMATIĂ N. INEMATIĂ MEANIĂ*N* N. INEMATIĂ UPRIN Inroducere... piolul N.0. inemic mișcării bsolue puncului meril... 5 N.0.. Triecori, iez și ccelerți puncului... 5 N.0.. udiul mișcării puncului

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2012

ENUNŢURI ŞI REZOLVĂRI 2012 ENNŢ Ş EZOLVĂ 1 1. Două rezisoare cu rezisenţele 1 = Ω şi = 8 Ω se monează în serie, aoi în aralel. aorul dinre rezisenţele echivalene serie/aralel ese: a) l/; b) 9/; c) ; d) /16; e) /9; f) 16/. ezisenţele

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Convergenţa uniformă a şirurilor de funcţii

Convergenţa uniformă a şirurilor de funcţii Convergenţ uniformă şirurilor de funcţii Considerăm un inervl închis orecre [, b ] R şi noăm cu F [,b ] mulţime uuror funcţiilor definie pe [, b ] cu vlori în R, F [,b ] = {x : [, b ] R ; x funcţie orecre}.

Διαβάστε περισσότερα

REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII * *

REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII * * PAVEL TRIPA MIHAI HLUŞCU REZISTENŢA MATERIALELOR NOŢIUNI UNDAMENTALE ŞI APLICAŢII * * Editur MIRTON Timişor 007 Dcă cee ce i făcut pre simplu, însemnă că nu i flt încă totul. ( Donld Westlke) Prefţă În

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

GABRIEL GH. JIGA CULEGERE DE TESTE GRILĂ DE REZISTENȚA MATERIALELOR PENTRU EXAMENE ȘI CONCURSURI

GABRIEL GH. JIGA CULEGERE DE TESTE GRILĂ DE REZISTENȚA MATERIALELOR PENTRU EXAMENE ȘI CONCURSURI GRIE GH. JIG CUEGERE DE TESTE GRIĂ DE REZISTENȚ MTERIEOR PENTRU EXMENE ȘI CONCURSURI Culegere de teste-grilă de Rezistenţ mterilelor CUVÂNT ÎNINTE După cum este binecunoscut, disciplin Rezistenţ mterilelor

Διαβάστε περισσότερα

Elementul de întârziere de ordinul doi, T 2

Elementul de întârziere de ordinul doi, T 2 5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

I. ANDREESCU ŞT. MOCANU PROBLEME DE REZISTENŢA MATERIALELOR

I. ANDREESCU ŞT. MOCANU PROBLEME DE REZISTENŢA MATERIALELOR NDREESCU ŞT OCNU PROBLEE DE REZSTENŢ TERLELOR BUCUREŞT 00 PREFŢĂ Proiectre cu succes elementelor de construcţii de mşini este imposibilă fără o cunoştere profundă Reistenţei terilelor legere formei, dimensiunilor

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

TEHNICI PWM (MID) UTILIZATE IN COMANDĂ INVERTOARELOR Sisteme de comandă ce folosesc strategia de modulaţie PWM cu modulatoare sinusoidală

TEHNICI PWM (MID) UTILIZATE IN COMANDĂ INVERTOARELOR Sisteme de comandă ce folosesc strategia de modulaţie PWM cu modulatoare sinusoidală TEHNICI PWM (MID) UTILIZATE IN COMANDĂ INERTOARELOR.. Sieme e comnă ce foloec regi e moulţie PWM cu moulore inuoilă.. Generliăţi Foloire unor ipoziive emiconucore e puere in ce în ce mi performne (rnziore

Διαβάστε περισσότερα

Construcţia recipientelor sub presiune. Elementele componente

Construcţia recipientelor sub presiune. Elementele componente 77 Conrucţi recipienelor ub preiune Elemenele componene Recipienele ub preiune un relize în generl din lmine din oţel crbon u oţel li. Un recipien ub preiune, în czul cel mi generl, (ig. 8.) ee conrui

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

ECHIPAMENTE ELECTRICE

ECHIPAMENTE ELECTRICE UNIVERSITATEA "VASILE ALECSANDRI" DIN BACĂU F ACULTATEA DE I NGINERIE DEPARTAMENTUL ENERGETICĂ MECATRONICĂ ŞI TEHNOLOGIA INFORMAŢIEI S PECIALIZAREA E NERGETICĂ INDUSTRIALĂ POPA SORIN EUGEN ECHIPAMENTE

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura;

Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura; Punţi de măsurre metode de comprţie: msurndul este comprt cu o mărime etlon de ceeşi ntur; punte: reţe complet cu 4 noduri: brţe: 4 impednţe digonl de limentre: surs (tensiune, curent) digonl de măsurre:

Διαβάστε περισσότερα

Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson

Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson Modele dinmice de conducere opimlă civiăţii firmei 9 Modelul Jorgenson Ese un model în cre ese urmăriă sregi firmei în cee ce priveşe efecure invesiţiilor şi efecele deprecierii cpilului supr evoluţiei

Διαβάστε περισσότερα

TEORII DE REZISTENŢĂ

TEORII DE REZISTENŢĂ CAPITOLUL 8 TEORII DE REZISTENŢĂ 8.. Sudiul sării plane de ensiune. Tensiuni principale şi direcţii principale. Un elemen de reisenţă se află în sare plană de ensiune dacă oae ensiunile care lucreaă pe

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx 7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă

Διαβάστε περισσότερα

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw) PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE

FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE LUCRAREA NR. 7 FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE Scopul lucrării: Studiul filtrelor ctive relizte cu mplifictore operţionle prin ridicre crcteristicilor lor de frecvenţă.. Filtrele ctive Filtrele

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

3. ARCURI [1, 2, 4, 6, 8, 10, 14]

3. ARCURI [1, 2, 4, 6, 8, 10, 14] 3. ARCURI [1, 2, 4, 6, 8, 10, 14] 3.1. CARACTERIZARE, DOMENII DE FOLOSIRE, CLASIFICARE Arcurile sunt orgne de mşini cre, prin form lor şi prin proprietăţile elstice deoseite le mterilelor din cre sunt

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

1.10 CONVERTOARE STATICE CONVERTOARE C.A.-C.C. NECOMANDATE.

1.10 CONVERTOARE STATICE CONVERTOARE C.A.-C.C. NECOMANDATE. 1.10 CONVERTOARE STATICE. Majoriaea sisemelor e conversie elecromecanică moerne sun reglabile avân aramerii e ieşire, vieză, culu sau oziţie, variabili. Realizarea acesor siseme e conversie resuune alimenarea

Διαβάστε περισσότερα

Sisteme de ordinul 2: model, funcţie de transfer, simulare, identificarea parametrilor

Sisteme de ordinul 2: model, funcţie de transfer, simulare, identificarea parametrilor Lucrre nr. 4 Teori siemelor uome. Scopul lucrării Sieme de ordinul : model, funcţie de rnsfer, simulre, idenificre prmerilor În ceă lucrre se vor nliz comporre în domeniul rel şi complex unui siem linir

Διαβάστε περισσότερα

3.2 Instrumente şi aparate analogice pentru măsurarea tensiunilor şi curenţilor electrici

3.2 Instrumente şi aparate analogice pentru măsurarea tensiunilor şi curenţilor electrici 0 MĂSRĂR ÎN ELECRONCĂ Ş ELECOMNCAŢ Măsurre ensiunilor şi curenţilor elecrici u() A 0 -A ) Semnl sinusoidl u() A 0 -A b) Semnl drepunghiulr simeric u() A 0 -A igur.. Semnle periodice ipice c). Semnl riunghiulr

Διαβάστε περισσότερα

1. INTRODUCERE Ce ar trebui să ne reamintim

1. INTRODUCERE Ce ar trebui să ne reamintim . INTRDUCERE.. Ce r trebui să ne remintim Mecnic Teoretică pote fi împărţită după ntur problemei ce se studiză în trei părţi. Aceste coincid cu ordine de priţie şi de dezvoltre Mecnicii: Sttic re c obiective:

Διαβάστε περισσότερα

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare: Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Compendiu de Rezistenţa Materialelor

Compendiu de Rezistenţa Materialelor ndir ndreescu Ştefn ocnu Compendiu de Reistenţ terilelor Prefţă Reistenţ terilelor este un din disciplinele de bă în pregătire studenţilor de l fcultăţile mecnice, e constituind temeli cursurilor de specilitte,

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

cele mai ok referate

cele mai ok referate Permur www.refereo.ro cele m o refere.noue de permure. Fe A o mulme f de elemee, dc A{,, 3,, }. O fuce becv σ:aàa e umee permure ubue de grdul. P:Numrul uuror permurlor de ord ee egl cu!..produul compuere

Διαβάστε περισσότερα

CAPITOLUL 3 CINEMATICA MIŞCĂRII COMPUSE A PUNCTULUI MATERIAL

CAPITOLUL 3 CINEMATICA MIŞCĂRII COMPUSE A PUNCTULUI MATERIAL CAPITOLUL 3 CINEMATICA MIŞCĂRII COMPUSE A PUNCTULUI MATERIAL În plicţiile concee se înâlnesc siuţii când ese necesă sudiee mişcăii unui cop (S) ce efecueză o mişce în po cu un l cop (S ), fl l ândul său

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

Pe porţiunea A-B (figura 2), considerînd t A=0 ca origine de timp, se poate scrie:

Pe porţiunea A-B (figura 2), considerînd t A=0 ca origine de timp, se poate scrie: Insrumenație Elecronică de Măsură Laboraor 6 rev. 9. Lucrare de laboraor nr. 6 Măsurarea numerică a ensiunilor Sco: Măsurarea numerică a ensiunilor folosind un converor ensiune-frecvenţă, uilizarea converorului

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

CIRCUITE ELEMENTARE DE PRELUCRARE A IMPULSURILOR

CIRCUITE ELEMENTARE DE PRELUCRARE A IMPULSURILOR Îndrumar de laboraor Circuie elemenare de relucrare a imulsurilor Lucrarea nr. CICUIT LMNTA PLUCA A IMPULSUILO Curins I. Scoul lucrării II. Noţiuni eoreice III. esfăşurarea lucrării IV. Temă de casă Îndrumar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Rezulta ca polul în origine introduce un defazaj egal cu - απ/2 pentru tot domeniul de pulsatii. Indici de performanta ai sistemelor dinamice

Rezulta ca polul în origine introduce un defazaj egal cu - απ/2 pentru tot domeniul de pulsatii. Indici de performanta ai sistemelor dinamice /9/4 Rezula ca olul în origine inroduce un defaza egal cu - απ/ enru o domeniul de ulaii. Indici de erformana ai iemelor dinamice Se conidera o forma iica a raunului indicial y() w() rezenaa în fig..67.

Διαβάστε περισσότερα

CUPTOARE ELECTRICE CU REZISTOARE

CUPTOARE ELECTRICE CU REZISTOARE Lucrre 6 CUPTORE ELECTRICE CU REZISTORE 6. Probleme generle Cuporele cu rezisore sun dispoziive de uilizre cre rnsformă, prin efec Joule-Lenz, energi elecrică în energie ermică. Dcă cesă conversie se relizeză

Διαβάστε περισσότερα

CALCULUL RETELELOR TRIFAZATE NESIMETRICE

CALCULUL RETELELOR TRIFAZATE NESIMETRICE 7... CALCLL RETELELOR TRIFAZATE NESIMETRICE 7... Meto componentelor simetrice Clculul unor regimuri e vrie nesimetrice cre pr in timpul functionrii sistemelor trifzte (scurtcircuite, intreruperi e fz s..)

Διαβάστε περισσότερα

REZERVOARE DIN BETON ARMAT ŞI PRECOMPRIMAT

REZERVOARE DIN BETON ARMAT ŞI PRECOMPRIMAT 1 REZERVOARE DIN BETON ARMAT ŞI PRECOMPRIMAT 1. GENERALITĂŢI Rezervorele din beton rmt sunt destinte înmgzinării unui lichid orecre, de obicei pă. Proiectre rezervorele trebuie să ibă în vedere următorele

Διαβάστε περισσότερα

( ) a ( ) CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS

( ) a ( ) CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS Cpiolul 3 Filre cu răpun fini l impul 69 CAPITOLUL 3 FILTRE CU RĂSPUNS INFINIT LA IMPULS 3 Să e proieceze un FTJ numeric, cre lucreză l frecvenţ de eşnionre FS Hz, pornind de l filrul nlogic cu funcţi

Διαβάστε περισσότερα

REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII *

REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII * PAVEL TRIPA MIHAI HLUŞCU REZISTENŢA MATERIALELOR NOŢIUNI UNDAMENTALE ŞI APLICAŢII * Editur MIRTON Timişor 006 Referenţi ştiinţifici: Prof. Univ. Dr. Eur. Ing. Tiberiu BABEU Membru l Acdemiei de Ştiinţe

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Descriere CIP a Bibliotecii Naționale a României SOFONEA, Galaftion Rezistența materialelor /

Descriere CIP a Bibliotecii Naționale a României SOFONEA, Galaftion Rezistența materialelor / Galafion SOFONEA Adrian arius PASCU REZSTENȚA ATERALELOR Universiaea Lucian Blaga din Sibiu 006 Coprigh 006 Toae drepurile asupra acesei lucrări sun reervae auorilor. Reproducerea inegrală sau parțială

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

IV. CALCULUL PLĂCILOR CIRCULARE PLANE

IV. CALCULUL PLĂCILOR CIRCULARE PLANE IV.1. Ipoezele e lucu IV. CALCULUL PLĂCILOR CIRCULARE PLANE Moelul mecanic al uno elemene e ezisenţă cae au ouă imensiuni e acelaşi oin e măime ia a eia (gosimea fig. IV.1) mul mai mică în compaaţie cu

Διαβάστε περισσότερα

ÎNCOVOIEREA BARELOR DREPTE

ÎNCOVOIEREA BARELOR DREPTE CPTOLUL 6 ÎNCOVOERE BRELOR DREPTE 6.1. Încovoierea pură. Formula lui Navier. Considerăm bara de secţiune dreptungiulară din Fig.6.1, pentru care s-au trasat diagramele de eforturi T şi M. Fig.6.1 Se observă

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Geometria triunghiului

Geometria triunghiului Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor

Διαβάστε περισσότερα

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt

Διαβάστε περισσότερα