LIPIDI Primarni produkti metabolizma žive ćelije

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LIPIDI Primarni produkti metabolizma žive ćelije"

Transcript

1

2 LIPIDI Primarni produkti metabolizma žive ćelije Vrlo heterogena grupa čija je zajednička osobina da se rastvaraju u organskim rastvaračima, a veoma slabo u vodi Mogu se podeliti u više grupa: 1. neutralni ili prosti lipidi triaciligliceroli 2. voskovi 3. složeni lipidi fosfolipidi, glukolipidi itd.

3 Zastupljeni su u svim biljnim delovima, međutim njihov sadržaj u listovima je relativno mali (svega nekoliko %), za razliku od semena i plodova, gde se nalaze kao značajne rezervne materije koje omogućavaju klijanje i razviće nove biljke. U semenima i plodovima čine i preko 50% od ukupne mase Lekovita masna ulja: ricinisuovo, laneno, maslinovo, avokadovo, kokosovo itd. Triacilgliceroli Predstavljaju osnovu masnih ulja koncentrisanih u semenima i pulpi plodova

4 Triacilgliceroli Osnovu masnih ulja predstavljaju estri alkohola glicerola i viših masnih kiselina najčešće su sve tri alkoholne grupe esterifikovane (triacilglicerioli) Glicerol može biti esterifikovan istom ili različitim kiselinama (homo i heteroestri) Glicerol uvek predstavlja osnovu masnih ulja, a promenjive su masne kiseline - strukturne varijacije potiču od različitih kombinacija masnih kiselina. Kod biljaka se nalazi oko 20 čestih masnih kiselina. U prirodnim proizvodima retko su prisutne kiseline sa manje od 10 C atoma (palmino ulje) odnosno sa više od 20 C atoma (ulje kikirikija). Najzastupljenije su masne kiseline sa C16 i C18 atoma.

5 Masne kiseline Masne kiseline mogu biti zasićene i nezasićene. Nezasićene imaju jednu, dve ili tri dvogube veze; retko se javlja veći broj nezasićenih veza Estri glicerola i zasićenih masnih kiselina su čvrste konzinstencije, retko se javljaju u biljnim tkivima i specifični su za animalne organizme (masti i loj). U biljkama su, uglavnom zastupljena masna ulja derivati nezasićenih masnih kiselina

6 Najčešće masne kiseline kod biljaka NAZIV SIMBOL ZASIĆENE Laurinska 12:0 Miristinska 14:0 Palmitinska 16:0 Stearinska 18:0 Arahinska 20:0 Behenska 22:0 NEZASIĆENE Palmitoleinska 16:1 Oleinska 18:1 Linolna 18:2 α-linolenska 18:3 Masne kiseline

7 Esencijalne masne kiseline Humani i animalni organizam može sintetisati sve masne kiseline osim linolne i α-linolenske - nazivamo ih esencijalnim jer su neophodne za funkcionisanje organizam i moramo ih unositi putem ishrane. To su nezasićene masne kiseline i od njih se u organizmu stvaraju nizovi omega-6 i omega-3 masnih kiselina. Omega je oznaka koliko daleko se od posljednjeg C atoma u lancu nalazi prva dvostruka veza između dva C atoma. Humani organizam može proizvesti zasićene masne kiseline ili jednostruko nezasićene masne kiseline sa dvostrukom vezom na 9 C atomu brojeći od kraja molekularnog lanca (omega-9 kiseline), ali ne može stvoriti dvostruku vezu na 6 ili 3 C atomu zbog nepostojanja enzima koji bi to omogućio.

8 Esencijalne masne kiseline α-linolenska je preteča omega-3 masnih kiselina: eikozapentaenska kiselina (EPA) i dokozaheksaenska (DHA)- Izvori - seme lana, orasi, ulje masline, konoplje, čije, algi/ riblje ulje (losos, skuša, sardina, inćuni, haringe, tuna). U organizmu se EPA i DHA dalje prevode u molekule koji, sprečavaju stvaranje krvnih ugrušaka, šire (opuštaju) krvne sudove, redukuju ćelijsku deobu, jačavaju imunitet i funkcije mozga. Ove dve kiseline su ključne u prevenciji bolesti srca, tumora, i mnogih drugih bolesti savremenog čoveka. Mozak je takođe jako zavistan od DHA niski nivoi DHA se povezuju sa depresijom, šizofrenijom, gubitkom pamćenja, i povećanim rizikom za nastanak Alchajmerove bolesti. Linolna kiselina je glavna preteča omega-6 masnih kiselina: γ-linolenska i arahidonska. Izvori - ulje soje, suncokreta, kukuruza, uljane repice, avokada, braon pirinča, noćurka, boraga/ meso i mesne prerađevine. U organizmu se od omega 6 masnih kiselina stvaraju molekuli koji stimulišu stvaranje krvnih ugrušaka, sužavaju krvne sudove, stimulišu ćelijsku deobu, slabe imunitet i funkcije mozga.

9 Esencijalne masne kiseline Antropološki dokazi pokazuju da su naši preci imali u ishrani zastupljen odnos omega-6 prema omega-3 masnim kiselinama 2:1, ali moderna ishrana je poremetila ovaj odnos na čak 10:1 ili 20:1 u korist omega 6 masnih kiselina! Neravnoteža u ishrani - objašnjenje za povećanje broja obolelih od astme, alergija, autoimunih bolesti, srčanih oboljenja, mnogih oblika kancera, neurodegenerativnih oboljenja, kao i svih bolesti koje potiču od upalnih procesa. Visok unos omega-3 kiselina kao pozitivnog trenda u ishrani postao je planetarno poznat nakon studija u kome je utvrđeno da Eskimi uopšte ne obolevaju od srčanih bolesti (kroz tradicionalnu ishranu ribama dobijaju velike količine EPA i DHA). Danas je u velokom broju studija potvrđen pozitivan trend na zdravlje unosom omega-3 kiselina kod: - koronarnih bolesti, od sprečavanja ateroskleroze do uticaja na srčani ritam - smanjenje povišenog holesterola

10 Ordo: Malpighiales Familia: Euphorbiaceae Ricinus communis (ricinus) Biljka: biljka tropskih predela i tamo se javlja kao višegodišnja drvenasta. U krajevima sa umerenokontinentalnom klimom gaji se kao jednogodišnja. Plod je bodljikava čaura sa 2-3 semena. Nalazište: poreklom iz tropske Afrike. Najveći svetski proizvođači ricinusovog semena i ulja su Brazil i Indija. Kod na se gaji u Vojvodini. Koristi se: masno ulje (Ricini oleum). Sastojci: Osnovni sastojci ricinusovog ulja su gliceridi ricinolne kiseline. Upotreba: jako lasantno sredstvo (purgativ) kod akutnih opstipacija. Ovakovo delovanje je zasnovano na iritantnom delovanju ricinolne kiseline na sluznicu tankog creva. Upotrebljava se i u kozmetičkim preparatima (stimuliše rast dlaka).

11 Ordo: Lamiales Familia: Oleaceae Olea europaea (maslina) Biljka: Zimzeleno drvo, 6-8 m visine. Plod ovalna koštunica, kada je zrela tamnoljubičaste boje. Nalazište: raste u priobalnim područjima Sredozemlja. Radi proizvodnje ulja se gaji. Najveći svetski proizvođači su Španija, Italija, Grčka i Izrael. Koristi se: masno ulje (Olivae oleum) Berba i sastojci: plod se bere u jesen. Ulje se dobija hladnim ceđenjem iz perikarpa nepotpuno zrelog ploda. Ulje dobijeno od zrelih plodova je slabijeg kvaliteta i tamnije boje. U ovom ulju dominiraju gliceridi oleinske, linolne i palmitinske kiseline. Upotreba: koristi se kao holagog i kao podloga za izradu nekih farmaceutskih preparata. Najveće količine maslinovog ulja se upotrebe u domaćinstvu za ishranu (smatra se simbolom mediteranskog načina ishrane), u prehrambenoj, industriji sapuna i deterdženata kao i kozmetičkoj industriji. Zelene i zrele maslinke se konzervišu i koriste u ishrani.

12

13 Sluz (Mucilago) Sluzi su heteropolisaharidi koji sa vodom daju viskozne, koloidne rastvore (mucilaginozum). Izgrađeni su od linearnih ili račvastih lanaca pentoza, heksoza i uronskih kiselina. Lokalizovani su na zidovima epidermalnih ćelija semenjače i lista ili u specijalnim ćelijama i kanalima različitih biljnih organa. Smatra se da biljkama sluz služi za skladištenje vode, a potvrđena je i njena uloga u prosecu klijanja semena. Široko su rasprostranjene među biljkama. U većoj količini su koncentrisane u biljkama reda Malvales (kisele sluzi) i Fabales (neutralne sluzi). Althaea officinalis Ophrys apifera

14 Biljka: višegodišnja biljka, sa celom loptastom ili jajastom krtolom. Nalazište: rasprostranjena u celoj Srbiji Koristi se: krtola (Salep tuber) Berba i sastojci: Krtole se vade kada kaćun počne da cveta - početkom leta. Tada kaćuni imaju po dve krtole, staru iz koje je već formiran izdanak i mladu krtolu sa pupoljkom. Mlada krtola se vadi iz zemlje. Sadrži do 50% sluzi, oko 25% skroba i belančevine. Sluz se uglavnom sastoji od D-manoze. Delovanje: Sluz se rastvara u vodi i daje viskozne rastvore; crevni sadržaj čini gušćim, viskoznijim, a sluznicu creva oblaže i štiti od nadražaja. Upotreba: Salep i njegova sluz su antidijarojici. Koriste se za zaustavljanje blagih dijareja, najčešće kod dece. Kao i sve druge sluzne droge i salep se koristi kao antitusik i sredstvo za zaštitu sluznica i kože. Napomena: Krtola kaćuna se koristi za pripremu zaslađenog i začinjenog napitka, salepa. Ova viskozna tečnost se pije u svim zemljama Orijenta. Ordo: Asparagales Familia: Orchidaceae Orchis morio (kaćun)

15 Ordo: Malvales Familia: Malvaceae Althaea officinalis (beli slez) Biljka: višegodišnja zeljasta biljka. Koren snažan i razgranat. Listovi trouglasti ili jajoliki, testerasto nazubljeni po obodu, plitko deljeni na 3 ili 5 režnjeva. Nalazište: široko rasprostranjena Koristi se: koren (Althaeae radix) i list (A. folium) Berba i sastojci: koren se vadi od dvogodišnjih biljaka kasno u jesen ili rano u proleće. List se bere za vreme cvetanja biljke. U korenu ima oko 10% sluzi, u listu manje sluzi nego u korenu. Delovanje: sluz se ekstrahuje prokuvanom i ohlađenom vodom. Ovi viskozni rastvori oblažu sluznicu pa smanjuju nadražaj i njenu iritaciju Upotreba: za izradu hladnog macerata. Koristi se za ublažavanje nadražaja na kašalj (ANTITUSIK) kod suvog kašlja. Takođe, koristi se za ispiranje sluznice usta, nosa i kod blaže upale i infekcije sluznice organa digestivnog trakta (kod kolitisa)

16 Ordo: Malpighiales Familia: Linaceae Linum usitatissimum (lan) Biljka: jednogodišnja ili dvogodišnja zeljasta biljka. Nalazište: gaji se kao industrijska biljka. Tekstilne sorte imaju nerazgranate i duge stabljike (za dobijanje lanenih vlakana). Uljevne sorte imaju kraću, ali razgranatu stabljiku s većim brojem cvetova i plodova. Koristi se: laneno seme (Lini semen) i masno ulje (L. oleum) Berba i sastojci: zrele čaure pucaju same od sebe i oslobađa se seme. Sadrži do 45% masnog ulja i do 12% sluzi koja je koncentrisana u epidermalnim ćelijama semenjače. Laneno ulje se dobija hladnim ceđenjem zrelog semena. Sastoji se od smeše glicerida nezasićenih masnih kiselina (α-linolenska). Delovanje: Sluz lana bubri i povećava svoju zapreminu. Nabubrelo seme lana pritiska zid creva i lokalno izaziva pojačanje peristaltičkih pokreta. Takođe, sluz lana oblaže sluznice (i kožu) i deluje zaštitno. Upotreba: Celo seme se upotrebljava kao zapreminski laksans kod hroničnih opstipacija. Blagotvorno deluje i kod oštećenja sluznice creva (kolitisa i enteritisa). Usitnjeno seme lana se u obliku kataplazmi koristi spolja, kao emolijensno sredstvo kod nekih upala kože. Sluz i masno ulje se koristi kao sastavni deo dermatoloških i kozmetičkih preparata.

17 VITAMINI

18 Prvi put je pojam vitaminskog delovanja upotrebio Ajkman (1897. god.), a Kazimir Funk god. uvodi termin "vitamine". Prirodna organska jedinjenja koja su u malim količinama neophodna za rast, normalno funkcionisanje organizma i održavanje zdravlja čoveka. Sintetišu su u animalnom i biljnom tkivu. Čovek ima sposobnost samo delične transformacije jedinjenja tipa provitamina i njihovo prevođenje u vitamine. Zbog toga je čovek potpuno zavistan od unosa vitamina putem hrane. Dnevne potrebe su definisane kroz preporučene dnevne potrebe za vitaminima. Nedovoljno unošenje i iskorišćavanje vitamina iz hrane, uzrokuje njihov deficit u organizmu i pojavu raznih oboljenja, hipovitaminoza (skorbut, beri-beri, pelagra itd.). Povećan unos vitamina, takođe, može da izazove poremećaje u organizmu što se manifestuje određenim oboljenjima (hipervitaminozama).

19 Po hemijskoj prirodi, vitamini se međusobno razlikuju. Vitamin C (askorbinska kiselina) je šećerne prirode, vitamin A je diterpen, vitamin D ima steroidnu strukturu... Podela vitamina je izvršena na osnovu njihove rastvorljivosti: liposolubilni (A, D, E, K)

20 hidrosolubilni (vitamin C askorbinska kiselina i vitamini B kompleksa).

21 Ordo: Rosales Familia: Urticaceae Urtica dioica (kopriva) Biljka: višegodišnja zeljasta biljka. Stablo četvrtasto i pokriveno čekinjastim i žarnim dlakama. Listovi naspramno raspoređeni, lancetasti, po ivici grubo testerasto nazubljeni. Na naličju se nalaze kratke dlake izmešane sa žarnim dlakama. Nalazište: kao ruderalna biljka široko rasprostranjena Koristi se: list (Urticae folium), koren (U. radix) Berba: beru se mladi listovi, a koren se vadi u jesen. Sastojci: Brojne vitamine i minerale, pa je neki smatraju za prirodni multimineralni i multivitaminski kompleks: vitamin K, B2, B5, vitamin C, karotenoide (provitamin A), gvožđe, kalcijum, magnezijum, fosfor, silicijumovu kiselinu. Upotreba: diuretik, matabolik, antidijaroik. Kopriva je bogata gvožđem, pa se koristi kod anemija izazvanih nedostatkom gvožđa. U narodnoj medicini se smatra da kopriva jača krv, pa se korisiti kod bledila, anemija, malokrvnosti, nedostatka energije, brzog umaranja.

22 Ordo: Rosales Familia: Rosaceae Rosa canina (divlja ruža) Biljka: žbunovi visoki preko 2m. Plod je zbirna orašica. Koristi se: nepotpuno zreo, osušeni plod (Rosae caninae fructus). Berba i sastojci: plod se bere krajem leta, kada nije potpuno zreo. Sadrži različite vrste vitamina: vitamin C do 1%, karotenoide (provitamin A), vitamin K, malo vitamina B kompleksa. U masnom ulju orašica ima vitamina E. Upotreba: sredstvo za jačanje i oporavak organizma (TONIK), blago sredstvo za skupljanje tkiva kod dečjih dijareja (ANTIDIJAROIK) i blago sredstvo za izmokravanje (DIURETIK). Koristi se kao čaj za uživanje i vitaminski napitak. Sirovi plod divljih ruža se koristi u prehrambenoj industriji pekmeza, džema i sokova.

23

LIPIDI MASNE MATERIJE

LIPIDI MASNE MATERIJE LIPIDI MASNE MATERIJE Opšte karakteristike PRODUKTI PRIMARNOG METABOLIZMA Dele se u dve grupe: 1. Prosti lipidi Estri glicerola i viših masnih kiselina - trigliceridi koji predstavljaju osnovu masti i

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

LIPIDI. Definicija lipida

LIPIDI. Definicija lipida LIPIDI Definicija lipida Lipidi su materije biološkog porekla koje ulaze u sastav organizama biljaka i životinja, i u osnovi se karakterišu time: što su slabo rastvorni ili nerastvorni u vodi, a rastvorni

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Opšte karakteristike

Opšte karakteristike ETARSKA ULJA Opšte karakteristike Etarska ulja predstavljaju specifične, najčešće tečne produkte biljnog tkiva. To su složene smeše različitih isparljivih mono-, seskviterpena i fenilpropanskih jedinjenja.

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

PODELA LIPIDA NE MOGU SE SAPONIFIKOVATI MOGU SE SAPONIFIKOVATI STEROIDI TERPENI PROSTI SLOŽENI MASTI I ULJA VITAMINI (A,D,E,K) FOSFOLIPIDI

PODELA LIPIDA NE MOGU SE SAPONIFIKOVATI MOGU SE SAPONIFIKOVATI STEROIDI TERPENI PROSTI SLOŽENI MASTI I ULJA VITAMINI (A,D,E,K) FOSFOLIPIDI LIPIDI ŠTA SU LIPIDI Pod nazivom lipidi podrazumeva se velika grupa raznorodnih jedinjenja, koja se nalaze u biljnim i životinjskim tkivima, nerastvotljiva u vodi a dobro rastvorljiva u nepolarnim organskim

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Masti 3/15/2016. Lipidi (masti) Osnovne funkcije masti (lipida) Elementarni sastav masti i skroba, %

Masti 3/15/2016. Lipidi (masti) Osnovne funkcije masti (lipida) Elementarni sastav masti i skroba, % Lipidi (masti) Masti grupa materija koja se međusobno može bitno razlikovati u pogledu hemijskih svojstava, ali za sve je zajedničko rastvaranje u organskim rastvaračima (etar, CCl 3, hloroformu, aceton)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

4. razred gimnazije- opšti i prirodno-matematički smer VITAMINI VITAMINI RASTVORLJIVI U LIPIDIMA VITAMIN A (RETINOL)

4. razred gimnazije- opšti i prirodno-matematički smer VITAMINI VITAMINI RASTVORLJIVI U LIPIDIMA VITAMIN A (RETINOL) VITAMII VITAMII Složena organska jedinjenja koja služe za regulisanje hemijskih procesa u organizmu. Unose se putem hrane iz razloga što ih čovek ne može sintetisati. aziv potiče od latinskih reči vita

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Matricaria chamomilla (kamilica) Cinnamomum verum (cimet) Achillea millefolium (hajdučka trava)

Matricaria chamomilla (kamilica) Cinnamomum verum (cimet) Achillea millefolium (hajdučka trava) Etarska ulja su mirisne smese isparljivih, lipofilnih sastojaka, koje se sintetišu i lokalizuju u specijalnim sekretornim strukturama biljaka. Glavni sastojci su monoterpeni, seskviterpeni i fenilpropanska

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Dominantna riblja vrsta na ribnjacima u Srbiji je šaran, sa značajnim udelom biljojednih riba.

Dominantna riblja vrsta na ribnjacima u Srbiji je šaran, sa značajnim udelom biljojednih riba. Dominantna riblja vrsta na ribnjacima u Srbiji je šaran, sa značajnim udelom biljojednih riba. Cenjenost šarana se značajno razlikuje u različitim delovima sveta. Prema velikom broju autora on je simbol

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

LIPIDI Definicija lipida

LIPIDI Definicija lipida LIPIDI Definicija lipida Lipidi su materije biološkog porekla koje ulaze u sastav organizama biljaka i životinja, i u osnovi se karakterišu time: što su slabo rastvorni ili nerastvorni u vodi, a rastvorni

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Analiliza suplemenata sa t ulj ljem rib iba i pr t su i n h i na tržištu Srbije

Analiliza suplemenata sa t ulj ljem rib iba i pr t su i n h i na tržištu Srbije A li l t lj ib i t ih Analiza suplemenata sa uljem riba prisutnih na tržištu Srbije Nazivi apoteka u kojima je sprovedena anketa Grad Vlasništvo Naziv apoteke Adresa apoteke Beograd Apoteksrska ustanova

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

ZNAČAJ I ULOGA HRANE U ORGANIZMU

ZNAČAJ I ULOGA HRANE U ORGANIZMU 13.2.2018 ZNAČAJ I ULOGA HRANE U ORGANIZMU 1 Hranom se nazivaju sve materije biljnog, životinjskog i mineralnog porekla, koje služe za odvijanje odredjenih funkcija u čovečijem organizmu (fizički i umni

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

ZADACI LIPIDI. Biohemija I Sarajevo,

ZADACI LIPIDI. Biohemija I Sarajevo, ZADACI Biohemija I Sarajevo, 14.12.2015. Definicija lipida. Kako se definicija lipida razlikuje u odnosu na definiciju npr. aminokiselina ili proteina? Definicija lipida. Kako se definicija lipida razlikuje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml)

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) RESOURCE JUNIOR ČOKOLADA NestleHealthScience RESOURCE JUNIOR Okus čokolade: ACBL 198-1 Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) */200 ml Hrana za posebne medicinske potrebe Prehrambeno cjelovita

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MASTI U HRANI I ISHRANI

MASTI U HRANI I ISHRANI MASTI U HRANI I ISHRANI Predavač: prof. dr Slañana Šobajić Liebig je 1842. godine utvrdio postojanje tri glavne grupe sastojaka živog sveta: proteina, ugljenih hidrata i masti MAKROMOLEKULE OSNOVNI HRANLJIVI

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

o glikolipidi (glicero- i sfingoglikolipidi sadrže ostatke ugljenihhidrata (β-dglukoze,

o glikolipidi (glicero- i sfingoglikolipidi sadrže ostatke ugljenihhidrata (β-dglukoze, LIPIDI aziv potiče od grčke reči lipos, mast. Lipidi su biomolekuli koji se nalaze u biljnim i životinjskim tkivima; rastvorni su u nepolarnim organskim rastvaračima (hloroform, dietiletar, benzen, aceton),

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

LIPIDI. Osnove biokemije Boris Mildner OSNOVNE KARAKTERISTIKE LIPIDA

LIPIDI. Osnove biokemije Boris Mildner OSNOVNE KARAKTERISTIKE LIPIDA LIPIDI Osnove biokemije Boris Mildner OSNOVNE KARAKTERISTIKE LIPIDA Lipidi su raznolika grupa spojeva kojima je jedino zajedničko svojstvo da su netopljivi u vodi a topljivi su u organskim otapalima. Masti

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

MASTI U HRANI I ISHRANI. Predavač: prof. dr Slađana Šobajić

MASTI U HRANI I ISHRANI. Predavač: prof. dr Slađana Šobajić p r o t e i n a, u g l j e n i h h i d r a t a i m a s t i MASTI U HRANI I ISHRANI Predavač: prof. dr Slađana Šobajić Liebig je 1842. godine utvrdio postojanje tri glavne grupe sastojaka ži v o g s v e

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Lipidi? sva jedinjenja nerastvorljiva u vodi, a rastvorljiva u organskim rastvaračima 1. Slobodne masne kiseline 2. Triacilgliceridi -masti -ulja 3. Voskovi 4. Fosfolipidi 5. Steroli -glikolipidi -sfingolipidi

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα