RĂSUCIREA (TORSIUNEA)
|
|
- Ξενοφών Μεταξάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 5 RĂSUCREA (TORSUNEA) 5 Generliăţi Secţiune unei bre cu ouă xe e simerie ese suusă l răsucire ură că orsorul forţelor ce cţioneză e secţiune brei, clcul în ror cu cenrul e greue l secţiunii, se reuce l un culu, l crui momen re irecţi normlă l secţiune (fig 5) Fig 5 Piesele solicie frecven l răsucire sun rborii e rnsmisie şi rcurile elicoile Suiul soliciării e răsucire se v efecu enru bre cu secţiune circulră su inelră l cre ioez lui Bernoulli ( secţiunilor lne) ese confirmă 5 Tensiuni şi eformţii Penru clculul e rezisenţă l răsucire ese necesr să se sbilescă felul ensiunii cre re, lege e isribuţie e secţiune şi mărime cesei înr-un
2 80 ATERALELOR ELEENTE DE REZSTENŢA unc În ces sco se consieră o bră reă cu secţiune circulră e surfţ cărei s- rs o reţe e reunghiuri curbilinii eermine e generore şi lne rlele normle l x brei (fig 5, ) Fig 5 Aunci cân br ese soliciă l răsucire rin momenul (fig 5, b) se consă că: - lnele e secţionre brei rlele iniţil rămân rlele, eci se verifică ioez lui Bernoulli rivin lneie secţiunilor; - br nu-şi moifică imensiunile în sens longiuinl su rnsversl, rezulân că în secţiunile rnsversle nu r ensiuni normle σ; - generorele evin elice e eglă înclinre, c urmre reunghiurile evin rlelogrme oriă exisenţei ensiunilor ngenţile cre rouc roire unei secţiuni fţă e lă secţiune; ensiunile ngenţile cre r sun eci ereniculre e rză Din coniţi e echivlenţă mecnică (fig 5, c) rezulă : ra (5) A Se izoleză un elemen e bră e lungime x şi e rză r Generore BB se roeşe cu unghiul γ, uă eformre elemenului (fig 5) uânu-se scrie: rϕ γ x (5)
3 5 RĂSUCREA (TORSUNEA) 8 Porivi legii lui Hooke: Fig 5 Înlocuin e γ in reli (5) în (5) se obţine: G γ (5) Gr ϕ, (5) x cee ce ră că ensiune ngenţilă vriză linir cu rz, fiin mximă l exerior şi nulă în cenrul secţiunii Dcă se inrouce exresi ensiunii in relţi (5) în (5) se obţine: Exresi r A A Din relţiile (5) şi (56) rezulă ϕ G x A r A (55) rerezină momenul e inerţie olr l secţiunii () sfel că: ϕ G (56) x r (57) Tensiune ngenţilă mximă re în uncele cele mi ere e cenrul secţiunii (fig 5, ) şi re exresi: une W ese moulul e rezisenţă olr l secţiunii rmx, (58) W Penru secţiune circulră W π, ir enru secţiune inelră 6
4 8 ATERALELOR W ELEENTE DE REZSTENŢA π D 6 D În bz rinciiului uliăţii ensiunilor ngenţile, se rouc ensiuni ngenţile şi în secţiune longiuinlă (fig 5, b) Fig 5 Din relţi (56) se obţine unghiul ϕ cu cre se roesc ouă secţiuni siue l isnţ x un e cellă, ϕ x (59) G Roire relivă inre secţiunile e l ceele brei ese: ϕ x, (50) G l ir cân, G, sun consne în lungul brei, su e numie orţiuni, l ϕ şi reseciv G Unghiul e răsucire secifică ese: ili ϕ (5) G i θ, (5) G rousul G fiin numi moul e rigiie l răsucire Din relţi (58) rezulă formulele enru clculul e rezisenţă l brelor e secţiune circulră solicie l răsucire: i
5 5 RĂSUCREA (TORSUNEA) 8 - enru imensionre W nec ; (5) - enru verificre ef ; (5) W - clculul cciăţii e încărcre W (55) fiin rezisenţă misibilă merilului l solicire e răsucire c ef ef 5 Clculul rborilor e rnsmisie Arborii e rnsmisie sun elemene e mşini cre rnsmi ueri (culuri) rin inermeiul unor roţi De obicei, se u uerile rnsmise e roţile mone e rbore (exrime în kw) şi urţi rborelui (în ro/min) Lucrul mecnic elemenr l culului lic rborelui ese θ, ir uere coresunzore ese: momenul cre soliciă rborele fiin: une viez unghiulră (în r/s) ese θ P ω, (56) P, (57) ω π n ω, n fiin urţi (în ro/min) 0 omenul e răsucire in secţiune fiin egl cu momenul exerior in (57) rezulă: 0 P [ knm] (58) π n Arborii e rnsmisie se imensioneză, e obicei, in ouă coniţii: coniţi e rezisenţă Alicân relţi (5) se obţine: W nec Penru secţiune ese circulră vem: P (59) π n
6 8 ATERALELOR π 6 ELEENTE DE REZSTENŢA P P, rezulân 65 π n n Dcă secţiune ese inelră: π D 6 D 0 0 π n 6 P, obţinânu-se P n 65, une k /D ( k ) coniţi e eformţie cere c imensionre rborelui să se fcă sfel c unghiul e răsucire secifică să nu eăşescă o numiă vlore imusă Din licre l limiă relţiei (5) θ θ, se obţine G (50) Gθ π Penru secţiune circulră rezulă,, Gθ π Gθ ir enru secţiune inelră π D D Gθ π ( k ) Gθ, D L rbori, e obicei θ 0,5 /m 0,5 π/ r/mm În urm imensionării, în cele ouă coniţii, se oă imerul cu vlore ce mi mre Alicţi Să se imensioneze rborele unui moor in figur 55 cre rimeşe uere P kw l urţi n 80 ro/min şi rnsmie uerile P kw şi P 0 kw l ouă mşini că: ) 0 P, b) θ 0,5 /m Se u G 8, 0 P Să se clculeze ooă şi roire relivă inre roţile şi Rezolvre Se clculeză momenele e răsucire cu relţi (58) şi se obţine: ( ) ,66 knm;,06 knm π 80 π 80 Dimensionre rborelui în cele ouă siuţii:
7 5 RĂSUCREA (TORSUNEA) 85 W nec nec ) licân relţi (5) rezulă 6, ,8 5,8 0 mm, e une 0 56,5 0 mm π b) licân relţi (50) se obţine 6, mm, e une 8, 0 0,5π , mm π Fig 55 Se oă enru rbore sre exemlu 75 mm Roire relivă inre roţile şi se eermin cu relţi (5): 6 0 ϕ r 8, 0 π 75 ( 0, ,06 000) 8, 0 5 Clculul rcurilor elicoile Un rc elicoil se confecţioneză, în generl, in sârm e oţel, e un numi imeru, cre se înfăşoră uă o numiă ehnologie, e un cilinru sub form unei elice (fig 56, ) Disnţ R e l x cilinrului l x sârmei, se numeşe rză e înfăşurre Asur rcului cţioneză forţ F Reucân cesă forţă în cenrul e greue l unei secţiuni sârmei se obţine o forţă F şi un momen FR
8 86 ATERALELOR ELEENTE DE REZSTENŢA (fig56,b) Descomunân forţ F şi momenul uă norml şi ngen l secţiune se obţine: - o forţă xilă N Fsinα, - o forţă ăieore T Fcosα, - un momen e orsiune cosα FRcosα, - un momen încovoieor i sinα FRsinα, une α rerezină unghiul e înclinre sirei rcului Fig 56 L rcurile elicoile cu sire srânse unghiul α ese fore mic (α < 5 ) şi c urmre se oe consier cosα şi sinα 0, sfel încâ eforurile in sire sun T F şi reseciv FR Prin urmre rcurile sun solicie l forfecre şi răsucire: ensiune rezulnă în rc fiin: f F F, A π W FR π 6 6FR + π R (5) Înrucâ rorul /(R)<<, se consieră că ensiune în rc ese ce rousă numi e solicire e răsucire: 6FR (5) π,
9 5 RĂSUCREA (TORSUNEA) 87 C urmre eformării rcului forţ F căă o elsre f numiă săge rcului Penru sbilire relţiei e clcul săgeţii rcului se consieră un elemen e lungime s inr-o siră l cre secţiune in A ese resuusă fixă ir secţiune in B se roese cu ϕ, forţ F elsânu-se cu săge elemenr f, c în figur 57 Fig 57 Din figur 57 rezulă : BC R Rϕ, CD BCϕ, cosϕ cosϕ CE f CD cosϕ Rϕ s π Dr: ϕ, FR,, s Rα, rezulân G f FR π G α 6FR Săge coresunzore unei sire ese f f, G ir ce coresunzore înregului rc cu i sire 6FR i f f i (5) G su π 0 6Fi R f (5) G
10 88 ATERALELOR ELEENTE DE REZSTENŢA Dimensionre rcului se fce sfel încâ s fie ineliniă â coniţi e rezisenţă câ şi ce e eformţie Uilizn relţi (5) se obţine: 6FR, (55) π une (00600) P l oţeluri enru rcuri Prin folosire relţiei (5) rezulă : 6Fi Gf R (56) Înrucâ rcurile se relizeză cu rore k R/ recize rin norme su snre, relţi nerioră oe fi scrisă sub form: 6Fik, (57) Gf une f ese săge imusă rcului Din licre relţiilor (55) şi (57) se lege vlore ce mi mre obţinuă enru imerul sârmei Înălţime rcului în sre comrimă (fig 56) rebuie sfel sbiliă încâ înre ouă sire vecine să exise o numiă isnţă, crei vlore minimă se i e obicei egl cu / şi eci: h i + ( i ) În sre nesoliciă, înlţime H rcului ese h H + f Alicţi Să se eermine vlore forţei F cre cţioneză rcul concorului elecric in figur 58 enru rouce elsre s, mm Să se clculeze oo ensiune mximă in rc Se u: R 0 mm, 8 mm, i sire, G 0 P Fig 58
11 5 RĂSUCREA (TORSUNEA) 89 Rezolvre Din exresi săgeţii rezulă sg, 0 8 su F 0, 8N, 6R i 6 0 F ir ensiune mximă în rc ese 6FR 6 0,8 0 6,P π π 8 55 Bre sic neeermine l răsucire Problemele sic neeermine l răsucire se rezolvă e bz coniţiilor e echilibru sic şi coniţiilor e eformţie Alici Arborele bimelic form in oi cilinri in merile iferie resţi unul în celll, c în figur 59, ese solici l răsucire e momenul 0 Să se clculeze ensiunile mxime in rbore Fig 59 Rezolvre Din coniţi e echilibru sic 0 +, ir in coniţi e eformţie, ţinân sem c cei oi cilinri lucreză îmreună l l ϕ ϕ, ică rezulă : G G P P
12 ELEENTE DE REZSTENŢA ATERALELOR, 0 0 G G G G G G + +, D omenele e inerţie olre le celor oi rbori sun:, D D π π Penru c rborele să rezise rebuie c:, 90
TORSIUNEA BARELOR DREPTE
7.1. Generliăţi CAPITOLUL 7 TORSIUNEA BARELOR DREPTE Torsiune (răsucire) ese solicire redominnă din rborii mşinilor, dr ese înâlniă şi în le czuri, de exemlu l şsiurile de uovehicole, consrucţiile melice
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Se cere determinarea caracteristicilor geometrice pentru secţiunea antisimetrică din figura de mai
Seminr 7. Crcteristici geometrice l suprfeţe plne II.. Secţiune compusă cu profile lminte jos: Se cere determinre crcteristicilor geometrice pentru secţiune ntisimetrică din figur de mi fig.1 Poziţi centrului
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire
4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru
Capitolul 17. Asamblari cu strângere proprie
Cpiolul 17 Amblri cu rângere proprie T.17.1. Ce un mblrile rbore-buuc prin rângere proprie? T.17.. Indici câev exemple de uilizre mblrilor cu rângere proprie (prin prere). T.17.3. Ce vnje prezin mblrile
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,
TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul
7. CONVOLUŢIA SEMNALELOR ANALOGICE
7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul
MECANICĂ*N* NC. CINEMATICĂ NC. CINEMATICĂ 1
MEANIĂ*N* N. INEMATIĂ N. INEMATIĂ MEANIĂ*N* N. INEMATIĂ UPRIN Inroducere... piolul N.0. inemic mișcării bsolue puncului meril... 5 N.0.. Triecori, iez și ccelerți puncului... 5 N.0.. udiul mișcării puncului
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
ENUNŢURI ŞI REZOLVĂRI 2012
ENNŢ Ş EZOLVĂ 1 1. Două rezisoare cu rezisenţele 1 = Ω şi = 8 Ω se monează în serie, aoi în aralel. aorul dinre rezisenţele echivalene serie/aralel ese: a) l/; b) 9/; c) ; d) /16; e) /9; f) 16/. ezisenţele
Demodularea (Detectia) semnalelor MA, Detectia de anvelopa
Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se
EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau
EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Convergenţa uniformă a şirurilor de funcţii
Convergenţ uniformă şirurilor de funcţii Considerăm un inervl închis orecre [, b ] R şi noăm cu F [,b ] mulţime uuror funcţiilor definie pe [, b ] cu vlori în R, F [,b ] = {x : [, b ] R ; x funcţie orecre}.
REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII * *
PAVEL TRIPA MIHAI HLUŞCU REZISTENŢA MATERIALELOR NOŢIUNI UNDAMENTALE ŞI APLICAŢII * * Editur MIRTON Timişor 007 Dcă cee ce i făcut pre simplu, însemnă că nu i flt încă totul. ( Donld Westlke) Prefţă În
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
sin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE
CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă
GABRIEL GH. JIGA CULEGERE DE TESTE GRILĂ DE REZISTENȚA MATERIALELOR PENTRU EXAMENE ȘI CONCURSURI
GRIE GH. JIG CUEGERE DE TESTE GRIĂ DE REZISTENȚ MTERIEOR PENTRU EXMENE ȘI CONCURSURI Culegere de teste-grilă de Rezistenţ mterilelor CUVÂNT ÎNINTE După cum este binecunoscut, disciplin Rezistenţ mterilelor
Elementul de întârziere de ordinul doi, T 2
5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
I. ANDREESCU ŞT. MOCANU PROBLEME DE REZISTENŢA MATERIALELOR
NDREESCU ŞT OCNU PROBLEE DE REZSTENŢ TERLELOR BUCUREŞT 00 PREFŢĂ Proiectre cu succes elementelor de construcţii de mşini este imposibilă fără o cunoştere profundă Reistenţei terilelor legere formei, dimensiunilor
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
TEHNICI PWM (MID) UTILIZATE IN COMANDĂ INVERTOARELOR Sisteme de comandă ce folosesc strategia de modulaţie PWM cu modulatoare sinusoidală
TEHNICI PWM (MID) UTILIZATE IN COMANDĂ INERTOARELOR.. Sieme e comnă ce foloec regi e moulţie PWM cu moulore inuoilă.. Generliăţi Foloire unor ipoziive emiconucore e puere in ce în ce mi performne (rnziore
Construcţia recipientelor sub presiune. Elementele componente
77 Conrucţi recipienelor ub preiune Elemenele componene Recipienele ub preiune un relize în generl din lmine din oţel crbon u oţel li. Un recipien ub preiune, în czul cel mi generl, (ig. 8.) ee conrui
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
ECHIPAMENTE ELECTRICE
UNIVERSITATEA "VASILE ALECSANDRI" DIN BACĂU F ACULTATEA DE I NGINERIE DEPARTAMENTUL ENERGETICĂ MECATRONICĂ ŞI TEHNOLOGIA INFORMAŢIEI S PECIALIZAREA E NERGETICĂ INDUSTRIALĂ POPA SORIN EUGEN ECHIPAMENTE
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu
Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura;
Punţi de măsurre metode de comprţie: msurndul este comprt cu o mărime etlon de ceeşi ntur; punte: reţe complet cu 4 noduri: brţe: 4 impednţe digonl de limentre: surs (tensiune, curent) digonl de măsurre:
Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson
Modele dinmice de conducere opimlă civiăţii firmei 9 Modelul Jorgenson Ese un model în cre ese urmăriă sregi firmei în cee ce priveşe efecure invesiţiilor şi efecele deprecierii cpilului supr evoluţiei
TEORII DE REZISTENŢĂ
CAPITOLUL 8 TEORII DE REZISTENŢĂ 8.. Sudiul sării plane de ensiune. Tensiuni principale şi direcţii principale. Un elemen de reisenţă se află în sare plană de ensiune dacă oae ensiunile care lucreaă pe
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
7. INTEGRALA IMPROPRIE. arcsin x. cos xdx
7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA
ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE
LUCRAREA NR. 7 FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE Scopul lucrării: Studiul filtrelor ctive relizte cu mplifictore operţionle prin ridicre crcteristicilor lor de frecvenţă.. Filtrele ctive Filtrele
SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)
SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru
3. ARCURI [1, 2, 4, 6, 8, 10, 14]
