9 Elementarni zadaci: Prizma i kvadar
|
|
- Κυριακή Δουρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 9 Elementarni zadaci: Prizma i kvadar Elementarna pitanja: 1. Kako glasi formula za računanje površine prizme? 2. Kako glasi formula za računanje zapremine prizme? [V = B H] 3. Kako glasi formula za računanje zapremine kvadra? 1. U trostranu prizmu, čija je osnova pravougli jednakokraki trougao, može se upisati lopta poluprečnika 2cm koja dodiruje sve strane prizme. Kolika je zapremina te prizme? 2. Osnova prizme je romb. Omotač prizme je 2400cm 2. Jedna dijagonala romba je 40cm, a rastojanje naspram bočnih strana prizme jednako je visini prizme. Kolika je zapremina prizme? 3. Baza uspravne prizme je jednakokraki trougao osnovice a i ugla pri vrhu 120. Kolika je zapremina prizme (u funkciji od a) ako je površina omotača dva puta veća od površine baze? 4. Baza (osnova) pravilne četverostrane prizme je kvadrat stranice a (cm). Ravan koja sadrži jednu ivicu baze i nagnuta je prema ravni baze pod uglom od 30, dijeli zapreminu date prizme u razmjeri 2 : 3. Kolika je visina prizme? 5. Dijagonala kvadra ima dužinu d = 2 2. Njen nagib prema jednoj bočnoj strani iznosi 30, a prema drugoj bočnoj strani 45. Kolika je zapremina ovog kvadra? Konstruktivni zadaci - Konstrukcija trougla. Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija (determinizacija) U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja, logičkim razmišljanjem (i po potrebi dodavanjem nekih novih elemenata skici, kao što su tačka, prava i slično), dolazimo do ideje šta možemo konstruisati od datih elemenata u zadatku. U analizi ne objašnjavamo kako se šta može konstruisati, nego samo konstatujemo šta se može konstruisati i na osnovu čega. U konstrukciji pravimo niz od jasnih i nedvosmislenih koraka šta i kojim redom trebamo konstruisati da bismo od datih elemenata u zadatku došli do rješenja. Konstrukciju možemo tumačiti i kao Algoritam u kome su ulaz dati elementi zadatka a izlaz rješenje zadatka. U dokazu dokazujemo one tvrdnje na koje smo se pozvali u Analizi a koje nismo tamo dokazali. Generalno u dokazu treba da se nalazi rečenica šta se treba dokazati, i dati dokaz toga. U diskusiji (determinizaciji) razmatramo broj rješenja u odnosu na položaj datih elemenata. 6. Konstruisati trougao ABC ako su dati uglovi α, β i njegov obim. 7. Konstruisati trougao ABC ako su date tačke P, Q i R koje su podnožja visina datog trougla. 8. Konstruisati trougao ABC ako su mu dati stranica a, ugao β i duž b c. 9. Konstruisati trougao ABC ako su mu dati visine h a i h c, i težišna linija t a. 10. Konstruisati trougao ABC ako su mu dati stranica a, težišnica t a i visina h a. 11. Konstruisati trougao ABC ako su mu dati stranica c, duž a b i ugao α β. 12. Konstruisati trougao ABC ako su mu dati stranica a, visina h a i ugao α. 13. Konstruisati trougao ABC ako je dato AM = t a i poluprečnici R 1 i R 2 kružnica opisanih oko trouglova ABM i ACM. 14. Konstruisati raznostranični trougao ABC ako su pozati stranica b, visina h c (koja odgovara stranici c) i zbir a + c.
2 15. Date su tri konkurentne prave i na jednoj od njih tačka A. Konstruisati trougao ABC, tako da njegove težišne linije leže na datim pravama. Napomena. Konkurentne prave su prave koje prolaze kroz jednu tačku. 16. Konstruisati trougao ABC ako su mu dati stranica a, ugao α i poluprečnik kružnice r upisane u taj trougao. 17. Konstruisati trougao ABC ako su mu dati stranica a, duž b + c i ugao β γ. 18. Konstruisati trougao ABC ako su date tri tačke P, Q i R koje su u odnosu na stranice trougla simetrične centru opisane kružnice trougla. 19. Konstruisati trougao ABC ako su date tri tačke P, Q i R koje su u odnosu na stranice trougla simetrične ortocentru trougla. Neki zadaci sa ispitnih rokova 20. Konstruisati trougao ABC ako su date stranice a i b, i zna se da je α = 3β. 21. Data je kružnica i u njenoj unutrašnjosti tačke P i Q. Upisati u tu kružnicu pravougli trougao čija jedna kateta sadrži tačku P, a druga tačku Q. 22. Konstruisati trougao ABC ako su dati visina h c, težišnica t c i poluprečnik opisane kružnice R. 23. Konstruisati trougao ABC ako su dati stranica a, ugao β i poluprečnik upisane kružnice r. 24. Konstruisati trougao ABC ako su date tačke P, Q i R u kojima visina, simetrala ugla i težišna linija iz tjemena C sijeku kružnicu opisanu oko trougla. 25. Date su paralelne prave a i b, tačka M izme du njih i prava c koja nije paralelna ni sa a, ni sa b. Konstruisati jednakokraki trougao MAB, sa osnovicom AB, tako da A a, B b i p(a, B) c. 26. Konstruisati trougao ABC takav da su mu težišne duži podudarne trima datim dužima. 27. Konstruisati trougao ABC takav da su mu tri date nekolinearne tačke S a, S b i S c centri spolja upisanih krugova. Zadaci za vježbu 28. Konstruisati trougao ako je dato: (a) h a, 2p, r; (p je poluobim trougla, r poluprečnik upisane kružnice) (b) α, r a, b + c a; (c) 2p, r, r a ; (r a je poluprečnik spolja upisane kružnice koja dodiruje stranicu a i prave koje sadrže stranice b i c); (d) a, r, r a ; (e) r, r a, b c; (f) r b, r c, β γ; (g) a, r b, r c ; (h) r b, r c, b + c; (i) c, r, r c ; (j) c, γ, α β; (k) h c, t c, α β; 29. Konstruisati trougao ako su dati elementi: (a) b c, r, β γ; (b) a, r, b c;
3 u tro stranu prizmu, čija je osnova pravougli jednakolcraki trougao, može se upisati lopta poluprečnika zapremina te prizme? 2em koja dodiruje sve strane prizme. Kolika je ~. Neka je ABCA,B,C, trostrana prizma čija je osnova jednakokraki pravongli trougao L1ABC (LC = 90 0 ) u koju je upisana lopta poluprečnika.' R = 2em tako da dodiruje sve njene strane. Visina prizme je H = 2R = 4em. Da bismo izračunali površinu baze, izračunaćemo dužine stranica L1ABC. Koristeći činjenice da je L1ABC jednakokraki i pravougli i jednakost tangentnih duži, na osnovu Pitagorine teoreme imamo: odnosno a 2-8a+8 =0. e Zapišemo li posljednju jednačinu u obliku (a -4? = 8, dobićemo da je a = (4 + 2.[2 )em. ili a = (4-2.[2 )em. Vrijednost a = (4-2.[2),ne zadovoljava: hipotenuza trougla L14OC' je 2a-4, a 2a-4 = 2( 4-2.[2 )-4 =4-4.[2 =4( J -.[2)< O. Dakle, a = ( [2 )em. Površina baze je Zapremina prizme je V =B H = (12+8.[2).4em 3.
4 0!!.) Osnova prizme je romb. Omotač prizme je 2400 cm 2. Jedna dijagonala romba je 40 cm, a rastojanje naspram bočnih strana prizme jednako je visini prizme. Kolika je zapremina prizme? ;. Neka je osnovna ivica prizme a. Tada je M uuu J. = 4aH = 2400, pa Je a = - Rastojanje H' naspramnih bočnih strana prizme je visina h romba Površina romba J' e B = ah = h. - = H. - tj' {-- -;-...L..-'---{ H H" B = 600em 2 jer je h = H po uslovu zadatka. K k d l d 2 40 d 2 a o Je B = -2-' Imamo 600 = -2-' tj. odavde d 2 = 30em. r r Kakoje a 2 =( d; +( d; = =625, ,Imamo a = 25em, te H = - = - = 24dm. a 25 Dakle, zapremina prizme iznosi 11 V = BH = = 14400em 2. o' " ~DijagOnala kvadra ima dužinu d = 2Ji. Njen nagib prema jednoj bočnoj strani ~ iznosi 30, a prema drugoj bočnoj strani 45. Kolika je zapremina ovog kvadra? ;. Ugao između prave i ravni jednak je uglu između te prave i njene projekcije na "tu ravan. Zbog toga treba dijagonalu kvadra projicirati na obje bočne strane. U jednom slučaju dobijamo pravougli trougao sa uglovima 30 i 60, a u drugom slučaju sa uglovima 45. Neka dijagonala CE sa bočnom stranicom ADHE zaklapa ugao od 30. Tada je projekcija dijagonale CE na tu stranicu duž DE. Trougao LJDCE je pravougli trougao u kojem je.t{.dec = 30 i LCDE = 90. Tada je ED = DC.Jj = CE.[3 = d.[3. Neka je AB = a, BC = b, EA = e. Tada je 2 2 ED=~b2 +e 2 i CD=a. Tako imamo ~b2 +e 2 =a.[3. Nakon kvadriranja imamo b 2 + e 2 = 3a 2. Po pretpostavci zadatka dijagonala CE sa stranicom ABFE gradi ugao od 45. Projekcija EC na tu bočnu stranicu je EB. Tada je trougao LJEBC jednakokraki i pravougli, pa je BC = EB, tj. ~ a 2 + e 2 = b. Odavde je a 2 + e 2 = b 2. Sada nalazimo da je a = e i b = aji. Zapremina kvadra je V = abe = a 3 Ji. Kako je J d d 3 Ji (2Jit-Ji a +b +e =d-,toje a=-. Dakle, V=--= =
5 f#\ Baza uspravne prizme je jednakokraki trougao osnovice a i ugla pri vrhu ~ Kolika je zapremina prizme (u funkciji od a) ako je površina omotača dva puta veća od površine baze? l!. Neka je b krak jednakokrakog trougla J osnovice a i visine ha koja odgovara osnovici. Tada visina baze iz vrha ugla od razlaže trougao na dva podudama. lrougla sa uglovima od 60 0 i 300, pa je h =~ :!..=bj3 t' a a 2' 2 2" J, b = J3' a odavde H a I I I o', H b a h =-=a 2 2J3' Sada je M = ah-+2bh =( a+2b)h =( a+ 5i-)H => 2~ =( a+ 5i-)H => a 2 a => H = NJ = 2J3 = a,v = B. H = ~,a a f#\. 3 a(l+ JJ) 2jf 2(2+.J3) 4.J3 2(2+.J3) 8.J3(2+.J3i ~ Neka je SABCD pravilna usparavna četverostrana piramida (S - vrh piramide) čija je zapremina V = 36cm3 Ako je tačka O centar osnove (baze) ABCD date piramide, tačka F središte ivice CD i {E} = AF n BD, izračunati zapreminu piramide SOEFC. l! Data piramida SABCD i piramida SOEFC imaju J' jednake visine pa je V(SOEFC) P(OEFC) V( SABCD) P( ABCD) (P - površina baze). Tačka E je očigledno težište L1ACD Ger su AF i DO njegove težišnice), paje l P( OEFC) = jp LlACD = "6P( ABCD). Dakle, l l V( SOEFC )="6V( SABCD )="6. 36 =6cm3. A l a S
6 Baza (osnova) pravilne četvero strane prizme je kvadrat stranice a (cm). Ravan koja sadrži jednu ivicu baze i nagnuta je prema ravni baze pod uglom od 30 0, dijeli 'zapreminu date prizme u razmjeri 2:3. Kolika je visina prizme? ".R J' Manji odsječak date prizme je trostrana prizma čija je visina i jedna ivica baze dužine a, a druga ivica baze, kateta trougla.darc je AC = x. Trougao.dARC je polovina jednakostraničnog trougla (jer je LACR = 60 ) pa je AR = a visina tog trougla a baza mu je 2x. Zbog toga je: a = 2x./3 = x./3 ~ x = ~. 2,,3 D.r--_-+-._--'" Zapremina ove trostrane prizme je: 1 a 2 a a 3 VJ =-a x a=- -=-- Zapremina date 2 2./3 2./3' prizme je V = a 2 H, gdje je H visina čija se dužina traži. Prema uvjetu zadatka, zapremina trostrane prizme čini ~ zapremine date prizme, tj. 5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Konstruktivni zadaci. Uvod
Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
Racionalni algebarski izrazi
. Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Elementarni zadaci iz Euklidske geometrije II
Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Aksiome podudarnosti
Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji
Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.
Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b
Elementarni zadaci iz predmeta Euklidska geometrija 1
Elementarni zadaci iz predmeta Euklidska geometrija 1 Trougao Računanje uglova u trouglu 1. Težišnica i visina iz vrha A u ABC djele ugao α na tri jednaka dijela. Koliki su uglovi trougla ABC. 2. U trouglu
2.7. DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE *)
.7. DEVET RJEŠENJ JEDNOG ZDTK IZ GEOMETRIJE *) Riječ je o sljedećem zadatku iz geometrije: Oko jednakostraničnog trougla Δ opisana je kružnica. Dokazati da svaka tačka M luka ima osobinu M+ M = M. Daćemo
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Euklidska geometrija II (1. dio)
Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Akademska 2012/2013. (sveska je skinuta sa stranice pf.unze.ba\nabokov U svesci je mogu a pojava grešaka. Za uo ene greške pisati
O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš
O trouglu mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu 2 O TROUGLU Trougao je nezaobilazna tema kako osnovne tako i srednje škole. O trouglu se skoro sve zna. Navodimo te činjenice.
12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija
12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija Elementarna pitanja: 1. Nabrojati sve geometriske figure prikazane na slici ispod. [kocka, kvadar, četverostrana piramida, sfera
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Radni materijal 17 PRIZME
Radni materijal 17 PRIZME Odreži i zalijepi slike u bilježnicu, izvedi formule za oplošje i obujam, označi i izvedi formule za plošne i prostorne dijagonale. Oplošje OBP = + Volumen ili obujam V = Bv slika
Pismeni ispit iz predmeta Euklidska geometrija 1
Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Zenica, 27.01.2010. Pismeni ispit iz predmeta Euklidska geometrija 1 Zadatak br. 1 a) U oštrouglom trouglu ABC (AC < BC) visina
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
EUKLIDSKA GEOMETRIJA
EUKLIDSKA GEOMETRIJA zadaci za vežbe AKSIOMATSKO ZASNIVANJE EUKLIDSKE GEOMETRIJE 1. Ako dve razne ravni imaju zajedničku tačku tada je njihov presek prava. Dokazati. 2. Za svake dve prave koje se seku
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Sli cnost trouglova i Talesova teorema
Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
1. APSOLUTNA GEOMETRIJA
1. APSOLUTNA GEOMETRIJA Euklidska geometrija izvedena sintetičkim metodom zasniva se na aksiomama koje su podeljene u pet grupa i to: aksiome rasporeda, aksiome incidencije, aksiome podudarnosti, aksiome
POLIEDRI. Ivana Bojović 171/03
POLIEDRI Ivana Bojović 171/03 Sadržaj Poliedarske površi...2 Prizma...5 Piramida...8 Zarubljena piramida...10 Pravilni poliedri...11 Površina poliedara...12 Površina prizme...12 Površina pravouglog paralelopipeda...13
56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine
56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK
Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK Živinice 1.4.014. ZADACI UDRUŽENJE MATEMATIČARA TUZLANSKOG KANTONA PEDAGOŠKI ZAVOD TUZLA Takmičenje učenika srednjih škola Tuzlanskog
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Univerzitet u Beogradu, Matematički fakultet. Predmet:Metodika nastave i računarstva Tema:Sličnost
Univerzitet u Beogradu, Matematički fakultet Predmet:Metodika nastave i računarstva Tema:Sličnost Profesor Student Nebojša Ikodinović Marina Stanković 270/2011 Anđela Milijašević 132/2011 Datum:15.12.2014
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Aksiomatsko zasnivanje euklidske geometrije
Aksiomatsko zasnivanje euklidske geometrije 1. Postoji jedna i samo jedna prava koja sadrži dve razne tačke A i B. 2. Postoji jedna i samo jedna ravan koja sadrži tri nekolinearne tačke A, B, C. 3. Ako
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Zbirka zadataka iz geometrije. Elektronsko izdanje
Zbirka zadataka iz geometrije . Predrag Janičić ZBIRKA ZADATAKA IZ GEOMETRIJE Sedmo izdanje (treći put ponovljeno četvrto izdanje) Matematički fakultet Beograd, 2007 Autor: dr Predrag Janičić, docent
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija
18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.)
Univerzitet u Zenici Pedagoški fakultet Matematika i informatika Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Sedmica broj 1 i 2 (Osnovi pojmovi iz geometrije) Uvod
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Zadaci iz Geometrije 4
Zadaci iz Geometrije 4 - za rad na vežbama - 3. maj 2017. 1 Stereometrija 1. Data je kocka ABCDA 1 B 1 C 1 D 1 ivice a. Dokazati da je tetraedar ACB 1 D 1 pravilan i odrediti mu dužinu ivice. 2. Dat je
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
UDRUŽENJE MATEMATIČARA BOSNE I HERCEGOVINE UDRUŽENjE MATEMATIČARA BOSNE I HERCEGOVINE UDRUGA MATEMATIČARA BOSNE I HERCEGOVINE. Sarajevo,
ZADACI UDRUŽENJE MATEMATIČARA BOSNE I HERCEGOVINE UDRUŽENjE MATEMATIČARA BOSNE I HERCEGOVINE UDRUGA MATEMATIČARA BOSNE I HERCEGOVINE BOSNIA-HERZEGOVINA MATHEMATICAL SOCIETY BHMS Zmaja od Bosne 35, 7000
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
LEKCIJE IZ ELEMENTARNE GEOMETRIJE
LEKCIJE IZ ELEMENTARNE GEOMETRIJE BANJA LUKA, 2010. i ii Sadržaj: 1 Prva lekcija 1 1.1 O Euklidovim Elementima................... 1 1.2 Osnovni pojmovi u geometriji................... 3 1.3 Aksiome incidencije
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:
Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
VEKTORI. Nenad O. Vesi 1. = α, ako je
VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija
18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Tehnologija bušenja II
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Geometrija II. Elvis Baraković siječnja Tuzla;http://pmf.untz.ba/staff/elvis.barakovic/
Geometrija II Elvis Baraković 1 10. siječnja 2018. 1 Prirodno-matematički fakultet Univerziteta u Tuzli, Odsjek matematika, Univerzitetska 4 75000 Tuzla;http://pmf.untz.ba/staff/elvis.barakovic/ Sažetak
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Geometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Dužina luka i oskulatorna ravan
Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Zadaci iz Nacrtne geometrije (drugi semestar)
Zadaci iz Nacrtne geometrije (drugi semestar) Srdjan Vukmirović August 19, 2003 Aksiome projektivne geometrije P1 Za ma koje 2 tačke A i B postoji tačno jedna prava a = AB kojoj pripadaju tačke A i B.
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili