Sistemi za kontrolu kvaliteta proteina molekularni šaperoni i proteazom
|
|
- Θεοδόσιος Γεννάδιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Sistemi za kontrolu kvaliteta proteina molekularni šaperoni i proteazom
2 Kako protein nakon sinteze postaje funkcionalan? Proces ekspresije gena nije završen prevođenjem informacije sadržane u irnk u redosled ak polipeptidnog lanca. Nekovalntne interakcije i kovalentne modifikacije su odgovorne za sazrevanje funkcionalnog proteina.
3 Kako protein nakon sinteze postaje funkcionalan? Većina promena koje mora da pretrpi novosintetisani polipeptid je uslovljena nekovalentnim interakcijama: uvijanje u jedinstvenu trodimenzionalnu konformaciju. vezivanje kofaktora neophodnih za aktivnost. neretko, protein-protein interakcija kojom ostvaruje svoju funkciju.
4 Kako protein nakon sinteze postaje funkcionalan? Mnogi proteini moraju da pretrpe i post-translacione kovalentne modifikacije na tačno određenim ak. Najčešće kovalentne modifikacije su glikozilacija i fosforilacija, mada je poznato preko 100 različitih tipova kovalentnih modifikacija. Informacija neophodna za sve nabrojane korake maturacije funkcionalnog proteina sadržana je u redosladu ak polipeptidnog lanca koji se sintetiše na ribozomima.
5 Prostorno uvijanje proteina je jedno od nerešenih pitanja nauke
6 Ko-translaciono prostorno uvijanje polipeptida Proces prostornog uvijanja rastućeg polipeptida odvija se uporedo sa njegovom sintezom. U trenutku kada se novosintetisani polipeptid oslobađa od ribozoma on stiče najveći deo svoje konformacije, ali ona nije finalna.
7 Ko-translaciono prostorno uvijanje polipeptida Tokom evolucije, sekvenca proteina nije bila selektovana samo za konformaciju koju može da stekne već i za sposobnost brzog prostornog uvijanja u trenutku dok rastući polipeptid izlazi iz ribozoma. Levinathal paradox
8 Formiranje trodimenzionalne strukture odvija se kroz dve faze
9 Formiranje trodimenzionalne strukture odvija se kroz dve faze Brza faza - Polipeptid stiče grubu tercijalnu strukturu još tokom izlaska iz ribozoma. Za sintezu polipeptida prosečne veličine potrebno je nekoliko minuta, a u roku od nekoliko sekundi stiče kompaktnu strukturu koja sadrži većinu finalne sekundarne strukture ( helikse i ploče) uređene na način koji je grubo sličan finalnoj tercijalnoj konformaciji.
10 Izlivena globula Nastala otvorena i fleksibilna struktura polipeptida naziva se izlivena (eng. molten) globula. U odnosu na finalnu trodimenzionalnu strukturu izlivena globula je otvorena i manje uređena.
11 Formiranje trodimenzionalne strukture odvija se kroz dve faze Izlivena globula je početna tačka za relativno spor proces prostornog podešavanja što za rezultat ima sticanje finalne trodimenzionalne konformacije proteina. Fino podešavanje bočnih ostataka ak čime protein stiče finalnu prostornu konformaciju predstavlja sporu fazu formiranja trodimentionalne strukture proteina.
12 Kontrola kvaliteta proteina Protein koji ima izložen hidrofobni region znatne veličine na svojoj površini je obično abnormalan. Hidrofobni regioni formiraju intermedijere - proteinske agregate štetne za ćeliju.
13 Kontrola kvaliteta proteina Ćelija je razvila mehanizme za kontrolu kvalitata proteina koji prepoznaju i otklanjaju proteine sa izloženim hidrofobnim regionima. Više od 30% novosintetisanih polipeptidnih lanaca biva selektovano za brzu razgradnju kao rezultat delovanja sistema za kontrolu kvaliteta proteina.
14 Ćelijski mehanizmi za kontrolu kvaliteta proteina Neki proteini spontano stiču pravilnu trodimenzionalnu konformaciju. Prostorno uvijanje mnogih proteina je efikasnije uz pomoć specijalne klase proteina nazvanih molekularni šaperoni. Kada pokušaji ponovnog uvijanja proteina ne uspeju nepravilno uvijeni proteini se potpuno razgrađuju u proteazomu.
15 Uloga molekularnih šaperona a. Pomažu proteinima da se prostorno uviju. b. Tokom procesa prostornog uvijanja štite proteine od protein protein interakcije sa drugim proteinima. c. Odmotavaju proteinske agregate d. Odmotavaju proteine koji su nepavilno uvijeni pre procesa njihove degradacije. e. Transport proteina f. Druge uloge
16 Molekularni šaperoni Proteini toplotnog šoka (hsp) čiji se nivo sinteze drastično povećava nakon kratkog izlaganja ćelije povišenim temperaturama (42 C). Eukariotske ćelije poseduju dve glavne familije molekularnih šaperona koje pomažu proteinima da se prostorno uviju Hsp60 i hsp70 Razlikuju se po mehanizmu delovanja i vremenskom periodu (u životu proteina) kada deluju.
17 Proteini hsp60 i hsp70 Zajedničke osobine: Pokazuju afinitet za izložene hidrofobne nizove pogrešno uvijenih proteina. Hidrolizuju ATP. Funkciju pomaganja proteinskog foldinga ostvaruju sa malim setom asociranih proteina (partner proteini).
18 Proteini hsp70 Deluju rano u životu proteina i prepoznaju niz od približno 7 hidrofobnih ak na površini proteina. Za ciljni protein se prvo vezuje pomoćni protein Hsp40, a zatim monomer Hsp70 u kompleksu sa ATP-om (Hsp70- ATP).
19 Protein Hsp70 ima ATP-aznu aktivnost i vrši hidrolizu ATP-a u ADP, podležući konformacionoj promeni koja mu omogućava da se čvršće veže za ciljni protein. Faktor za razmenu nukleotida, protein GrpE, uklanja nastali ADP, što uzrokuje da protein Hsp40 prvo napusti formirani kompleks, a zatim disocira i Hsp70. Ponovljeni ciklusi vezivanja i oslobađanja proteina Hsp40 i kompleksa Hsp70-ATP pružaju šansu ciljnom polipeptidu da ponovo proba da zauzme ispravnu konformaciju.
20 Proteini hsp60 Proteini hsp60 formiraju velike oligomerne strukture u čiju izolovanu unutrašnjost ulazi ciljni protein. Poznati su i kao šaperonini, a njihovi pomoćni proteini kao košaperonini.
21 Proteini hsp60 Deluju kasnije u životu proteina i takođe prepoznaje hidrofobne regione ak na površini proteina. Proteini ove familije formiraju oligomernu strukturu u obliku bureta, koja u trenutku kada obavlja svoju funkciju stupa u interakciju sa pomoćnim proteinom, čija je struktura u obliku kape.
22 Struktura bureta je izgrađena od 14 monomernih jedinica proteina GroEL. Centralna šupljina bureta je na sredini, preko C-krajeva monomernih jedinica GroEL, podeljena na dve simetrične šupljine. Strukturu kape formira sedam monomernih jedinica pomoćnog proteina GroES (Hsp10).
23 Proteini hsp60 U svakom ciklusu samo jedna polovina simetričnog bureta, odnosno jedan prsten, stupa u interakciju sa ciljnim proteinom. Prsten koji je aktivan i asociran sa kapom označava se kao proksimalni, dok se onaj koji je u tom trenutku neaktivan označava kao distalni.
24 Razgradnja proteina Kada je protein određen za degradaciju, nema povratka što obezbedjuje da nema ni parcijalno degradovanih proteina koji bi mogli interferirati sa biološkim procesima. U ćeliji postoje dva glavna puta destrukcije proteina: a) Razgradnja proteazama u lizozomima. b) Proteoliza ubikvitin-proteaznim putem.
25 Proteazom mašinerija za degradaciju proteina Krajnja mašinerija za razgradnju proteina u eukariotskim ćelijama je proteazom. Proteazomi su ATP zavisni proteinski kompleks lokalizovani i u citoplazmi i u jedru. Proteazom se sastoji iz 20S centralnog šupljeg cilindra (jezgra proteazoma) čija su oba kraja asocirana sa 19S kapama.
26 Proteazom mašinerija za degradaciju proteina Struktura 20S centralnog šupljeg cilindra je visoko konzervirana od kvasca do čoveka i sastoji se od 4 međusobno naslojena prstena. Svaki prsten je sačinjen od 7 subjedinica koje se dele u dve grupe: α subjedinice koje čine spoljašnja dva prstena i β subjedinice unutrašnja dva prstena.
27 Proteazom mašinerija za degradaciju proteina Neke od subjedinica proteozoma su proteaze čija se aktivna mesta nalaze na površini unutrašnje šupljine 20S cilindra, tako da je funkcija 20S cilindra razgradnja polipeptida. Za razliku od tipičnih proteaza, proteazom omogućava da gotovo svaka peptidna veza bude raskinuta, posedujući multiple proteolitičke aktivnosti u jednoj proteolitičkoj odaji.
28 Proteazom mašinerija za razgradnju proteina 19S kape selektivno vezuje proteine markirane za razgradnju i funkcionišu kao regulatorne kapije na ulazu u unutrašnjost cilindra. ATP-azne subjedinice kape odmotavaju proteine koji treba da se razgrade i ubacuju ih u jezgro proteazoma.
29 Proteini se obeležavaju za razgradnju Sa nekoliko izuzetaka, proteazom deluje na proteine koji su obeleženi za razgradnju preko kovalentno vezanog većeg broja kopija malog proteina (76 ak) koji se naziva ubikvitin. Da bi se konjugovao sa ciljnim proteinom, ubikvitin prvo mora biti aktiviran.
30 Proteini se obeležavaju za razgradnju Ubikvitin se aktivira za konjugaciju sa ciljnim proteinima preko vezivanja za ATP-zavisni proteina E1, koji se naziva ubikvitin aktivirajući enzim.
31 Proteini se obeležavaju za razgradnju Aktivirani ubikvitin se zatim prebacuje sa (cisteinskog ostatka) proteina E1 na (cisteinski ostatak) proteina E2, koji se naziva ubikvitin-konjugujući enzim.
32 Proteini se obeležavaju za razgradnju Protein E2 nalazi se u kompleksu sa jednim od članova familije proteina E3. Funkcionalni kompleks E2-E3 naziva se ubikvitin ligaza. Ubikvitin ligaza odgovorna je za prepoznavanje i obeležavanje ciljnog proteina poliubikvitinskim lancem.
33 Proteini se obeležavaju za razgradnju Jednom kada je proteinski substrat mono-ubikvitiran, poliubikvitinski lanac se formira kroz iste ubikvitin konjugacione kaskade, pri čemu je karboksilna grupa ubikvitina kovalentno vezana za Lys reziduu ubikvitina koji je već konjugovan za proteinski substrat. Multiubikvitinski lanac na ciljnom proteinu je ono što prepoznaju kape proteazoma.
34 Ubikvitin aktivirajući enzim E1 ili UBA Jedan enzim E1 je odgovoran za aktivaciju ubikvitina. Kod kvasaca je samo jedan funkcionalni enzim UBA, UBA1. Delecija gena UBA1 kod kvasca je letalna.
35 Ubikvitin konjugujući enzim E2 ili UBC Svi enzimi E2 (a njih je na desetine, najmanje 13 E2 kod kvasca, a oko 30 kod sisara) sadrže konzervirano oko 130 ak dugačko katalitičko jezgro, domen UBC.
36 Ubikvitin ligaze E3 E3 ligaze odnosno kompleksi ligaza prepoznaju specifične motive substrata i katalizuju transfer ubikvitina na proteinski substrat. U ćelijama sisara postoji nekoliko stotina različitih proteina E3, koji formiraju komplekse sa specifičnim proteinima E2.
37 Ubikvitin-proteazomski sistem Ubikvitin-proteozomski sistem sastoji se od mnogo različitih proteolitičkih puteva, koji imaju protein E1 na početku i proteazom na kraju puta, a razlikuju se u E2- E3 ubikvitin ligazama i pomoćnim faktorima. Različite ubikvitin-ligaze prepoznaju različite signale za razgradnju i time deluju na različite proteine.
38 Uloge ubikvitin-proteozomski sistem Prepoznaju i eliminišu proteine koji imaju pogrešnu trodimenzionalnu strukturu ili druge abnormalnosti. Postoje i proteini koji se sve vreme brzo degradaju. To su kratkoživeći proteini čija se kontrola funkcije ostvaruje preko regulacije njihove razgradnje. Uslovno kratkoživeći proteini su proteini koji su metabolički stabilni pod određenim uslovima, dok su pod drugim uslovima nestabilni.
39 Kontrola regulisane razgradnje proteina U ćeliji postoji čitav niz mehanizama kojima se kontroliše regulisana razgradanja proteina, Dva opšta puta indukovane degradacije proteina: Aktivacija kompleksa ubikvitin ligaze (E2-E3). Aktivacija signala za razgradnju.
40 Regulisana razgradnja proteina preko aktivacije ubikvitin ligaze Aktivacija E2-E3 kompleksa ostvaruje se: Fosforilacijom specifičnog ak ostatka. Alosteričkom aktivacijom vezivanjem nekog malog molekula (liganda) ili dodavanjem proteinske subjedinice.
41 Regulisana razgradnja proteina preko aktivacije signala za razgradnju Načini aktivacije signala za degradaciju su različiti: Fosforilacijom se otkriva sakriven signal za degradaciju. Regulisanom disocijacijom proteinske subjedinice. Kidanjem određene peptidne veze, čime se formira novi N-kraj kojeg specifičan protein E3 prepoznaje kao destabilišući N-kraj (signal za razgradnju).
42 Kontrola proteina preko regulacije njihove razgradnje Proteazom, procesivna mašinerija za degradaciju proteina je odgovoran za različite unutarćelijske aktivnosti: Uklanjanja pogrešno savijenih proteina; Regulacije ćelijskog ciklusa razgradnjom ciklina; U stečenom imunskom odgovoru obradom peptida antigena, itd.
1. Sistemi za kontrolu kvaliteta proteina, molekularni šaperoni i proteazom
1. Sistemi za kontrolu kvaliteta proteina, molekularni šaperoni i proteazom Proces ekspresije gena koji kodiraju proteine nije završen prevođenjem informacije sadržane u irnk u redosled aminokiselina polipeptidnog
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Sekundarne struktura proteina Fibrilni proteini
Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
TRANSLACIJA. Doc. dr Snežana Marković
TRANSLACIJA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu BIOSINTEZA PROTEINA - TRANSLACIJA U toku translacije dolazi do specifičnog
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Regulacija ekspresije gena kod prokariota
Regulacija ekspresije gena kod prokariota Bakterije Jednoćelijski organizmi koji nemaju jedro i druge organele. Geni u najvećem broju slučajeva ne poseduju introne i većina gena organizovana je u operone.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
METABOLIZAM I REGULACIJA HISTONSKIH IRNK "ŽIVOT
METABOLIZAM I REGULACIJA HISTONSKIH IRNK "ŽIVOT BEZ POLI-A REPA" Histoni su primarne proteinske komponente hromatina. Na početku se smatralo da su uglavnom uključeni u pakovanje DNK, odnosno da su važni
3/25/2016. Hemijske komponente ćelije
Hemijske komponente ćelije Molekuli u ćeliji Najbitniji molekuli u ćeliji su poznati. Putevi sinteze i razgradnje su poznati za većinu ćelijskih konstituenata. Hemijska energija pokreće biosintezu. Organizacija
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
CILJNA MESTA DEJSTVA LEKOVA
FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Mehanizmidejstvaenzima. Himotripsin
Mehanizmidejstvaenzima Himotripsin Principi katalize Specifična kiselo-bazna kataliza Elektrostatska kataliza Elektrofilna kataliza Nukleofilna kataliza (kovalentna kataliza) Nukleofilna kataliza Opšta
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Program za tablično računanje Microsoft Excel
Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
REKOMBINACIJA MOLEKULA DNK
REKOMBINACIJA MOLEKULA DNK Fenomeni odgovorni za održavanje i ekspresiju genoma Svaki molekul DNK je rekombinovani molekul DNK Pojam rekombinacije Tridesete godine prošlog veka Mejoza (poslednja istraživanja
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
SADRŽAJ TRANSLACIJA... TRANSPORTNE RNK
Translacija SADRŽAJ TRASLACIJA... 1 TRASPORTE RK... 2 Primarna struktura trk... 2 Sekundarna struktura trk... 3 Tercijarna struktura trk... 5 Aktivacija aminokiselina... 5 Interakcija kodon antikodon...
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA
NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA ANIMACIJE!!! REPLIKACIJA https://www.youtube.com/watch?v=tnkwgcfphqw TRANSKRIPCIJA https://www.youtube.com/watch?v=jqiwwjqf5d0 TRANSKRIPCIJA I TRANSLACIJA https://www.youtube.com/watch?v=-k8y0atkkai
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Osnovne karakteristike 3-D strukture molekula DNK i RNK
Osnovne karakteristike 3-D strukture molekula DNK i RNK Rendgenska strukturna analiza (vlakana) DNK Watson-Crickov model (B) DNK Zašto dvostruki heliks? Polimorfizam DNK: kanonske (standardne/prosečne)
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log