3. ARCURI [1, 2, 4, 6, 8, 10, 14] 3.1. CARACTERIZARE, DOMENII DE FOLOSIRE, CLASIFICARE Arcurile sunt orgne de mşini cre, prin form lor şi prin proprietăţile elstice deoseite le mterilelor din cre sunt
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
1.10 CONVERTOARE STATICE CONVERTOARE C.A.-C.C. NECOMANDATE.
1.10 CONVERTOARE STATICE. Majoriaea sisemelor e conversie elecromecanică moerne sun reglabile avân aramerii e ieşire, vieză, culu sau oziţie, variabili. Realizarea acesor siseme e conversie resuune alimenarea
Sisteme de ordinul 2: model, funcţie de transfer, simulare, identificarea parametrilor
Lucrre nr. 4 Teori siemelor uome. Scopul lucrării Sieme de ordinul : model, funcţie de rnsfer, simulre, idenificre prmerilor În ceă lucrre se vor nliz comporre în domeniul rel şi complex unui siem linir
3.2 Instrumente şi aparate analogice pentru măsurarea tensiunilor şi curenţilor electrici
0 MĂSRĂR ÎN ELECRONCĂ Ş ELECOMNCAŢ Măsurre ensiunilor şi curenţilor elecrici u() A 0 -A ) Semnl sinusoidl u() A 0 -A b) Semnl drepunghiulr simeric u() A 0 -A igur.. Semnle periodice ipice c). Semnl riunghiulr
1. INTRODUCERE Ce ar trebui să ne reamintim
. INTRDUCERE.. Ce r trebui să ne remintim Mecnic Teoretică pote fi împărţită după ntur problemei ce se studiză în trei părţi. Aceste coincid cu ordine de priţie şi de dezvoltre Mecnicii: Sttic re c obiective:
Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:
Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Compendiu de Rezistenţa Materialelor
ndir ndreescu Ştefn ocnu Compendiu de Reistenţ terilelor Prefţă Reistenţ terilelor este un din disciplinele de bă în pregătire studenţilor de l fcultăţile mecnice, e constituind temeli cursurilor de specilitte,
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1
3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg
cele mai ok referate
Permur www.refereo.ro cele m o refere.noue de permure. Fe A o mulme f de elemee, dc A{,, 3,, }. O fuce becv σ:aàa e umee permure ubue de grdul. P:Numrul uuror permurlor de ord ee egl cu!..produul compuere
CAPITOLUL 3 CINEMATICA MIŞCĂRII COMPUSE A PUNCTULUI MATERIAL
CAPITOLUL 3 CINEMATICA MIŞCĂRII COMPUSE A PUNCTULUI MATERIAL În plicţiile concee se înâlnesc siuţii când ese necesă sudiee mişcăii unui cop (S) ce efecueză o mişce în po cu un l cop (S ), fl l ândul său
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Integrale generalizate (improprii)
Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem
Pe porţiunea A-B (figura 2), considerînd t A=0 ca origine de timp, se poate scrie:
Insrumenație Elecronică de Măsură Laboraor 6 rev. 9. Lucrare de laboraor nr. 6 Măsurarea numerică a ensiunilor Sco: Măsurarea numerică a ensiunilor folosind un converor ensiune-frecvenţă, uilizarea converorului
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
CIRCUITE ELEMENTARE DE PRELUCRARE A IMPULSURILOR
Îndrumar de laboraor Circuie elemenare de relucrare a imulsurilor Lucrarea nr. CICUIT LMNTA PLUCA A IMPULSUILO Curins I. Scoul lucrării II. Noţiuni eoreice III. esfăşurarea lucrării IV. Temă de casă Îndrumar
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Rezulta ca polul în origine introduce un defazaj egal cu - απ/2 pentru tot domeniul de pulsatii. Indici de performanta ai sistemelor dinamice
/9/4 Rezula ca olul în origine inroduce un defaza egal cu - απ/ enru o domeniul de ulaii. Indici de erformana ai iemelor dinamice Se conidera o forma iica a raunului indicial y() w() rezenaa în fig..67.
CUPTOARE ELECTRICE CU REZISTOARE
Lucrre 6 CUPTORE ELECTRICE CU REZISTORE 6. Probleme generle Cuporele cu rezisore sun dispoziive de uilizre cre rnsformă, prin efec Joule-Lenz, energi elecrică în energie ermică. Dcă cesă conversie se relizeză
CALCULUL RETELELOR TRIFAZATE NESIMETRICE
7... CALCLL RETELELOR TRIFAZATE NESIMETRICE 7... Meto componentelor simetrice Clculul unor regimuri e vrie nesimetrice cre pr in timpul functionrii sistemelor trifzte (scurtcircuite, intreruperi e fz s..)
REZERVOARE DIN BETON ARMAT ŞI PRECOMPRIMAT
1 REZERVOARE DIN BETON ARMAT ŞI PRECOMPRIMAT 1. GENERALITĂŢI Rezervorele din beton rmt sunt destinte înmgzinării unui lichid orecre, de obicei pă. Proiectre rezervorele trebuie să ibă în vedere următorele
( ) a ( ) CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS
Cpiolul 3 Filre cu răpun fini l impul 69 CAPITOLUL 3 FILTRE CU RĂSPUNS INFINIT LA IMPULS 3 Să e proieceze un FTJ numeric, cre lucreză l frecvenţ de eşnionre FS Hz, pornind de l filrul nlogic cu funcţi
REZISTENŢA MATERIALELOR NOŢIUNI FUNDAMENTALE ŞI APLICAŢII *
PAVEL TRIPA MIHAI HLUŞCU REZISTENŢA MATERIALELOR NOŢIUNI UNDAMENTALE ŞI APLICAŢII * Editur MIRTON Timişor 006 Referenţi ştiinţifici: Prof. Univ. Dr. Eur. Ing. Tiberiu BABEU Membru l Acdemiei de Ştiinţe
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Descriere CIP a Bibliotecii Naționale a României SOFONEA, Galaftion Rezistența materialelor /
Galafion SOFONEA Adrian arius PASCU REZSTENȚA ATERALELOR Universiaea Lucian Blaga din Sibiu 006 Coprigh 006 Toae drepurile asupra acesei lucrări sun reervae auorilor. Reproducerea inegrală sau parțială
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
IV. CALCULUL PLĂCILOR CIRCULARE PLANE
IV.1. Ipoezele e lucu IV. CALCULUL PLĂCILOR CIRCULARE PLANE Moelul mecanic al uno elemene e ezisenţă cae au ouă imensiuni e acelaşi oin e măime ia a eia (gosimea fig. IV.1) mul mai mică în compaaţie cu
ÎNCOVOIEREA BARELOR DREPTE
CPTOLUL 6 ÎNCOVOERE BRELOR DREPTE 6.1. Încovoierea pură. Formula lui Navier. Considerăm bara de secţiune dreptungiulară din Fig.6.1, pentru care s-au trasat diagramele de eforturi T şi M. Fig.6.1 Se observă
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA
Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Geometria triunghiului
Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor
EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE
ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt