Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu"

Transcript

1 Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB u razmeri AS : SB = : 7, zbir njenih koordinata A) B) 6 C) 7 D) 8 E) 6. EF, MF, FiF, FH 001 Trougao ABC je zadat koordinatama svojih temena: A ( 1,1), (,) h = CC, C AB c B, 7 C 0,. Dužina visine A) B) 1 C) 8 D) E) 7. MF 00 Date su tačke P(0,0), Q(1,1), R(,), S(,), T (, ). Koju od tačaka treba odbaciti da bi preostale četiri bile temena paralelograma. A) P B) R C) Q D)T E) S. TMF 00 Stranice trougla pripadaju pravama x + y = 0, x y + = 0, x y 8 = 0. Površina tog trougla jednaka A) 16 B) C) 8 D) 7 E) 16. GF 00 Tačke D(, ), E ( 1, ) i (,) F su središta stranica BC, CA i AB trougla ABC. Zbir koordinata tačke A jednak A)- B)0 C)1 D) E)11. Prava 6. EF 001 Jednačina prave koja prolazi kroz tačke A( 1, 1) i B (,) A) x y = 0 B) x + y + = 0 C) y = x ETF FiF Rastojanje tačke ( 1, 1) od prave x + y = 0 iznosi: A) B) C) D) E) FF 1

2 Rastojanje tačke ( ), od prave y + x + = 0 Analitička geometrija ( A) B) C) D) E) FF Rastojanje tačke ( ) 1,1 od prave y + x + 1 = 0 A) B) C) 0 D) E) MF Rastojanje koordinatnog početka O pravouglog koordinatnog sistema xoy od prave zadate jednačinom y = x + A) B) 10 C) D) E) SF 001 Ako je P presečna tačka pravih x + y 1 = 0 i x y + = 0, onda je njeno rastojanje od prave x + y = 0 jednako: A) B) 10 C) D) E) 1. SF 000 Ako tačka (, ) B (,6), tada je proizvod xy : M x y pripada pravoj x y = i ako je jednako udaljena od tačaka (,) A) 0 B) 0 C) 1 D) 1 E) 7 1. GF 001 Tačka prave x y 1 0 A), + = koja je jedako udaljena od tačaka A( 1, ) i B ( 1, ) B), C) ( 0, ) D) (, ) E) (,0 ) A i 1. TMF 00 Zbir kvadrata koordinata tačke prave p :x + y 6 = 0 koja je jednako udaljena od tačaka A( 1, ) i B (,1) A) 70 B) 7 C) 0 D) 60 E) 1. SF 006 Ako je tačka (, ) B ( 1, ), onda je a b : M a b koja pripada pravoj x y =, podjednako udaljena od tačaka ( 6,) A) 0 B) C) D) 1 E) MF A i Ako tačka M ( xo, yo ) pripada pravoj 8x + y 1 = 0 i ako je jednako udaljena od tačaka A( 8, ) B (, ), tada je proizvod x0 y0 jednak: A) 9 B) 0 C) 6 D) 9 E) EF, FiF 006 Jednačin prave koja je normalna na pravu x + y + = 0 ima koeficijent pravca: i

3 A) B) C) D) E) SF 00 Date su tačke M (,) i ( 1, ) duž MN N. Jednačina prave koja sadrži tačku N, a koja je normalna na A) x y + 1 = 0 B) y x + 1 = 0 C) x + y + 1 = 0 D) x + y = 0 E) x + y 1 = FON Zbir koordinata normalne projekcije tačke M ( 1, ) na pravu određenu tačkama (, 1) B (,) jednak A) B) 1 C) 0 D) E) 0. SF, FON 00 Prava sadrži tačku ( 8, 1) A i A i seče pravu y = 7x + 9 u tački B pod pravim uglom. Zbir koordinata tačke B A)9 B)17 C)17,8 D) -7 E) 0 1. RGF 000 Tačka simetrična tački A( 1,) u odnosu na pravu koja je određena tačkame B ( 8, ) i (, 7) A) A1 ( 7, ) B) A1 ( 7, ) C) A 1 (, ) D) A ( 8, ) 1. MaF 00 Tačka simetrična tački (, ) A u odnosu na pravu x y + 1 = 0 A) ( 1, ) B) ( 1,6 ) C) ( 1, ) D) (, ) E) ( 1, ). FON 00 Ako je B ( x, y ) simetrična tački A(,1) u odnosu na pravu x = y +, onda je zbir x y jednak: A) B)11 C) -11 D) - E) 0. MF 006 Koeficijent pravca simetrale duži čije su krajnje tačke A(, 1) i B (, ) A) 1 B). FON 000 C) D) Dva naspramna temena kavadrata ABCD su tačke ( 1, ) A i C (,1) jednak E) C. Jednačina prave određena dijagonalom BD A) x + y 8 = 0 B) x + y 1 = 0 C) x y = 0 D) x y + 7 = 0 E) x y = FON Tačke A( 7,1) i B ( 1,) su temena osnovice jednakokrakog trougla ABC, pri čemu teme C pripada pravoj x y = 0. Proizvod koordinata tačke C A) B) C) 6 D) 6 E) MF

4 Prava l seče pravu y = x u tački A, a pravu y = x + 1u tački. duži AB, onda je jednačina prave l : Analitička geometrija ( B Ako je tačka M ( 1,1) A) y = x B) y = x 1 C) y = 1 D) y = x E) x = FF Jednačine pravih koje prolaze kroz koordinatni početak i imaju odsečak između pravih x y + = 0 i x y + 10 = 0 jednak 10 su: središte A) x + y = 0, x y = 0 B) x y = 0, x y = 0 C) x + y = 0, x + y = 0 D) x + y = 0, x y = 0 E) x + y = 0, x + y = 0 9. FF 00 Geometrijsko mesto tačaka M ( x, y) = koje su četiri puta bliže pravoj 1 16,0 x = nego tački ( ) A) 1x + y = 0 B) 1x y = 0 C) x y = 1 D) 1y x = 0 E) x + y = 1 0. TMF 001 Date su tačke A( 0, a ) i ( 0, ) B b, 0 a b maksimalnim uglom, tada je x jednako: A) ab B) a + b < <. Ako se iz tačke ( ) C) a ( b a) D) b( b a) C x,0, x > 0, duž AB vidi pod E) ab. Kružnica 1. MF 000 Najmanje rastojanje tačke M kruga ( x ) + ( y + ) = i tačke N kruga ( x ) ( y ) A) 0 B) C) D) 10 E) 1. TMF 000 Jednačina prave kojoj pripada tetiva kruga + + = = 0, čije je središte tačka A (,0), glasi: A) y = 0 B) y = + x C) y = x 6 D) x = E) x + y = 0. GF 000 Prava x y 1 = 0 i kružna linija x y x + 1 = 0 seku se pod oštrim uglom od: A) 0 o B) o C) 60 o D) 7 o E) 90 o. EF, MF, FiF, FH 001 Rastojanje presečnih taki pravih x y = i x y 0 = od centra krug ( x ) ( y ) A) 7 B) 6 C) D) E) 6 + = 9. TMF 001 Najkraće rastojanje između krive A) = 0 i prave x y + = 0 B) ( 1) C) 1 D) E) 6. GF 001

