ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

Σχετικά έγγραφα
ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

αβ (, ) τέτοιος ώστε f(x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

x είναι f 1 f 0 f κ λ

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΘΕΜΑ A. Θεωρούµε τη συνάρτηση f:r R ώστε να ισχύει f(+f())=+f() για κάθε R. Να αποδείξετε ότι α. Η f είναι β. f(0)= και f() 0. (Μονάδες 0) Β. Έστω συν


Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

και γνησίως αύξουσα στο 0,

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ΛΥΣΕΙΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

lim f ( x ) 0 gof x x για κάθε x., τότε

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

1 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 4 ΝΟΕΜΒΡΙΟΥ 2018 ΑΠΑΝΤΗΣΕΙΣ. x 1 x 1 x 1

ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤ. Β ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2012

5o Επαναληπτικό Διαγώνισμα 2016

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Transcript:

Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει για, Επιπλέον η συνάρτηση h είναι γνησίως μονότονη άρα και -. Έτσι έχουμε: "" h ln h f ln f και ln f f Θα βρούμε τη μονοτονία της f Έστω, D, f Επιπλέον με ln () 0 για κάθε άρα f ln με, ln. και ln ln,,ln,ln είναι θετικά για κάθε, μέλη των σχέσεων () και () έχουμε :. άρα με πολλαπλασιασμό κατά ln ln ln ln ln f f Επομένως η f είναι γνησίως αύξουσα άρα και -.

Γ. Έχουμε την ανίσωση ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ln 3 4 3 ln 5 με 5 0 3 4 0 αν, οπότε η ανίσωση γίνεται: 3 ln 3 4 ln 3 4 ln 5 ln 5 3 3 54 5 ln 3 4 ln 3 4 5 3 4 3 4 ln 5 ln 5 και Άρα 5 3 4 ln 5 5 ln 5 0 και 3 3 3 4 0 για κάθε ln 3 4 ln 5, 3. 5 3 4 l n 5 ln 3 4 5 3 4 ln 5 ln 3 4 f 5 f 3 4 f 5 3 4 3 0 3 Τελικά η ανίσωση έχει λύση τις κοινές λύσεις των 3 3, 3 Γ3. i. Η f είναι. Άρα αντιστρέφεται με D f,, θα λυθεί στο f Έχουμε :,. f. Επομένως η εξίσωση f f f f ln ln 0 F 0 Από παρατήρηση ισχύει F ln 0 άρα το ρίζα της εξίσωσης και επειδή η συνάρτηση F είναι γνησίως μονότονη θα είναι -. Επομένως το είναι μοναδική ρίζα της εξίσωσης F 0 f.

ii. α. H F είναι γνησίως μονότονη από υπόθεση. Έστω ότι είναι γνησίως φθίνουσα οπότε για F F 0 Άτοπο. Άρα η συνάρτηση F είναι γνησίως αύξουσα. β. Ισχύει F F F ( ) F f F f **f f f f f F F για κάθε,. ** Θα αποδείξετε ότι αν f είναι γνησίως αύξουσα τότε και η f είναι επίσης γνησίως αύξουσα. Απόδειξη Έστω f : A γνησίως αύξουσα συνάρτηση. Έστω y,y f A με y y τότε υπάρχουν,a τέτοια ώστε και f y f y f y f y. () f.. () Έχουμε : y y f f f y f y άρα η () () f είναι γνησίως αύξουσα.

Λύση (ΘΕΜΑ ο ) Δ. Αφού το 0, έχουμε 0 w i 0 w i 8 8 f 0 0 4 4 και, τότε f f 0 3 f 3 z 5 3 4 z 5 4 z 5 Επομένως ο γεωμετρικός τόπος των εικόνων του μιγαδικού z είναι κύκλος με κέντρο Κ(5,0) και ακτίνα ρ=.έχει εξίσωση C : 5 y Δ. Με δεδομένο ότι υπάρχει δ>0 τέτοιο ώστε η περιοχή,, να ανήκει στο πεδίο ορισμού της συνάρτησης f που είναι το για να υπάρχει το limf lim f lim f. w i w i 8 θα πρέπει να ισχύει Έχουμε : lim f lim f lim lim z 5 4 w i w i 8 ( ) w i w i 8 ( z 5 ) 0 4 3 w i w i 8 0 w i w i 8 Έστω τα σημεία Ε(0,) και Ε (0,-). Γνωρίζουμε ότι τα w i, w i εκφράζουν τις αποστάσεις της εικόνας Μ του w από τα σημεία Ε και Ε. Αλλά ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και ίσο με α, με ΕΕ <α δηλαδή ME ME 8είναι έλλειψη με εστίες τα σημεία Ε και Ε και μεγάλο άξονα το α. Αφού 0 0 4 8 από τη σχέση w i w i 8 προκύπτει ότι ο γεωμετρικός τόπος του w είναι έλλειψη με εστίες Ε και Ε. Άρα γ= και μεγάλο άξονα 8 4 Επομένως 6 4 3 Άρα η εξίσωση της έλλειψης y C : γίνεται y C :. 6

Δ3. ος Τρόπος Ισχύει πως limf 3 lim f 0 επομένως και Άρα είναι καλώς ορισμένο το Έχουμε : f f f f lim lim f f f 39 3 0 και lim f 3 0 έχουμε απροσδιόριστη μορφή 0 0. f 0 κοντά στο. Επομένως για να άρουμε την απροσδιοριστία θα πρέπει να βγάλουμε την απόλυτη τιμή και να πολλαπλασιάσουμε με τη συζυγή παράσταση του παρονομαστή. Ισχύει lim f f 39 6 0 οπότε και Άρα f f f f ος Τρόπος Αν επομένως το όριο γίνεται : f f 0 κοντά στο. f f f f f f f 3f lim lim lim f f f f f 3 f 3f f f f 3 f lim lim f f f lim f 3 f 3 3 3. τότε η συνάρτηση f έχει τύπο lim f f f. Έτσι σε μια περιοχή του το ζητούμενο όριο γίνεται: lim 4 lim lim 4 3

Είναι : 4 και lim 3 0 lim 0 έχουμε απροσδιόριστη μορφή 0 0 Επομένως για να άρουμε την απροσδιοριστία θα πρέπει να βγάλουμε τις απόλυτες τιμές και να παραγοντοποιήσουμε αριθμητή και παρονομαστή. Έχουμε : lim 3 6 0 άρα και 4 3 0 κοντά στο. 4 Επομένως 4 4 3 3 και lim 0 άρα και >0 κοντά στο. Επομένως Έτσι το όριο γίνεται: lim lim 4 4 3 3 lim Για τον αριθμητή : 4 4 3 5 4 lim Σχήμα Hornr με το 0 5 0 4 4 4 0 4 3 Έτσι έχουμε 5 4 lim 4 5 4 lim και το όριο γίνεται: 3 3 lim 3 Δ4. Για να βρούμε το πεδίο ορισμού της g θα πρέπει να βρούμε τα z και z w. min ma

y Α(0,4) Ε(0,) Ο Γ Κ(5,0) Δ Ε (0,-) Α (0,-4) Έχουμε ma z d, 5 4 και min z w 5 3 6 3 Έτσι D / 8 z z w 4 3 / 8 4 (6 3) 4 3 g min ma / 4 3 4 3 /, Δ5. Αφού η συνάρτηση f είναι - επομένως αντιστρέφεται με D gdg g. Η συνάρτηση k g είναι καλώς ορισμένο. έχει πεδίο ορισμού το D έτσι το όριο lim g k 0 Επιπλέον g D, άρα πεδίο ορισμού της. g g g για κάθε στο

ος Τρόπος g g Είναι: g για κάθε. Επιπλέον έχουμε ότι: 0 0 lim 0 0 0 0 0 lim 0 0 0 επομένως σύμφωνα με το κριτήριο παρεμβολής ισχύει ος Τρόπος Ισχύει πίνακα : lim g 0 0 g και επιπλέον το πρόσημο της παράστασης φαίνεται στον - 0 + + + () + + + + + + + πηλίκο + + Αν >0 κοντά στη περιοχή του 0 δηλαδή 0,, όπου 0 αρκούντως μικρό Τότε 0 έτσι g

Επιπλέον έχουμε ότι: 0 0 lim 0 0 0 0 lim 0 0 0 0 Επομένως σύμφωνα με το κριτήριο παρεμβολής και lim g 0 0 Αν <0 κοντά στη περιοχή του 0 δηλαδή,0, όπου 0 αρκούντως μικρό Τότε 0 έτσι g. 0 0 lim 0 0 0 0 lim 0 0 0 0 Επομένως σύμφωνα με το κριτήριο παρεμβολής και lim g 0 0 lim g lim g 0 Τελικά αφού 0 0, τότε και lim g 0 0