Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας



Σχετικά έγγραφα
Ανάλυση ΓΧΑ Συστημάτων

Ψηφιακή Επεξεργασία Σημάτων

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

HMY 220: Σήματα και Συστήματα Ι

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

HMY 220: Σήματα και Συστήματα Ι

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

HMY 220: Σήματα και Συστήματα Ι

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα ΙΙ

HMY 220: Σήματα και Συστήματα Ι

y[n] ay[n 1] = x[n] + βx[n 1] (6)

Συστήματα Αυτόματου Ελέγχου

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων

HMY 220: Σήματα και Συστήματα Ι

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

HMY 220: Σήματα και Συστήματα Ι

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Σήματα και Συστήματα

Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

x[n] = x[n] = e j(k+rn)ωon = cos(k 2π N n + r2πn) + jsin(k 2π N n + r2πn) = cos(k 2π N n) + jsin( 2π N x[n] e j 2π N n = e j(k r) 2π N n = (2.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

X(e jω ) = x[n]e jωn (1) x[n] = 1. T s

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z

HMY 220: Σήματα και Συστήματα Ι

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

HMY 220: Σήματα και Συστήματα Ι

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Εισαγωγή στις Τηλεπικοινωνίες

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ψηφιακή Επεξεργασία Σημάτων

Επικοινωνίες στη Ναυτιλία

Ψηφιακή Επεξεργασία Σημάτων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.

HMY 220: Σήματα και Συστήματα Ι

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Ψηφιακή Επεξεργασία Σημάτων

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς

27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής.

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Σήματα και Συστήματα ΙΙ

HMY 220: Σήματα και Συστήματα Ι

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Διάλεξη 7. Μετασχηματισμός Hilbert. Κεφ. 11 (εκτός 11.0 και ) Για κάθε συνάρτηση ισχύει. Αν η συνάρτηση είναι αιτιατή (causal)

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

Σήματα και Συστήματα ΙΙ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Μετασχηµατισµός Ζ (z-tranform)

x[n] = x[k]δ[n k]. (13.1) x[n] = 2δ[n] 4δ[n 1] + 1 δ[n 4] (13.2) y[n] = 2x[n 1] x[n 2] + x[n 3], (13.3) h[n] = 2δ[n 3] 3δ[n 4] + 0.6δ[n 5]. (13.

Ψηφιακή Επεξεργασία Σημάτων

Ημιτονοειδή σήματα Σ.Χ.

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΕΣ. Ψηφιακή Επεξεργασία Σήματος. Σημειώσεις από τις παραδόσεις*

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Transcript:

University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient Difference Equations) Ένας 2 ος τρόπος αναπαράστασης ΓΧΑ συστημάτων (αντί της συνέλιξης με την κρουστική απόκριση) Χρήσιμος στην υλοποίηση των συστημάτων Ανάλογος των διαφορικών εξισώσεων στα συστήματα συνεχούς χρόνου Accumulator 2 1

Συστήματα Εξισώσεων Διαφορών Ηλύσηδενείναιμοναδική Ομογενής λύση (homogeneous solution) + βεβιασμένη απόκριση (forced response) Μοναδική μόνο με κάποιες βοηθητικές συνθήκες (auxiliary conditions) Χρειάζονται Ν βοηθητικές συνθήκες Αυτές οι συνθήκες καθορίζουν κατά πόσο ένα σύστημα είναι ΓΧΑ και αιτιατό Αν το σύστημα βρίσκεται σε κατάσταση ανάπαυσης αρχικά (initial rest) τότε θα είναι όλα τα πιο πάνω yn [ ] = y[ n] + y[ n] N k = 0 p ay[ n k] = 0 k h h 3 Συστήματα Εξισώσεων Διαφορών Ηλύσηδενείναιμοναδική Αν είναι γνωστές μια σειρά από τιμές εξόδου μπορούμε να καθορίσουμε τη λύση με αναδρομικές (recursive) εξισώσεις Παράδειγμα yn [ ] = ayn [ 1] + xn [ ] x[ n] = Kδ[ n], y[ 1] = c Είναι ΓΧΑ και αιτιατό; Δεν είναι Γ Δεν ισχύει η αναλογικότητα για x[n]=0 Δεν είναι ΧΑ x 1 [n] = Kδ[n-n 0 ] y 1 [n] y[n] Δεν είναι αιτιατό y[n-1]=a -1 [y[n]-x[n]] y[0] = ac+ K 2 y[1] = ay[0] + 0 = a( ac+ K) = a c+ ak 2 3 2 y[2] = ay[1] + 0 = a( a c+ ak) = a c+ a K 3 2 4 3 y[3] = ay[2] + 0 = a( a c+ a K) = a c+ a K... n+ 1 n [ ] for n 0 yn = a c+ ak 1 yn [ 1] = [ yn [ ] xn [ ]] a [ 2] = ( [ 1] [ 1]) = ( + 0) = 1 1 1 y a y x a c a c y = a y x 1 [ 3] ( [ 2] [ 2] 1 1 2 a a c a c 1 1 2 3 y[ 4] = a ( y[ 3] x[ 3]) = a ( a c+ 0) = a c... yn a c n+ 1 [ ] = for n -1 yn a c Kaun n+ 1 n [ ] = + [ ] for all n ) = ( + 0) = 4 2

Σε ΓΧΑ συστήματα Μιγαδικές εκθετικές συναρτήσεις είναι ιδιοσυναρτήσεις του συστήματος Είσοδος ημιτονοειδής έξοδος ημιτονοειδής με ίδια συχνότητα (πλάτος και φάση καθορίζονται απότοσύστημα) Χρήσιμος ο μετασχηματισμός Fourier Οι ιδιοτιμές H(e jω ) ονομάζονται απόκριση συχνότητας (frequency response) Είναι συνήθως μιγαδική 5 Παράδειγμα Απόκριση συχνότητας του ιδανικού συστήματος καθυστέρησης (ideal delay system) yn [ ] = xn [ n] hn [ ] = δ[ n n] d d Μέθοδος 1 xn [ ] = e jωn Μέθοδος 2 jωn ω( d ) { } yn [ ] = T e j = e n n jωnd = e e jω He ( ) = e jωnd jω He ( ) = hke [ ] k = jωk jωn jω jωk jωnd He ( ) = δ[ k n] e = e k = d 6 3

Η απόκριση συχνότητας ΓΧΑ συστημάτων διακριτού χρόνου Είναι πάντα περιοδική με συχνότητα ω και περίοδο 2π Καθορίζεται μόνο μεταξύ π < ω π Οι ψηλές συχνότητες βρίσκονται γύρω από το 0 Οι χαμηλές συχνότητες γύρω από το ±π Έξοδος ημιτονοειδής με ίδια συχνότητα (πλάτος και φάση καθορίζονται από το σύστημα) 7 Ιδανικά φίλτρα επιλογής συχνοτήτων (ideal frequency selective filters) 8 4

Απόκριση (Frequency response) Πολλά σήματα μπορούν να καθοριστούν ως ένα άθροισμα μιγαδικών εκθετικών Αν αυτό ισχύει, το σήμα εξόδου y[n] καθορίζεται από την απόκριση συχνότητας Μετασχηματισμός Fourier Αντίστροφος Μετασχηματισμός Fourier ω συνεχής μεταβλητή n διακριτή μεταβλητή Ο μετασχηματισμός Fourier είναι συνήθως μιγαδικός (πλάτος & φάση) Το x[n] αποτελείται από πολλά μικροσκοπικά μιγαδικά ημιτονοειδή 9 Μετασχηματισμός Fourier Είναι συνήθως μιγαδικός (πλάτος & φάση) Είναι περιοδικός με περίοδο 2π Αν το x[n] αθροίζεται (absolutely summable) τότε ο μετασχηματισμός Fourier καθορίζεται και υπάρχει (exists) 10 5

Ιδανικό βαθυπερατό φίλτρο (ideal low pass filter) Μη-αιτιατό Δεν αθροίζεται Το πεπερασμένο (finite) άθροισμα είναι σημαντικό στο σχεδιασμό φίλτρων διακριτού χρόνου 11 Μετασχηματισμός Fourier σταθεράς 12 6

Συμμετρικές ιδιότητες του μετασχηματισμού Fourier Συζυγής Συμμετρική Σειρά (conjugate-symmetric sequence) Συζυγής Αντι-συμμετρική Σειρά (conjugateantisymmetric sequence) 13 Συμμετρικές ιδιότητες του μετασχηματισμού Fourier 14 7

Γραμμικότητα μετασχηματισμού Fourier Μετατόπιση στο χρόνο και στη συχνότητα Αντιστροφή στο χρόνο Παράγωγος 15 Θεώρημα του Parseval Ε=ενέργεια Θεώρημα Συνέλιξης Θεώρημα διαμόρφωσης (modulation) ή παράθυρου (windowing) 16 8

Μετασχηματισμοί κάποιων συναρτήσεων 17 Παράδειγμα 18 9

Παράδειγμα 19 10