5 Prava x = 1 seče kružnu liniju tačkama T 1 i T određuju trougao T 1 T P. Površina trougla A) 7. EF 001 Analitička geometrija ( x + y = u tačkama T 1 i T. Data prava i tangente kružne linije u π B) C) D) E) Kružnica x + y + y = 0 ima centar C i poluprečnik R : A) C ( 0, ), R = 1 B) ( ) 8. EF 001 C 0,, R = C) C(0, ), R = Jednačina kružnice čiji je centar tačka ( 1,1) C i koja dodiruje pravu x + y + 11 = 0 A) ( x 1) + ( y + 1) = B) ( x + 1) + ( y 1) = C) ( x ) ( y ) 9. ETF, MF, FiF, FH = Najviše jedna od pravih p1 : y = x + 7; p : y = x + ; p : y = x + 6; p : y = x + je tangenta kruga + = 6. Koja? x x y y A) p 1 B) p C) p D) p 0. TMF 00 Jednačina kružnice čiji je centar tačka (, 1) dužine 6 E) Nijedna C koja na pravoj p :x y + 18 = 0 odseca tetivu A) ( x ) + ( y + 1) = 8 B) ( x ) + ( y + 1) = 8 C) ( x ) ( y ) D) ( x ) + ( y + 1) = 18 E) ( x ) ( y ) 1. GF = 0 Najkraće rastojanje od tačke T ( 7, ) do tačke kružne linije = = 0 jednako A) 10 B) C) 7 D) + E). EF 00 Jednačina kružnice sa centrom u tački ( 1,) koja dodiruje y-osu glasi: A) ( x + 1) + ( y ) = 1 B) ( x + 1) + ( y ) = 9 C) ( x ) ( y ). FF 00 Jednačine tangente kruga A) y x = 0 y x 10 = 0. TMF 00 Data je jednačina kružnice B) y + x = 0 y + x + 10 = = = 0 koje su normalne na pravu x y = 0 su: Jednačina prave koja sadrži tetivu PQ C) y + x = 0 y + x 10 = 0 D) y x = 0 y x + 10 = 0 E) y x = 0 y x + = = 0 i tačka A (,0), središte njene tetive PQ. A) x y = 0 B) x + y + = 0 C) x + y 6 = 0 D) x y 6 = 0 E) x y = 0. MF 00 Tangenta konstruisana iz tačke A( 7, ) na kružnu liniju Površina trougla AOT ( gde jeo koordinatni početak) iznosi: x + y = dodiruje tu liniju u tački T.

6 A) 10 B) 10 C) 00 D) 0 E) MF 00 Ukupan broj zajedničkih tačaka prave x y 0 ( x ) ( y ) + = + + = 1 i + = i kružnih linija ( ) x y A) 0 B) 1 C) D) E) 7. MF 00 Zbir koeficijenata pravaca tangenti kružnica x y 1 = 0 i x + y + = 0 x + y = koje sadrže presečnu tačku pravih A) B) 6 C) - D) 6 E) 6 8. FON 00 Od svih tačaka krive izraza α β je jednaka: = 0 najbliža pravoj x y = je tačka (, ) A) 8 B) - C) -8 D) 0 E) A α β. Vrednsot 9. FON 006 Ako je prava kx y + 16 = 0 tangenta kruga = 0, tada je parametar k jednak: A) - B) C) - D) E) MF Koeficijent pravca tangente na krug x y A) MF B) Prava koja sadrži tačku P ( a, a) i centar O kruga O i P. Tada je odnos OP : OA jednak: + = u njegovoj tački A(, ) C) 1 D) E) x + y = a seče taj krug u tački A između tačaka A) 1 B) C) D) E) MF Jednačina kruga simetričnog grugu ( x + ) + ( y 1) = u odnosu na tačku ( ) 1, A) x 8x + y 6y + 1 = 0 B) x x + y + y = 0 C) x + x + y y + 1 = 0 D) x x + y + y + 1 = 0 E) x + 8x + y + 6y + 1 = FON Ako je M ( x, y ) tačka kružnice x y jednak: = 0 koja je najbliža tački A(, ), onda je zbir A) 1 B) C) D) E) FON 6

7 Prava p sadrži centar kružnice x + y x + 6y 6 = 0 i paralelna je pravoj x y + = 0. Površina trougla koga prava p obrazuje sa koordinatnim osama A) 9 B) C) 6 D) 8 E) FF Poluprečnik kruga koji dodiruje dve paralelne prave x + y + = 0 i x + y 18 = 0 A) B) C) D) E) ETF FiF FH Poluprečnik kruga koji sadrži tačke (,0) i ( 1, ) a centar mu pripada pravoj x + y = 0, jeste: A) 1 B) 1 C) 1 D) 1 E) ETF FiF FH Zbir koeficijenata pravca tangenti kružnice x x y 1 = 0 i x + y = 0 + y = koje sadrže presečnu tačku pravih A) B) 6 C) D) 6 E) ETF Jednačina kruga čiji je centar presečna tačka pravih x + y = 0, x + y + = 0 i koji dodiruje pravu x + 1y 1 = 0, jeste: A) ( x ) ( y ) + + = 1 1 D) ( x ) ( y ) B) ( x ) ( y ) + + = + + = E) x + y x + y + = MF Prava y = k ( x + ) i krug x A) k B) C) ( x ) ( y ) + y = 9 imaju zajednaičkih tačaka ako i samo ako + + = 1 k C) 0 k D) 0 k E) 1 k 1. Elipsa, hiperbola i parabola 60. TMF 000 Na paraboli y = x odrediti tačku koja je najbliža pravoj y = x. A) ( 1, 1 ) B) ( 1, 1) C) (, ) D) ( 0,0 ) E) ( 1, ) 61. RGF 000 Jednačina tangente parabole P : y = x + x +, koja je paralelna pravoj p : y = x, glasi: A) y = x + B) y = x + 1 C) y = x D) y = x + 6. FON 001 Prava y kx n intervalu: = + sadrži tačku ( 0, 10) A i tangenta je hiperbole x y 0 =. Tada k pripda 7

8 A) ( 0, 6 ] B) ( 6,1 ] C) (,6 ] D) ( 1, 18 ] E) ( 18, ] 6. MaF 001 Dužina tetive elipse x sistema Oxy, + y = 18, koja pripada simetrali prvog i trećeg kvadranta koordinatnog A) B) C) 6 D) E) 8 6. FF 00 Jednačina parabole koja sadrži tačke preseka prave x y = 0 i kruga je u odnosu na x-osu A) y 6. MF 00 = x B) x = y C) x Data je parabola y = x x + i tačke (,0) površin trougla ABC minimaln ima koordinate: = y D) y A i B ( 1,0 ) + = 0 i simetrična x y y = x E) y = x. TačkaC na datoj paraboli za koju je A) ( 0,1 ) B) ( 1,1 ) C) (, 7) D) (, ) E) ( 0, ) 66. EF, FiF, FH 00 Ako je prava y = kx + n zajednička tangenta kruga k + n jednako: x + y = i elipse x + y = 10, tada je A) 7 B)1 C)6 D) E) 67. MF 00 Rastojanje između žiža elipse x 9y 6 + = A) B) C) 6 D) 1 E) 68. MF 006 Prava x + y = je tangenta elipse α x + y = α ako i samo ako je pozitivan parametarα jednak: A) B) C) 6 D) 7 E) 69. GF 001 Među tačkama parabole date prave A) 11 B) = tačka T je najbliža pravoj y = x 9. Rastojanje tačke T od y x x C) D) E) MF U koordinatnoj ravni Oxy, jednačinom x = 1 y je određena: A) prava B) parabola C) kružnica D) elipsa E) hiperbola FF Zajedničke tangente elipsi x x - ose su: + 8y = 8 i 8x + y = 8 koje zaklapaju oštar ugao sa pozitivnim delom A) y x + = 0, y x = 0 B) y + x + 1 = 0, y + x 1 = 0 C) y x + = 0, y x = 0 D) y + x + = 0, y + x = 0 E) y x + = 0, y x = FF 8

9 Jednačina geometrijskog mesta tačaka M ( x, y) (,0) A) x y = 1 B) x FF Hiperbola Analitička geometrija ( = koje su dvostriko bliže pravoj x 1 = 0 nego tački y = 1 C) x + y = 1 D) x + y = 1 E) x y = 1 b x a y = a b ima asimptote y ± x = 0 i tangentu x y = 16. Jednačina kruga koji prolazi kroz tačku (, ) i kroz obe žiže hiperbole A) x + ( y 1) = 18 B) ( ) x y D) ( x 1) + ( y 1) = E)( x ) ( y ) = 0 C) x = 9 + y = FF Jednačina parabole y A) y = 9x B) y = px, kojoj je prava x + y + = 0 tangenta, = x C) y 9 = x D) y = x E) 9 y = 9x FF U krug x + y = upisana je elipsa b x + a y = a b (zajedničke tačke nalaze se na x - osi). Elipsa polovi poluprečnik kruga koji prolazi kroz tačku (, ). Jednačina elipse A) x + y = 7 B) 8x + y = 7 C) x + y = 7 D) x + 8y = 7 E) x + 8y = FF Rastojanje tangenti hiperbole x y = 16 paralelnih sa pravom x + y = 0 A) 6 B) C) D) E) ETF Ako sa ϕ označimo oštar ugao koji grade tangente povučenje iz tačke (,1) na parabolu y = x, tada je ugao ϕ jednak: A) π B) π 6 C) arctg D) arctg E) arctg

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Analitička geometrija - vežbe

Analitička geometrija - vežbe Analitička geometrija - vežbe Milica Žigić May 25, 2017 1 Pravougli koordinatni sistem i rastojanje izmed u tačaka 1. Na brojnoj osi ucrtati tačke A( 3), B( 8 3 ) i C(0). 2. (a) Na brojnoj osi ucrtati

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

Elementarni zadaci iz Euklidske geometrije II

Elementarni zadaci iz Euklidske geometrije II Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k

Διαβάστε περισσότερα

Zadaci iz Nacrtne geometrije (drugi semestar)

Zadaci iz Nacrtne geometrije (drugi semestar) Zadaci iz Nacrtne geometrije (drugi semestar) Srdjan Vukmirović August 19, 2003 Aksiome projektivne geometrije P1 Za ma koje 2 tačke A i B postoji tačno jedna prava a = AB kojoj pripadaju tačke A i B.

Διαβάστε περισσότερα

Konstruktivni zadaci. Uvod

Konstruktivni zadaci. Uvod Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,

Διαβάστε περισσότερα

PRIPREMNI ZADACI ZA PRIJEMNI ISPIT

PRIPREMNI ZADACI ZA PRIJEMNI ISPIT PRIPREMNI ZADACI ZA PRIJEMNI ISPIT GRAĐEVINSKI FAKULTET UNIVERZITETA U SARAJEVU Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Zadaci iz Geometrije 4

Zadaci iz Geometrije 4 Zadaci iz Geometrije 4 - za rad na vežbama - 3. maj 2017. 1 Stereometrija 1. Data je kocka ABCDA 1 B 1 C 1 D 1 ivice a. Dokazati da je tetraedar ACB 1 D 1 pravilan i odrediti mu dužinu ivice. 2. Dat je

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP PROJEKTIVNA GEOMETRIJA oktobar 2010. godine ANALITIČKI PRISTUP Homogene koordinate i dvorazmera 1. Tačke 0, i 1 afinog sistema koordinata uzete su redom za bazne tačke A 1 (1 : 0), A 2 (0 : 1) i jedinicu

Διαβάστε περισσότερα

1. APSOLUTNA GEOMETRIJA

1. APSOLUTNA GEOMETRIJA 1. APSOLUTNA GEOMETRIJA Euklidska geometrija izvedena sintetičkim metodom zasniva se na aksiomama koje su podeljene u pet grupa i to: aksiome rasporeda, aksiome incidencije, aksiome podudarnosti, aksiome

Διαβάστε περισσότερα

EUKLIDSKA GEOMETRIJA

EUKLIDSKA GEOMETRIJA EUKLIDSKA GEOMETRIJA zadaci za vežbe AKSIOMATSKO ZASNIVANJE EUKLIDSKE GEOMETRIJE 1. Ako dve razne ravni imaju zajedničku tačku tada je njihov presek prava. Dokazati. 2. Za svake dve prave koje se seku

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Sli cnost trouglova i Talesova teorema

Sli cnost trouglova i Talesova teorema Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.

Διαβάστε περισσότερα

Aksiomatsko zasnivanje euklidske geometrije

Aksiomatsko zasnivanje euklidske geometrije Aksiomatsko zasnivanje euklidske geometrije 1. Postoji jedna i samo jedna prava koja sadrži dve razne tačke A i B. 2. Postoji jedna i samo jedna ravan koja sadrži tri nekolinearne tačke A, B, C. 3. Ako

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zbirka rešenih zadataka iz Matematike I

Zbirka rešenih zadataka iz Matematike I UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Tatjana Grbić Silvia Likavec Tibor Lukić Jovanka Pantović Nataša Sladoje Ljiljana Teofanov Zbirka rešenih zadataka iz Matematike I Novi Sad, 009. god.

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu 2 O TROUGLU Trougao je nezaobilazna tema kako osnovne tako i srednje škole. O trouglu se skoro sve zna. Navodimo te činjenice.

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Pismeni ispit iz predmeta Euklidska geometrija 1

Pismeni ispit iz predmeta Euklidska geometrija 1 Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Zenica, 27.01.2010. Pismeni ispit iz predmeta Euklidska geometrija 1 Zadatak br. 1 a) U oštrouglom trouglu ABC (AC < BC) visina

Διαβάστε περισσότερα

Elementarni zadaci iz predmeta Euklidska geometrija 1

Elementarni zadaci iz predmeta Euklidska geometrija 1 Elementarni zadaci iz predmeta Euklidska geometrija 1 Trougao Računanje uglova u trouglu 1. Težišnica i visina iz vrha A u ABC djele ugao α na tri jednaka dijela. Koliki su uglovi trougla ABC. 2. U trouglu

Διαβάστε περισσότερα

Aksiome podudarnosti

Aksiome podudarnosti Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom e 2 f 2 e 2 φ + π 2 Q f 1= f 1 φ e 1 O e 1 f 2 Slika 9: Izometrijske transformacije koordinata Ovo razmatranje možemo sumirati sledećom teoremom Teorema 3.1 Formule transformacija koordinata ravni iz ortonormiranog

Διαβάστε περισσότερα

Geometrijska mesta tačaka i primena na konstrukcije

Geometrijska mesta tačaka i primena na konstrukcije Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Geometrijska mesta tačaka i primena na konstrukcije Master rad Mentor: Prof. dr Mića Stanković Student: Ivana Gavrilović Niš,

Διαβάστε περισσότερα

1.1 Tangentna ravan i normala površi

1.1 Tangentna ravan i normala površi Površi. Tangentna ravan i normala površi Zadatak Data je površ r(u, v) = (u cos v, u sin v, a 2 u 2 ), a = const. Ispitati o kojoj se površi radi i odrediti u i v linije. Zadatak 2 Data je površ r(u, v)

Διαβάστε περισσότερα

Geometrija (I smer) deo 3: Analitička geometrija u ravni

Geometrija (I smer) deo 3: Analitička geometrija u ravni Geometrija (I smer) deo 3: Analitička geometrija u ravni Srdjan Vukmirović Matematički fakultet, Beograd 19. novembar 2014. Prava u ravni Prava p je zadata tačkom P(x 0, y 0 ) p i normalnim vektorom n

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Euklidska geometrija II (1. dio)

Euklidska geometrija II (1. dio) Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Akademska 2012/2013. (sveska je skinuta sa stranice pf.unze.ba\nabokov U svesci je mogu a pojava grešaka. Za uo ene greške pisati

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

OTPORNOST MATERIJALA

OTPORNOST MATERIJALA 3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT

GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT I RACIONALNI ALGEBARSKI IZRAZI I POLINOMI Uprostiti izraz ab abab : ab ba ab yy y y y y y y Uprostiti izraz : Uprostiti izraz Uprostiti izraz

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

9 Elementarni zadaci: Prizma i kvadar

9 Elementarni zadaci: Prizma i kvadar 9 Elementarni zadaci: Prizma i kvadar Elementarna pitanja: 1. Kako glasi formula za računanje površine prizme? 2. Kako glasi formula za računanje zapremine prizme? [V = B H] 3. Kako glasi formula za računanje

Διαβάστε περισσότερα

Zbirka zadataka iz geometrije. Elektronsko izdanje

Zbirka zadataka iz geometrije. Elektronsko izdanje Zbirka zadataka iz geometrije . Predrag Janičić ZBIRKA ZADATAKA IZ GEOMETRIJE Sedmo izdanje (treći put ponovljeno četvrto izdanje) Matematički fakultet Beograd, 2007 Autor: dr Predrag Janičić, docent

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Univerzitet u Beogradu, Matematički fakultet. Predmet:Metodika nastave i računarstva Tema:Sličnost

Univerzitet u Beogradu, Matematički fakultet. Predmet:Metodika nastave i računarstva Tema:Sličnost Univerzitet u Beogradu, Matematički fakultet Predmet:Metodika nastave i računarstva Tema:Sličnost Profesor Student Nebojša Ikodinović Marina Stanković 270/2011 Anđela Milijašević 132/2011 Datum:15.12.2014

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

x bx c + + = 0 po nepoznatoj x, vrijedi da je

x bx c + + = 0 po nepoznatoj x, vrijedi da je Elektrotehnički fakultet u Sarajevu studijska 0/4. ŠIFRA KANDIDATA _ Zadatak. Za rješenja, kvadratne jednačine + = i + = 7. Koliko iznosi? 9 b c + + = 0 po nepoznatoj, vrijedi da je a) 4 b) 6 c) 7 d) 4

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

Milan Merkle. (radni naslov) Verzija 0 ( ), novembar 2015

Milan Merkle. (radni naslov) Verzija 0 ( ), novembar 2015 Milan Merkle M A T E M A T I K A (radni naslov) III Verzija (1999-23), novembar 215 Sadržaj: Analitička geometrija Funkcije više promenljivih Integrali (krivolinijski, višetruki, površinski) Kompleksna

Διαβάστε περισσότερα

Hiperbola. Hiperbola je skup tačaka u ravni sa osobinom da je razlika rastojanja ma koje tačke od dveju datih tačaka stalan broj.

Hiperbola. Hiperbola je skup tačaka u ravni sa osobinom da je razlika rastojanja ma koje tačke od dveju datih tačaka stalan broj. Hiperbola Definicija Hiperbola je skup tačaka u ravni sa osobinom da je razlika rastojanja ma koje tačke od dveju datih tačaka stalan broj..stalne tačke F1(-c, 0), F2(c, 0) su žiže hiperbole, njihovo rastojanje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Analitička geometrija Zadaci. 13. siječnja 2014.

Analitička geometrija Zadaci. 13. siječnja 2014. Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................

Διαβάστε περισσότερα

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3. 4 Analiti ka geometrija u prostoru 4

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3. 4 Analiti ka geometrija u prostoru 4 Sadrºaj Sadrºaj i 1 Vektorska algebra 1 2 Analiti ka geometrija 2 3 Analiti ka geometrija u ravni 3 4 Analiti ka geometrija u prostoru 4 5 Ispitivanje jedna ina drugog reda u R 2 5 5.1 Krive sa centrom.........................

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

7.5. KOORDINATNI SISTEMI

7.5. KOORDINATNI SISTEMI - 84-75 KOORDINATNI SISTEMI 75 Dekartov desni pravougli koordinatni sistem U paragrafu 73 definisali smo desni pravougli koordinatni sistem (O;i, j, k) gdje su: (a) koordinatni početak ili ishodište O

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0 17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Analitička geometrija u ravnini

Analitička geometrija u ravnini Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija 12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija Elementarna pitanja: 1. Nabrojati sve geometriske figure prikazane na slici ispod. [kocka, kvadar, četverostrana piramida, sfera

Διαβάστε περισσότερα

Potencija taqke. Duxan uki

Potencija taqke. Duxan uki Potencija taqke Duxan uki Neka su dati krug k i taqka u ravni. Posmatrajmo proizvoljnu pravu l kroz i njene preseqne taqke B i sa krugom k. Proizvod B ne zavisi od izbora prave l. Zaista, ako sa D oznaqimo

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.)

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Univerzitet u Zenici Pedagoški fakultet Matematika i informatika Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Sedmica broj 1 i 2 (Osnovi pojmovi iz geometrije) Uvod

Διαβάστε περισσότερα

> 0 svakako zadovoljen.

> 0 svakako zadovoljen. Elektrotehnički fakultet u Sarajevu akademska 0/3 ŠIFRA KANDIDATA _ Zadatak Za koje vrijednosti parametra ( ) + 3 = 0 m x mx oba iz skupa i suprotnog znaka? m su rješenja kvadratne jednačine a) m > 3 b)

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3 Sadrºaj Sadrºaj i 1 Vektorska algebra 1 2 Analiti ka geometrija 2 3 Analiti ka geometrija u ravni 3 4 Analiti ka geometrija u prostoru 4 4.1 Ravan u prostoru......................... 5 4.2 Udaljenost ta

Διαβάστε περισσότερα

Značenje indeksa. Konvencija o predznaku napona

Značenje indeksa. Konvencija o predznaku napona * Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Primene kompleksnih brojeva u geometriji

Primene kompleksnih brojeva u geometriji Primene kompleksnih brojeva u geometriji Radoslav Dimitrijević 07.1.011. 1 Neki osnovni geometrijski pojmovi 1.1. Rastojanje izmed u tačaka Neka su tačke A i B u kompleksnoj ravni odred ene kompleksnim

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα