REAKTORI I BIOREAKTORI
|
|
- Συντύχη Λιακόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 REKTORI I BIOREKTORI MODELI CIJEVNIH REKTOR Vanja Kosar, izv. prof.
2 Reaktori i bioreaktori Modeli cijevnih reaktora Osnovne značajke cijevnih reaktoru su: Zavisnost parametara o prostornim koordinatama unutar reaktorskog prostora. Ova značajka je neposredna posljedica približno idealnog strujanja reakcijske smjese kroz reaktor. Prisutnost jedne ili više faza. Posebnu i važnu grupu cijevnih reaktora čine reaktori s nepokretnim slojem krutog katalizatora. Stacionarnost rada. Nestacionarni rad cijevnih reaktora važan je samo za početak, odnosno kraj rada te za probleme vezane uz vođenje i kontrolu. 2
3 Reaktori i bioreaktori Modeli cijevnih reaktora Općenito, složenost matematičkog modela zavisi o - opisu realnog strujanja reakcijske smjese, - opisu prijenosa topline kroz reaktor i stjenku, - kinetičkom modelu reakcije (a) te - prisutnosti jedne ili više faza. 3
4 Reaktori i bioreaktori Modeli cijevnih reaktora Matematički modeli cijevnih reaktora uglavnom se dijele na: homogene, odnosno pseudohomogene modele i heterogene modele. U svakoj od ove dvije osnovne grupe mogu postojati ) jednodimenzijski B) dvodimenzijski modeli. dv r f( z) dv r f(,) z r us us ur () u z T=f(z) dr 4 dz T T dz T f(,) z r
5 Model aksijalne disperzije Reaktori i bioreaktori Modeli cijevnih reaktora Modelom aksijalne disperzije aproksimirati se realno strujanje uz određene pretpostavke: -linearna brzina fluida kao i koncentracija reaktanata po presjeku reaktora je stalna, -disperzijauzrokovanadifuzijomidrugimprocesimanezavisnajeopoložaju unutar reaktora i svugdje je ista, -u reaktoru ne postoje mjesta sa stagnantnim strujanjem niti sa obilascima 5 (bypass).
6 Reaktori i bioreaktori Modeli cijevnih reaktora D e 2 dc 2 dz r 2 dc d C u De r 2 dz dz 6
7 Reaktori i bioreaktori Modeli cijevnih reaktora Usporedba konverzija u pojedinim vrstama reaktora za reakciju prvog reda. a - cijevni reaktor, model idealnog strujanja, b - cijevni reaktor, disperzijski model, c - PKR reaktor, idealno miješanje. 7
8 Reaktori i bioreaktori Modeli cijevnih reaktora Model laminarnog strujanja Brzina strujanja u cijevnim reaktorima obično nije velika tako da je laminarno strujanje u praksi često, posebice kod kapljevitih homogenih sustava. Kako je poznato, laminarno strujanje je segregirano, slojevito, a definirano je profilom brzina po presjeku reaktora. Treba napomenuti da ne postoji vektor brzine usmjeren u radijalnom smjeru. 8
9 Reaktori i bioreaktori Modeli cijevnih reaktora z r u r C z 2 2 r r z 2 s 1 maks. 1 u r u u R R u s 1 2 u maks. v s 2 r C r 2us 1 R z 9 R 1 C C r u 2rdr s i z v
10 Reaktori i bioreaktori Modeli cijevnih reaktora MODELI REKTOR Z HETEROGENI SUSTV Za vrlo značajnu grupu cijevnih reaktora s nepokretnim slojem katalizatora koriste se složeniji modeli i to: Dvodimenzijski pseudohomogeni model uz radijalnu raspodjelu koncentracija i temperature (RS model), Heterogeni jednodimenzijski model s idealnim strujanjem (HID model), te Heterogeni dvodimenzijski model koji uzima u obzir promjenu svojstava krute i fluidne faze u radijalnom smjeru (HRS model). 1
11 Reaktori i bioreaktori Modeli cijevnih reaktora Dvodimenzijski pseudohomogeni model Ovaj model nalazi najveću primjenu u modeliranju reaktora s nepokretnim slojem katalizatora. Treba napomenuti da je to pseudohomogeni model, odnosno unutar reaktorskog prostora ne razlikuje se posebno fluidna od krute faze - katalizatora. Reaktorski prostor je prema tome "homogen" a prijenos tvari i topline u radijalnom smjeru definira se tzv. prosječnim koeficijentima difuzije i vođenja topline. Kinetički model sadrži koncentracije komponenata u fluidu (plinu) a ne na/ili u katalizatoru što u određenim slučajevima nije realna situacija. Model se često koristi posebice za reakcije koje nisu jako egzotremne ili endotermne. 11
12 Reaktori i bioreaktori Modeli cijevnih reaktora - Disperzija se u osnom, aksijalnom smjeru može zanemariti jer je konvekcijski član uvijek mnogo značajniji. - Reakcijska smjesa kroz reaktor prolazi idealnim strujanjem. - Prijenos tvari i topline uzima se u obzir u radijalnom smjeru a formalno se interpretira procesom difuzije. - Parametri D r, D h,r i U su stalni po čitavoj dužini reaktora C 1 C C us Dr 2 kr z r r r u s 2 T 1 T T r k Dh, r 2 z r r r scp H r s
13 IZBOR REKTOR I TOPLINSKI UČINCI S obzirom na iznose reakcijske entalpije i energije aktivacije, mogu se reakcijski sustavi grubo svrstati u tri grupe: a) Reakcije koje nisu osjetljive na promjenu temperature, tj. one koje općenito imaju manje iznose reakcijske entalpije i male energije aktivacije. Primjeri za to su razne organske sinteze, posebice u otapalu a zatim i reakcije u biološkim sustavima. dijabatski način rada je najbolje rješenje uz predgrijavanje ulazne smjese ako je potrebno. b) Reakcije koje su umjereno osjetljive na promjenu temperature, što znači s prosječnim vrijednostima reakcijskih entalpija i energijama aktivacije. I za te reakcije treba kao jednu od alternativa razmotriti adijabatski način rada c) Reakcije koje su vrlo osjetljive na promjenu temperature, odnosno koje imaju veće iznose reakcijskih entalpija i energija aktivacije. Za ove reakcije potrebno je kontinuirano odvođenje ili dovođenje topline tijekom same reakcije. Kao primjer može se navesti jedan od tipova reaktora za sintezu amonijaka. 13
14 Reaktori i bioreaktori Izbor reaktora i toplinski učinci Temperaturna osjetljivost reakcija adijabatskom značajkom (adijabatski porast temperature), f H C v temperaturnom osjetljivosti i r s r C p s H Y O f C dr rdt p s E R g a T 2 toplinskim potencijalom. 14 P t HY E r a C T p s 2
15 Reaktori i bioreaktori Izbor reaktora i toplinski učinci KOTLSTI REKTORI Osnovna bilanca topline predočena je relacijom dt Gc H rv Q dt t p r r 15 Q U T T r s r
16 Reaktori i bioreaktori Izbor reaktora i toplinski učinci 16 L Q U T T dz r s c r
17 Reaktori i bioreaktori Izbor reaktora i toplinski učinci dijabatski rad r n dx dt Gc TT H n X Qdt t p r r T T X Hn t r Gc p t T T f Hn t r Gc p 17 Izotermni rad Hn X Qdt r r t
18 Reaktori i bioreaktori Izbor reaktora i toplinski učinci PROTOČNI KOTLSTI REKTORI (PKR i PKRn) Opća bilanca topline dana je izrazom T T u Qr Q i r U u Hr s t dt T T G t c t c G t c dt r p p p bilanca topline reaktora u stacionarnom stanju je v c T T H r U T T p u r s 18
19 Reaktori i bioreaktori Izbor reaktora i toplinski učinci ako se reakcija vodi adijabatski, tada nema prijenosa topline u okolinu pa je tada 19 H H r r T T Vr Vr v cp Gcp ako se brzina reakcije prevede u oblik, i uvrsti dobiva se T T r C V v X H X C r
20 Bilanca topline za medij koji prenosi toplinu Reaktori i bioreaktori Izbor reaktora i toplinski učinci Prijenos topline kroz plašt. Pretpostavlja se idealno miješanje tj. temperatura je svuda jednaka u plaštu. dt Qc m p Tu Tp Qr Gc p p dt Q U T T r s p r U izotermnom radu toplina prenijeta kroz plašt mora biti jednaka reakcijskoj entalpiji, odnosno Q c T T U T T H Vr mg p u p s p r r 2
21 Reaktori i bioreaktori Izbor reaktora i toplinski učinci Prijenos topline kroz zmijaču. Pretpostavlja se idealno strujanje medija za prijenos topline kroz zmijaču pa je bilanca T Q c q G c z z m p r z p Ovdje je s q r označena toplina koja se prenese kroz jediničnu površinu, odnosno površinu stjenke zmijače dužine dz. Prema tome, ukupna toplina prenijeta na medij u zmijači dana je izrazom L L Q q dz U T T dz r r s z r T t 21
22 Reaktori i bioreaktori Izbor reaktora i toplinski učinci Egzotermna reakcija u kapljevitoj fazi, produkti vodi se izotermno u protočno kotlastom reaktoru. Toplina se odvodi iz reaktora hlađenjem vodom kroz plašt. Potrebno je izračunati protok rashladne vode kroz plašt reaktora kako bi se zadržala stalna temperatura reakcijske smjese od 6 C, uz 8% konverziju reaktanta. Poznati su sljedeći podaci o reaktorskom sustavu: - Volumen reakcijske smjese, V=1 dm³ - Volumni protok, v =3 dm³ min -1 - Površina hlađenja, p =63 dm 2 - Ulazna koncentracija reaktanta, c =1.5 mol dm -3 - Ukupni koeficijent prijenosa topline kroz stijenku plašta, U=6 W dm -2 K -1 - Ulazna temperatura rashladne vode, T V=15 C - Toplinski kapacitet vode, c pv =4.18 kj kg -1 K Reakcijska entalpija, ΔH r = - 8 kj mol -1
23 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka Saharoza hidrolizira na sobnoj temperaturi uz katalitičko djelovanje enzima saharaze na sljedeći način: Saharoza( ) Saharaza( E) Produkt Pri izvođenju reakcije u kotlastom reaktoru, u kome je početna koncentracija saharoze bila mol dm -3, a enzima saharaze 1*1-5 mol dm -3, dobiveni su sljedeći podaci: 23
24 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka t, h c 1⁵,mol dm Testirajte date eksperimentalne podatke na Michaelis - Mentenov kinetički model za enzimske reakcije: r kcc 3 E C M Ukoliko podaci odgovaraju ovom modelu izračunajte vrijednosti konstanti k 3 i M. 24
25 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka Integralna metoda 25 ln(c /C )/C -C *1-3, t/c -C *1-7, t, h C *1 5, mol dm -3 dm 3 mol -1 s dm 3 mol
26 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka 72 Integralna metoda f=y+a*x ln(c /C )/(C -C ), dm mol Eksperiment Model b = - k 5 = - 5,1 * 1 3 dm 3 mol tg(alfa) = k 4 = 2.8 * 1-4 s -1 2x1 6 22x1 6 24x1 6 26x1 6 28x1 6 3x1 6 32x1 6 34x1 6 36x1 6 38x1 6 4x1 6 42x t/(c - C ), s dm 3 mol -1
27 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka Diferencijalna metoda - r.12.1 Eksperiment f=y +a*x+b*x 2 Eksperiment Polinom C, mol dm Vrijeme, h
28 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka 28 dc /dt, mol dm 3 s -1 r, mol dm 3 s -1 1/c, dm 3 mol -1 1/r, dm 3 s mol e e e e e e e e e e e e e e e e e e e e e e e e-9 - -
29 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka Grafička metoda r *1 8, 1/r *1-7, t, h C *1 5, 1/C *1-3, mol dm -3 mol dm -3 s dm 3 mol -1 dm 3 s mol
30 Reaktori i bioreaktori Eksperimentalne metode i analiza kinetičkih podataka 3 1/r, dm 3 s mol e+8 1.6e+8 1.4e+8 1.2e+8 1.e+8 8.e+7 6.e+7 4.e+7 2.e+7. Eksperiment Model Diferencijalna metoda f=y+a*x k 5 /k 4 = 2,3*1 7 dm 3 s mol -1 1/k 4 = 2,21*1 3, s /C, dm 3 mol -1
31 Eksperimentalne metode i analiza kinetičkih podataka K ojim se od predloženih kinetič kih m odela: a) r k 1 c b) r k 2 c c B k 3 c c) r 1 k c 4 bolje mogu opisati eksperim entalni podaci dobiveni pri provedbi reakcije esterifikacije n-butanola sumpornom kiselinom u kotlastom reaktoru uz pretpostavku ekvimo larne količ ine reaktan ata na poč etku reakcije. t / m in c / m ol dm 13, , ,7 3 12,3 6 11, , ,8 15 1, ,84 3 Testiranje provedite integra lnom i diferencijalnom m etodom procjene parametara. 31 C 4H 9O H H 2SO 4 C 4H 9O HSO 3 H 2O
Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ. Lea Jocić ZAVRŠNI RAD. Zagreb, rujan 2015.
SVEUČILIŠTE U ZGREBU FKULTET KEMIJSKOG INŽENJERSTV I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ Lea Jocić ZVRŠNI RD Zagreb, rujan 215. SVEUČILIŠTE U ZGREBU FKULTET KEMIJSKOG INŽENJERSTV I TEHNOLOGIJE
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Uvod. B. Zelić: Analiza i modeliranje ekoprocesa, Sustavni pristup modeliranju
Uvod - modeliranje preuzima vodeću ulogu u razvoju procesa - modelima pokušavamo razumjeti, mijenjati, projektirati i voditi realne procese - pri razvoju modela moramo sagledati cjelovitost problema zajedno
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
A B C D. v v k k. k k
Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Postupak rješavanja bilanci energije
Postupak rješavanja bilanci energije 1. Postaviti procesnu shemu 2. Riješiti bilancu tvari 3. Napisati potreban oblik jednadžbe za bilancu energije (zatvoreni otvoreni sustav) 4. Odabrati referentno stanje
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
PP-talasi sa torzijom
PP-talasi sa torzijom u metrički-afinoj gravitaciji Vedad Pašić i Dmitri Vassiliev V.Pasic@bath.ac.uk D.Vassiliev@bath.ac.uk Department of Mathematics University of Bath PP-talasi sa torzijom p. 1/1 Matematički
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Upotreba tablica s termodinamičkim podacima
Upotreba tablica s termodinamičkim podacima Nije moguće znati apsolutnu vrijednost specifične unutarnje energije u procesnog materijala, ali je moguće odrediti promjenu ove veličine, koja odgovara promjenama
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija