5.6. Funcţii densitate de probabilitate clasice
|
|
- Ενυώ Βουρδουμπάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Elemente de sttistică 5.6. Funcţii densitte de probbilitte clsice Introducere L or ctulă eistă un număr mre de funcţii msă de probbilitte şi funcţii densitte de probbilitte ce crcterizeză diferite procese şi fenomene discrete şi, respectiv, continui. O prte din ceste funcţii msă/densitte de probbilitte sunt prezentte, l modul generic, în Tbelul 5.8. În cdrul cestui subcpitol vom prezent dor două funcţii densitte de probbilitte cu o lrgă plicbilitte prctică. Este vorb de: funcţi densitte de probbilitte Guss-ină 54 şi funcţi densitte de probbilitte uniformă Funcţi densitte de probbilitte guss-ină Un dintre cele mi utile distribuţii prmetrice este distribuţi normlă (numită şi distribuţie Guss-ină su distribuţie Guss-Lplce) unei v.. continue (su, mi generl, unui vector letor). Acestă distribuţie teoretică este cu tât mi utilă cu cât, în prctică, cele mi multe vribile letore observte tind să fie, l rândul lor, sum ltor câtorv componente letore; ori, ş cum m rătt şi intuitiv în Ane: Teorem limită centrlă, sum cestor componente letore tinde, în numite condiţii (vribilele letore sunt i.i.d. şi de vrinţe finite), să fie un norml distribuită, pe măsură ce numărul cestor componente creşte. Secvenţele letore Guss-iene (de eemplu, secvenţele de tip zgomot guss-in) su vectorii letori cu distribuţie Guss-ină jocă, ş după cum vom vede şi în pginile cestei cărţi, un rol forte importnt în: proiectre şi nliz sistemelor de procesre semnlului; modelre seriilor de dte, cât şi în proiectre sistemelor de clsificre. 54 Teoretic, reprtiţi normlă (su Guss-ină) reprezintă o reprtiţie limită către cre tind, în numite condiţii, tote celellte reprtiţii. 83
2 Algoritmi şi metode inteligente cu plicţii în electronică şi biomedicină, vol I Observţi 5.43: Noţiune de secvenţă letore, introdusă mi sus, nu este un totl nouă pentru noi (pentru st vezi şi Figur 5.6). O definiţie conceptulă cestei noţiuni este următore, O secvenţă de numere i se numeşte letore dcă e este dtă de relizările prticulre i = i (ζ) le unei secvenţe i de vribile letore i independente şi identic distribuite, definite în spţiul încercărilor repette le unui eperiment letor. Un vector letor Guss-in d-dimensionl este un vector letor crcterizt de o funcţie densitte de probbilitte normlă (Guss-ină), d-dimensionlă. Pentru un vector letor rel, d-dimensionl,, cestă funcţie de densitte re form: f ( ) d / C / e 84 T m C m (5.57) Funcţi densitte de probbilitte Guss-ină multidimensionlă pote fi prticulriztă pentru o vribilă letore monodimensionlă, stfel: f ( m ) ( ) e (5.58) În litertur de specilitte distribuţi dtă de relţi (5.58) se noteză, de obicei, cu N(m, σ ), unde m este medi ir σ este vrinţ vribilei letore. În czul prticulr în cre m =, σ =, distribuţi normlă devine o distribuţie normlă stndrd, şi e se mi noteză şi N(, ). Pentru o situţie multidimensionlă notţi nterioră se generlizeză sub form N(m, C), cu m reprezentând vectorul mediu şi C reprezentând mtrice de covrinţă vectorului letor multidimensionl,. Problemă 5.33: Dcă veţi o vribilă letore monodimensionlă, crcteriztă de o funcţie de distribuţie normlă stndrd N(, ), determinţi modlitte de o converti într-o ltă vribilă letore y, crcteriztă de următore distribuţie generică, N(my, σy ). Medi şi vrinţ (pentru czul monodimensionl) şi, respectiv, vectorul mediu, m, şi mtrice de covrinţă, C (pentru un vector multidimensionl) sunt prmetrii funcţiei densitte de probbilitte, f(), ce crcterizeză distribuţi lui. Acestă funcţie densitte de probbilitte este complet definită numi tunci când se cunosc perechile de prmetri: (m, σ) pentru v.., respectiv, (m, C) pentru vector letor.
3 Elemente de sttistică În Figur 5.3() şi Figur 5.3 sunt reprezentte câtev distribuţii Guss-iene pentru czul unei vribile letore monodimensionle şi, respectiv, pentru czul unui vector letor bidimensionl. În czul reprezentării grfice funcţiei densitte de probbilitte pentru o vribilă monodimensionlă, Figur 5.3(), grficul cestei funcţii se prezintă sub form unui clopot, cunoscut în litertur de specilitte sub numele de clopotul lui Guss. Acestă reprezentre grfică este simetrică în rport cu verticlă, = m. Tot din ceeşi figură se mi pote observ că: grficul funcţiei re un singur mim (pentru = m) şi două infleiuni (de bscise, = m ), poziţionre distribuţiei este dtă de vlore medie, ir crcterizre zonelor de concentrre punctelor este dtă de vrinţă. Deci, /3 din elementele distribuției (proimtiv 66% din elemente) se găsesc l o distnță de o deviție stndrd fță de medi clsei. Dcă luăm în considerre vrinț (cre este o cntitte mi mre decât deviți stndrd fiind eglă cu deviți stndrd l pătrt), proimtiv tote elementele distribuției se găsesc l o distnță de o vrință fță de medi clsei. f ().6 m.4. m = =. m = =.5 m = = m = =.5 F () m m m 3 4 () m 68.3% din elemente ( %) m 95.44% din elemente ( %) m % din elemente ( %) m % din elemente ( %) - 4 (b) 6 Figur 5.3. () Câtev funcţii densitte de probbilitte unidimensionle, şi (b) funcţiile de reprtiţie corespunzătore cestor f.d.p. Aceste observţii se pot generliz, într-o mnieră similră, şi pentru o distribuţie bidimensionlă (vezi Figur 5.3 şi Figur 5.6) su pentru un multidimensonlă. În generl, pentru o distribuţie multidimensionlă 85
4 Algoritmi şi metode inteligente cu plicţii în electronică şi biomedicină, vol I poziţionre elementelor este dtă de vectorul mediu în timp ce distribuţi cestor în pln este crcteriztă de mtrice de covrinţă, C. În Figur 5.3(b) sunt reprezentte funcțiile de reprtiție corespunzătore funcțiilor de densitte din figur lăturtă funcţii densitte obţinute pentru diferite vlori le prmetrilor medie şi vrinţă. Relţi de clcul folosită în reprezentre grfică funcţiilor de reprtiţie Guss-ină este: F ( um ) f u du e du (5.59) f() Figur 5.3. Reprezentre grfică unei distribuţii guss-iene bidimensionle Pentru crcterizre unor vribile letore complee vând o funcţie densitte de probbilitte Guss-ină su pentru lte relţii de crcterizre doi vectori letori consultți Ane: Funcții densitte de probbilitte Guss-iene. Utilitte cunoşterii formei cestei fmilii de distribuţie teoretice rezidă în lrg plicbilitte prctică ei, plicbilitte dtortă pe de o prte fenomenelor rele ce pot fi descrise cu jutorul unei stfel de distribuţii ir pe de ltă prte poziţiei privilegite pe cre o ocupă în rândul fmiliilor de distribuţii teoretice (lte distribuţii teoretice tind l limită către o distribuţie Guss-ină) şi, respectiv, proprietăţilor pe cre le posedă şi cre conferă o uşurinţă mi mre în mnipulre lor (un stfel de eemplu este şi propriette că rezulttul produsului două densităţi Guss-iene este tot o densitte Guss-ină). Problem 5.34: Să se demonstreze firmţi de mi sus conform cărei produsul două densităţi Guss-iene rezultă tot într-o densitte guss- 86
5 Elemente de sttistică ină. Aş după cum m văzut, în cdrul problemelor de estimre prmetrică densităţii, o cerinţă necesră este şi specificre priori formei densităţii de probbilitte ce descrie populţi; de cele mi multe ori cestă formă este dedusă şi din reprezentre, cu jutorul histogrmei, crcteristicilor dtelor observte. Dintr-o stfel de reprezentre, şi, eventul, din clculul unor măsuri cntittive cum r fi coeficientul de boltire, respectiv, coeficientul de simetrie, se pote deduce dcă distribuţi dtelor este un Guss-ină su nu. Pentru o distribuţie ce nu reiese, din nlizele prezentte mi sus, fi o distribuţie Guss-ină, se pot folosi, în procesul de modelre, ş numitele distribuţii Guss-iene continue generlizte cre, conferă în continure vntjul uşurinţei în mnipulre clculelor şi, în plus, oferă posibilitte unei proimări mi ecte densităţii necunoscute prin introducere unui l treile prmetru cre, lături de medie şi vrinţă, descrie distribuţi; cest prmetru portă numele de prmetru form (shpe),, şi în funcţie de lur sugertă de histogrmă su de vlore obţinută pentru cele două măsuri cntittive menţionte mi sus el pote fi utilizt pentru introduce suplimentr: () informţi de boltire, în czul unor distribuţii simetrice; formul pentru o stfel de densitte normlă generliztă este: ( m ) f ( ) e (5.6) (/ ) unde prmetrii distribuţiei sunt m (prmetru de loclizre), α (de sclre) şi (de formă) ir prin () s- nott funcţi gmm, t u ( t) u e du Pentru vlori le prmetrului form: (5.6) = se obţine distribuţi Lplce; < < se obţine un continuum de densităţi simetrice leptokurtice; = se obţine distribuţi normlă; > se obţine un continuum de densităţi simetrice pltikurtice; densitte converge punctul spre o densitte uniformă pe intervlul (m-α, m+α). 87
6 Algoritmi şi metode inteligente cu plicţii în electronică şi biomedicină, vol I (b) informţi de simetrie; formul pentru o stfel de densitte normlă generliztă este: ( u) f ( ) (5.6) ( ) unde prmetrii distribuţiei sunt ξ (prmetru de loclizre), α (de sclre) şi (de formă) ir prin () s- nott fdp normlă stndrd şi prin u() funcţi: ( ) log, pentru u ( ) (5.63) u, pentru. Pentru vlori le prmetrului form: < se obţin distribuţii mărginite l drept şi cu simetrie stâng; = se obţine o distribuţie normlă; > se obţin distribuţii mărginite l stâng şi cu simetrie drept Funcţi densitte de probbilitte uniformă Funcţi densitte de probbilitte pentru o distribuţie uniformă, monodimensionlă, pe un intervl [u, w], u < w, este dtă de relţi: f w u def ; u, w u w (5.64) 88 u w Conform relției (5.64), tote elementele din interiorul intervlului [u, w] sunt echiprobbile (u ceeşi probbilitte de priţie ). În situţi în cre, în relți (5.64) u =, w =, funcţi densitte de probbilitte portă numele de funcţie densitte de probbilitte uniformă stndrd. Acestă funcţie densitte de probbilitte este considertă o distribuţie de referinţă. În cee ce priveşte diferitele progrme su medii de dezvoltre, ce mi mre prte dintre ceste u înglobte în ele genertore de numere letore crcterizte de o funcţie densitte de probbilitte uniformă stndrd.
7 Elemente de sttistică Celellte tipuri de distribuţii (de eemplu cele Guss-iene) pot fi obţinute (generte) prin plicre, supr seturilor de dte vând o distribuţie uniformă stndrd, unei numite trnsformări prticulre. Seturile de dte cu distribuţie uniformă stndrd sunt, de obicei, generte cu jutorul unor subrutine ce implementeză genertore de semnl crcterizte de funcţii densitte de probbilitte uniforme stndrd. Problemă 5.35: Pentru o funcţie densitte de probbilitte uniformă crcteriztă de relți (5.64), în cre u < w, rezolvţi următorele: demonstrţi că f (; u, w) este o funcţie densitte de probbilitte legitimă; determinţi nlitic şi reprezentţi grfic funcţiile de reprtiţie ce corespund următorelor funcţii de densitte de probbilitte uniforme: f (;, ), f (; 3, 5) şi f (; 3, 3). 89
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
5. DFG Estimatori statistici şi momente
lemente de sttistică 5. DFG 5.5. stimtori sttistici şi momente În ce mi mre prte czurilor este dificil să se lucreze cu funcţi densitte de probbilitte pentru un vector letor multidimensionl. De fpt, într-un
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Integrale generalizate (improprii)
Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau
EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ
CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ În teori Integrlei definite numită şi Integrl Riemnn, s- urmărit c, l numite funcţii rele de o vriilă relă, dte pe mulţimi din R, după o schemă
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
sin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate
Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC CURS I II Cpitolul I: Integrl
TEMA 5: DERIVATE ŞI DIFERENȚIALE
TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor
1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:
Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR
TITULARIZARE 2002 Varianta 1
TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor
Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT
Tit Tihon CNRV Romn FISA DE EVALUARE A UNITATII DE INVATARE Nr. crt 5 6 7 8 9 0 Nr. crt Nr. crt Crcteristici vizibile observte PUNCTAJ ACORDAT preciere D+ Nu Observţii privind preciere folosire mnulului
Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss
Lector univ dr Cristin Nrte Cursul 4 Mtrice Rngul unei mtrice Rezolvre sistemelor de ecuţii linire Metod eliminării lui Guss Definiţie O mtrice m n este o serie de mn intrări, numite elemente, rnjte în
FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE
LUCRAREA NR. 7 FILTRE ACTIVE CU AMPLIFICATOARE OPERAŢIONALE Scopul lucrării: Studiul filtrelor ctive relizte cu mplifictore operţionle prin ridicre crcteristicilor lor de frecvenţă.. Filtrele ctive Filtrele
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010
ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Calcul diferenţial şi integral (notiţe de curs)
Clcul diferenţil şi integrl (notiţe de curs) Şt. Blint E. Kslik, L. Tǎnsie, A. Tomoiogă, I. Rodilǎ, N. Bonchiş, S. Mriş Cuprins 0 L ce pote fi util un curs de clcul diferenţil şi integrl pentru un student
CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare
Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce
ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.
ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA
ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte
Utilizarea algebrelor Boole în definirea şi funcţionarea. Circuitelor combinaţionale cu porţi; Circuitelor combinaţionale cu contacte.
Prelegere 6 În cestă prelegere vom învăţ despre: Utilizre lgerelor Boole în definire şi funcţionre Circuitelor cominţionle cu porţi; Circuitelor cominţionle cu contcte. 6.1 Circuite cominţionle Vom defini
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
TEMA 2 MODELE DE DECIZIE APLICATE ÎN ECONOMIE
FACULTATEA DE FINANŢE, BĂNCI ŞI CONTABILITATE BRAŞOV CERCUL ŞTIINŢIFIC MODELAREA STATISTICO-MATEMATICA A PROCESELOR ECONOMICE TEMA MODELE DE DECIZIE APLICATE ÎN ECONOMIE Conf. univ. dr. Nicole BÂRSAN-PIPU
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
CINEMATICA RIGIDULUI
CNEMATCA GDULU CNEMATCA CPULU GD CNEMATCA CPULU GD 8.. Elementele generle le mişcării corpului rigid 8.. Problemele cinemticii corpului rigid Corpul rigid este un element importnt în tehnică şi semnifică
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
ME.09 Transformate Fourier prin sinus şi cosinus
ME.9 Trnsformte Fourier prin sinus şi cosinus Cuvinte cheie Trnsformre Fourier prin cosinus, trnsformre Fourier prin sinus, trnsformt Fourier prin sinus, trnsformt Fourier prin cosinus, formule de inversre,
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"
INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEŢEANĂ 8 mrtie 04 Profil rel, specilizre ştiinţele nturii FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT
2 Ecuaţii diferenţiale Ecuaţia diferenţială de ordinul n... 55
Cuprins 1 Integrl definită şi generlizări 3 1.1 Definiţie, proprietăţi, formule de clcul............... 3 1. Integrl curbilinie......................... 17 1.3 Integrl improprie.........................
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Ioan ROŞCA CALCUL NUMERIC. Elemente de teoria aproximarii
Ion ROŞCA CALCUL NUMERIC Elemente de teori proximrii P R E F A T A In ultimul timp, u pǎrut nevoi enorme de modele mtemtice tot mi sofisticte şi simulǎri pe clcultor tot mi vste şi complexe. In cest mod,
CAPITOLUL 1. ELEMENTE DE ALGEBRA
CAPITOLUL. ELEMENTE DE ALGEBRA. Mulţimi Definiţi.. (Cntor) Prin mulţime se înţelege un nsmlu de oiecte ine determinte şi distincte, cre formeză o entitte. Oiectele cre formeză o mulţime se numesc elementele
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
2 ELEMENTE DE CALCUL VARIAŢIONAL
1 2 ELEMENTE DE CALCUL VARIAŢIONAL 2.1 Probleme clsice de clcul vriţionl Din punct de vedere istoric, prim problemă de clcul vriţionl este ş numit problemă lui Dido. Legend mitologică spune că Dido, su
1. INTRODUCERE Ce ar trebui să ne reamintim
. INTRDUCERE.. Ce r trebui să ne remintim Mecnic Teoretică pote fi împărţită după ntur problemei ce se studiză în trei părţi. Aceste coincid cu ordine de priţie şi de dezvoltre Mecnicii: Sttic re c obiective:
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Profesor emerit dr. Octavian STĂNĂŞILĂ ANALIZĂ MATEMATICĂ EDIŢIA DEFINITIVĂ. Floarea Darurilor
Profesor emerit dr. Octvin STĂNĂŞILĂ ANALIZĂ MATEMATICĂ EDIŢIA DEFINITIVĂ Colecţi Cărţi mri le Şcolii Româneşti Fundţi Flore Drurilor Bucureşti, 214 Culegere textului şi tehnoredctre: MORARU Cmeli Controlul
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu
Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ
GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ IAŞI, 2002 Cuprins 1 ELEMENTE DE TEORIA SPAŢIILOR METRICE 6 1.1 Introducere................................... 6 1.1.1 Elemente de teori teori mulţimilor.................
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Se cere determinarea caracteristicilor geometrice pentru secţiunea antisimetrică din figura de mai
Seminr 7. Crcteristici geometrice l suprfeţe plne II.. Secţiune compusă cu profile lminte jos: Se cere determinre crcteristicilor geometrice pentru secţiune ntisimetrică din figur de mi fig.1 Poziţi centrului
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Axiomele geometriei în plan şi în spańiu
xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii,
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita
REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
4. Integrale improprii cu parametru real
4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie
GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi
GEOMETRIE ANALITICĂ Cpitolul 5 VECTORI LIBERI # Spţiul vectoril l vectorilor liberi Fie E spţiul tridimensionl l geometriei elementre orientt Definiţii Pentru oricre două puncte A B E considerăm segmentul
7. CONVOLUŢIA SEMNALELOR ANALOGICE
7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul
4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire
4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru
ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvate. Mircea Olteanu
@ ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvte Mirce Oltenu Cuprins Integrle improprii şi cu prmetri 5. Noţiuni teoretice......................... 5. Integrle improprii.........................3
TEMA 3. Analiză matematică - clasa a XI-a (3h/săpt.), clasa a XII-a (3h/săpt.)
LECłII DE SINTEZĂ în vedere pregătirii sesiunii iulie-ugust emenului de BACALAUREAT - M pentru cndidńii solvenńi i liceelor din filier tehnologică, profil: servicii, resurse nturle şi protecńi mediului,
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.
Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
I. PROGRAMARE LINIARA. 4. Metoda simplex
38 I. PROGRAMARE LINIARA 4. Metod simplex Deorece ştim că dcă progrmul în formă stndrd (P) re optim finit o soluţie optimă v fi cu necesitte o soluţie de bză şi deci v fi socită unei bze B*, este nturl
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un