Dolžina (= velikost, = absolutna vrednost, = norma) vektorja je dolžina daljice, ki predstavlja vektor, t.j.:



Σχετικά έγγραφα
B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka

Dani vektor lahko ponazorimo z usmerjeno daljico, ki se začne v poljubni točki - pravimo tudi, da vektor vzporedno premaknemo v dano začetno točko.

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Gimnazija Krˇsko. vektorji - naloge

1 Ponovitev matematike za kemijske inženirje

Olga Arnuš Mirjam Bon Klanjšček Bojana Dvoržak Darjo Felda Sonja France Mateja Škrlec MATEMATIKA 2

Matematika I. NTF Načrtovanje tekstilij in oblačil Zapiski ob predavanjih v šolskem letu 2006/07

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

Analiza I. Josip Globevnik Miha Brojan

Tretja vaja iz matematike 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

II. ŠTEVILSKE IN FUNKCIJSKE VRSTE

REŠITVE 1 IZRAZI 1.1 PONOVITEV RA»UNANJA Z ALGEBRSKIMI IZRAZI 1.2 KVADRAT DVO»LENIKA 1.3 PRODUKT VSOTE IN RAZLIKE DVEH ENAKIH»LENOV

LESARSKA ŠOLA MARIBOR M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 2009/2010

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Vaje iz MATEMATIKE 2. Vektorji

Skrivnosti πtevil in oblik 8 PriroËnik. za 8. razred osnovne πole

Izbrana poglavja iz matematike

Skrivnosti πtevil in oblik 9 PriroËnik. za 9. razred osnovne πole

Booleova algebra. Izjave in Booleove spremenljivke

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

1 3D-prostor; ravnina in premica

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Pravokotni koordinatni sistem; ravnina in premica

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

4. Trigonometrija pravokutnog trokuta

FKKT Matematika 2. shxdx = chx+c. chxdx = shx+c. tanxdx = ln cosx +C. cotxdx = ln sinx +C. sin 2 x = cotx+c. cos 2 x = tanx+c. = 1 2 2a ln a+x a x

Kotne in krožne funkcije

DOMAČA NALOGA pri predmetu Statika in Kinematika

I. INTEGRIRANJE FUNKCIJ

MATEMATIKA III Zapiski za ustni izpit

ANALIZA 2. Zapiski predavanj. Milan Hladnik

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Lastne vrednosti in lastni vektorji

POGLAVJE 7. Nedoločeni integral. 1. Definicija, enoličnost, obstoj

1 Seštevanje vektorjev in množenje s skalarjem

Rijeseni neki zadaci iz poglavlja 4.5

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

Vektorski prostori s skalarnim produktom

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

vsota je komutativna, asociativna,skalarno množenje pa distributivno če obstaja tak skalar,da velja a = cb in b = ca, ter če velja da so n

GEOMETRIJA V RAVNINI DRUGI LETNIK

PONOVITEV SNOVI ZA 4. TEST

Kotni funkciji sinus in kosinus

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Matematika 4 Zapiski s predavanj prof. Petra Legiše

KUPA I ZARUBLJENA KUPA

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Metode rješavanja izmjeničnih krugova

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

Το άτομο του Υδρογόνου

INŽENIRSKA MATEMATIKA I

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

1.PRIZMA ( P=2B+M V=BH )

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

Splošno o interpolaciji

IZPIT IZ ANALIZE II Maribor,

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

F(x) = f(x) dx. Nedoločenega integrala velikokrat ne moremo zapisati kot kombinacijo elementarnih funkcij, kot na primer integrale sin x

NEKAJ TEORETIČNIH OSNOV IN PRAKTIČNIH PRIMEROV ZA UPORABO RAVNOTEŽNIH POGOJEV ZA RAČUN PREVRNITVE TELES, REAKCIJ IN NOTRANJIH SIL.

MEHANIKA FLUIDA. Isticanje kroz velike otvore

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Numerično reševanje. diferencialnih enačb II

Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

Αλληλεπίδραση ακτίνων-χ με την ύλη

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Reševanje sistema linearnih

1 Fibonaccijeva stevila

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

2.6 Nepravi integrali

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

Jože Berk, Jana Draksler in Marjana Robič. Skrivnosti števil in oblik. Rešitve učbenika v 7. razredu osnovne šole

#%" )*& ##+," $ -,!./" %#/%0! %,!

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Transcript:

vektorji ) OSNOVNE DEFINIIJE Krjišči dljie, npr, st enkovredni. Tudi, če i zpisli i vedeli, d govorio o isti dljii. Če p krjišče do rzlični vlogi, eneu reio zčetek, drugeu p kone, doio nov geoetrijski ojekt, vektor. S tei ojekti se oo ukvrjli n nslednjih strneh. Definiij Vektor = je userjen (orientirn) dlji. Točko ienujeo zčetek, točko p kone vektorj. Preio, ki vseuje dljio, ienujeo nosilk vektorj. = nosilk Vektor nič ( 0) Vektor, ki i zčetek in kone v isti točki, je vektor nič. 0 =. Nsprotni vektor ( ) Z dni vektor = ienujeo vektor = nsprotni vektor in to oznčio: Dolžin vektorj ( ) =. Dolžin (= velikost, = solutn vrednost, = nor) vektorj je dolžin dljie, ki predstvlj vektor, t.j.: =. Kolinernost = vzporednost Vektorj in st kolinern li vzporedn, če st njuni nosilki vzporedni preii. Istosiseln vektorj Kolinern vektorj in D it isti sisel ( D)ntnko tedj, ko ostj rvnin Π, d velj: Π je prvokotn n nosilki vektorjev in D, poltrk (;) in (;D) ležit n isti strni rvnine Π. Če tk rvnin Π ne ostj, st kolinern vektorj nsprotno siseln ( D). 1

D E N sliki st in D istosiseln, in EF p nsprotno siseln. Π F Enkost Vektorj in st enk ntnko tedj, ko: 1. =, t.j.: vektorj st enko dolg, 2. it isto ser, t.j. njuni nosilki st vzporedni preii, 3. it isti sisel ( ). Povzeio: Vektor je ntnko določen z: dolžino, serjo, sislo. 1 E D N desni sliki so v prvilne šestkotniku prikzni štirje enki vektorji (, FS, S, ED). F S ) RČUNSKE OPERIJE Oznčio nožio vseh vektorjev z V, nožio relnih števil R p ienujo noži sklrjev. Z eleenti nožie vektorjev in nožie sklrjev definiro nslednje rčunske operije: 1. Seštevnje: + Rezultt seštevnj (vsot) je vektor. Če si vektor predstvljo kot pot, ki jo zčneo v in končo v, kot pot iz v, je seštevek (rezultt) + oeh poti pot iz v, t.j. vektor. Vsoto lhko pridelo n dv nčin: Trikotniško prvilo V kone vektorj postvio zčetek vektorj. Vsot je vektor, ki i zčetek v zčetku vektorj, kone p v konu vektorj. + 1 Tko definirn enkost vse vektorje v prostoru rzdeli n nožio rzredov; učeno ji prvio ekvivlenčni rzredi. V vske rzredu je rez števil enkih vektorjev. Tudi pri ulokih so postopli podono. V nožii vseh urejenih prov elih števil (, ) = Z Z\{0} 1 so enkost definirli: (, ) = (, d) d =. Enke uloke, npr. 2, 2 4, 3,..., združio v rzrede, 6 rzred p ienujeo rionlno število. 2

Prlelogrsko prvilo Zčetk oeh vektorjev in postvio v skupen zčetek. Vsot je digonl prlelogr, ki g tvorit vektorj = in = D. Seštevnje v oeh prierih dá isti rezultt. trikotniško v. D + V prlelogrske prvilu ugledo Tudi kouttivnost vsote + = + preereo iz prlelogrskeg prvil; enkrt seštevo v spodnje trikotniku, drugič p v zgornje D. soitivnost vsote, t.j.: ( + ) + = + ( + ) pokže slik n desni. ++ + + Vektor 0 i vlogo nevtrlneg eleent z seštevnje, sj + 0 = + = =. Vektor i vlogo nsprotneg eleent z seštevnje, sj + ( ) = + = = 0. 2-2. Odštevnje: Odštevnje, tko kot pri številih, definiro kot prištevnje nsprotneg eleent: = + ( ). Krjevni in prosti vektorji - (-)+=- Izerio v prostoru točko O. Glede n O rzdelio vse vektorje v prostoru n: 2 V strktnih vektorskih prostorih se kouttivnost in soitivnost seštevnj, ostoj nevtrlneg eleent in nsprotneg eleent privzejo kot ksioi. 3

krjevne; to so tisti, kterih zčetek je v O, kone p v točki, ki jo pokžejo (zto krjevni), proste; to je tiste, kterih zčetek ni v O. N sliki st in krjevn, in d p prost vektorj. d Vsk prosti vektor, npr., lhko zpišeo s krjevni vektorje kon in zčetk: O = O O. O 3. Množenje vektorj s število (sklrje): Nj V in R. Rezultt noženj vektorj s število je vektor, z ktereg velj: () = (dolžin se poveč li znjš z fktor ), () (vektor i isto ser (je vzporeden) vektorju ), (), če je > 0 in, če je < 0. N spodnji sliki st z dni vektor prikzn vektorj 2 in 5 3. -(5/3) 2 Lstnosti noženj vektorj s število 1. distriutivnost v seštevnju vektorjev: ( + ) = +, 2. distriutivnost v seštevnju sklrjev: ( + n) = + n, 3. hoogenost: (n ) = (n), 4. 1 =. Lstnost 1 privzeo kot ksio, ostle p dokžeo. Npr. lstnost 2: Oznčio levo strn L, desno p D. Dokzujeo L = D. Preverjo: ser. L in D it o ser vektorj, zto it isto ser; sisel. Če je > 0 in n > 0, je L D (podono pokžeo ostle ožnosti: < 0, n < 0; > 0, n < 0 in + n > 0; > 0, n < 0 in + n < 0, 4

dolžin. Vzeio spet > 0 in n > 0. Tedj: L = ( + n) = + n = ( + n ) = + n = D. Ostle ožnosti pri lstnosti 2 pokžeo podono, prv tko tudi ostli lstnosti 3 in 4. ) PREPROSTE POSLEDIE Enotski vektor Nj o poljuen neničelen vektor in njegov dolžin. Vektor 0 = 1 ienujeo enotski vektor vektorj. Vektor 0 i isto ser in sisel kot, njegov dolžin p je 1. Zto je : = 0. Kolinerni (vzporedni) vektorji Vzeio snop vzporednih prei. Nj v snopu ležit neničeln vektorj in. o Njun enotsk vektorj 0 in 0 se rzlikujet kvečjeu v sislu. Zto je odisi 0 = 0, odisi 0 = 0. Vzeio prvo ožnost. Tedj 0 = 0 1 = 1 =. Povzeio: Če st neničeln vektorj vzporedn, lhko eneg izrzio z drugi, t.j.: ostj R, d velj : =. 3 o Koplnrni (li koplnrni) vektorji Nj o Π rvnin. V njej izerio nekolinern vektorj in. O Π 3 Število je ntnko določeno, sj, če i ostjlo še eno število, npr tko, d je =, i odkrili:( ) = 0, kr p pri neničelne vektorju gre le, če je =. 5

Vzeio še tretji vektor, ki leži v rvnini Π. Vektorje, in postvio v skupno zčetno točko O. V konu vektorj postvio dve vzporednii, eno vzporedno vektorju in drugo vzporedno vektorju. Vzporednii sekt nosilki vektorjev in v točkh in (gornj slik). Vektor je pote enk vsoti vektorjev O in O. Tod vektorj O in O st kolinern z vektorje in, zto ostjt števili in n, d je O = in O = n. Števili in n st ntnko določeni. To pokžeo tkole: Nj o = + n in = + n. Pote je + n = + n ( ) = (n n). Ker st in nekolinern, zdnj enč velj le, če je = in n = n. Pokzli so: Če so vektorji, in koplnrni in, nekolinern, ostjt ntnko določeni relni števili in n, d je: Vektorji v prostoru V prostoru iejo tri nekoplnrne vektorje, reio, in. Nj o d vektor teg prostor. Vektorje postvio v skupen zčetek O. = + n. V konu T vektorj d postvio vzporednio k nosilki vektorj. T nj preode rvnino Π vektorjev in v točki P. Postvio v konu d še eno vzporednio; tokrt nj o vzporedn vektorju OP. T sek nosilko vektorj v točki R. Pote je: d = OP + PT. Vektor OP leži v rvnini vektorjev in, vektor PT p je vzporeden vektorju. Zto ostjjo ntnko določen števil, n in p, d je: d = + n + p. Povzeio: Če so, in trije nekoplnrni vektorji in d poljuen vektor v prostoru, ostjjo ntnko določen reln števil, n in p, d velj: O d = + n + p. R d P T Π D) LINERN KOMINIJ IN LINERN ODVISNOST VEKTORJEV Poglejo ugotovitve o kolinernih, koplnrnih in nekoplnrnih vektorjih še lgerjsko. Zčnio z definiji: Definiij 1 : Nj odo x 1, x 2,..., x n vektorji prostor V, 1, 2,..., n p reln števil iz prostor sklrjev. Vektor: 1 x 1 + 2 x 2 + + n x n ienujeo linern koinij vektorjev x 1, x 2,..., x n s koefiienti 1, 2,..., n. Vektor 1 3 + 3 je linern koinij vektorjev,, s koefiienti 1 3, 1, 3, vektor 2 p je linern koinij vektorjev,, s koefiienti 2, 0, 1. 6

Definiij 2 : Če je 1 x 1 + 2 x 2 + + n x n = 0, ienujeo linerno koinijo 1 x 1 + 2 x 2 + + n x n ničeln linern koinij. Če izereo v linerni koiniji vse koefiiente enke 0, postne koinij ničeln. Ostjjo p ničelne linerne koinije, ki nijo vseh koefiientov enkih 0. N desni sliki je = +, zto je + = 0 ničeln koinij, ki ni vseh koefiientov enkih 0. Definiij 3 : Ničelno linerno koinijo, ktere vsi koefiienti so enki 0, ienujeo triviln ničeln koinij. Definiij 4 : Vektorji x 1, x 2,..., x n so linerno neodvisni ntnko tkrt, ko je le njihov triviln koinij ničeln, t.j.: 1 x 1 + 2 x 2 + + n x n = 0 1 = 2 = n = 0. Če vektorji x 1, x 2,..., x n niso linerno neodvisni, so linerno odvisni. Ndljujo z nekj trditvi. Trditev 1 : Neničeln vektorj st kolinern ntnko tedj, ko st linerno odvisn. Dokz: ( ) Nj ost in kolinern. Pote ostj število λ, d je = λ. Tedj: = λ λ = 0. Zdnj koinij je ničeln, njen koefiient p ne o enk 0. Zto st in odvisn. ( ) Nj ost in linerno odvisn. Pote ostj njun netriviln ničeln koinij, npr. λ + µ = 0. Vzeio λ 0. Tedj: = µ λ, zto je vzporeden (kolineren) vektorju. Podono pokžeo: Trditev 2 : Trije neničelni vektorji so koplnrni ntnko tedj, ko so linerno odvisni. Nslednj trditev je znčiln z prostor nših vektorjev. 4 Trditev 3 : Štirje neničelni vektorji so linerno odvisni. Res, z štiri vektorje,, in d v prostoru so pokzli, d eneg lhko izrzio z ostlii trei, npr. d = + n + p, zto je d n p = 0 netriviln ničeln koinij, torej so,, in d linerno odvisni. S trditvijo 3 so v resnii pokzli še več: Trditev 4 : Če je n > 4, so neničelni vektorji x 1, x 2,..., x n linerno odvisni. 4 nš vektor je userjen dlji 7

Res, izereo poljune štiri, ki so po trditvi odvisni, npr. x 1, x 2, x 3, x 4. Zto 1 x 1 + 2 x 2 + 3 x 3 + 4 x 4 = 0 in vsj eno od števil 1, 2, 3, 4 ni enko 0. Pote p je 1 x 1 + 2 x 2 + 3 x 3 + 4 x 4 + 0 x 5 +... 0 x n = 0 netriviln ničeln koinij vektorjev x 1, x 2,..., x n, zto so odvisni. Povzeio: V prostoru nših vektorjev V velj z podnožio { x 1, x 2,..., x n } neničelnih vektorjev x i : Če je n = 2, st vektorj x 1, x 2 linerno neodvisn ntnko tedj, ko nist kolinern, če je n = 3, so vektorji x 1, x 2, x 3 linerno neodvisni ntnko tedj, ko niso koplnrni, če je n 4, so vektorji x 1, x 2,..., x n linerno odvisni. Končjo poglvje z opiso ze: Množi vektorjev { e 1, e 2,..., e n } je z, če: so vektorji e 1, e 2,..., e n linerno neodvisni in poljuen vektor x lhko zpišeo z linerno koinijo vektorjev e 1, e 2,..., e n. Prieri z: Nj o P noži vseh vektorjev, ki so vzporedni dni preii p. nožie P neničelen vektor iz te nožie. Pote je z Če je R noži vseh vektorjev v dni rvnini Π, zo te nožie sestvljt dv nekolinern vektorj rvnine Π. Oičjno z zn vektorj izereo ortonorirn vektorj, t.j. edseoj prvokotn enotsk vektorj, ki ju oznčio z i in j. Še prostor si oglejo. Nučili so se, d v prostoru vsk vektor lhko izrzio s trei izrnii nekoplnrnii vektorji. Trije nekoplnrni vektorji so linerno neodvisni, zto z njii lhko sestvio zo prostor. Oičjno izereo tri, edseoj prvokotne, enotske vektorje i, j in k. E) PRIMERI UPORE Uporo si oglejo n nekj prierih. 1. N nosilki vektorj = leži tk točk T, d je: T : T = : n. Izrzi vektor T z vektorje. T n Ker je T kolineren z, ostj relno število λ, d je T = λ. dolžin vektorjev T in, kr ugledo v: Število λ je rzerje T = λ = λ λ = T. Dolžin eri + n (li: ( + n) x) enot, dolžin T eri (li x) enot, zto je λ = +n in: T = +n. 8

2. V trikotniku leži n strnii točk D, ki deli strnio v rzerju: D : D = : n. Izrzi vektor D z vektorje = in =. n D V rezulttu prejšne nloge ugledo: D = D = + D = + = + + n +n. Tedj: + n ( + ) = n + n + + n. Pokzli so: D = n +n + +n. Če je D težiščni, je = n = 1 in D = 1 2 + 1 2. 3. Pokži, d se težiščnie trikotnik: () sekjo v skupni točki (težišču), npr. T, in d () točk T rzdeli poljuno težiščnio v rzerju 2 : 1 z del od oglišč do težišč. Pokžio njprej drugi del. Uporili oo dejstvo, d lhko vsk vektor rvnine n en s nčin zpišeo z dve nekolinerni vektorje te rvnine. To poeni, če je = + n in = + n, je = in n = n, če st le in nekolinern. Z nekolinern vektorj oo izrli vektorj = in =. Uporili oo tudi rezultt prejšne nloge z težiščnie, t.j.: D = 1 2 +1 2 in E = 1 2 ( )+1 2 ( ) = 1 2. E T D - Vektor T oo n dv nčin izrzili z in : 1. nčin: T = D = ( 1 2 + 1 2 ) = 2 + 2, 2. nčin: T = + T = + n E = + n( 1 2 ) = (1 n) + n 2. Ustrezni števili pri in ort iti enki, zto: 2 = 1 n in 2 = n 2 in = n = 2 3. Odtod: 9

T = 2 D T = 2 3 3 D T : TD = 2 : 1 in T = 2 E T = 2 3 3 E T : TE = 2 : 1. Pokžio še prvi del. Nj prei (,T) sek strnio v točki F. Pokzti oro, d je F težiščni, t.j., d točk F rzpolvlj dljio. Izrzio F n dv nčin z in. E T D - 1. nčin: F = x = x + 0, F 2. nčin: F = T+ TF = 2 3 ( 1 2 + 1 2)+y F = 1 3 + 1 3+y(x ) = ( 1 3 + xy) + ( 1 3 y). Zpišeo ustrezni siste enč: x = 1 3 + xy, 0 = 1 3 y, ki i rešitev x = 1 2 in y = 1 3. Zto je: F = 1 in TF = 1 F, 2 3 kr je ilo tre dokzti. D 4. Pokži, d se digonli prlelogr rzpolvljt. T Z osnovn (zn) vektorj postvio = in = D. N dv nčin izrzio vektor T, kjer je T presečišče digonl. 1. nčin: T = x = x + x, 2. nčin: T = + y D = + y( ) = (1 y) + y. Ustrezni siste enč (x = 1 y, x = y) i rešitev x = y = 1 2, kr je ilo tre pokzti. 10

NDLOGE 1. Vektorj in st linerno neodvisn. Izrčunj število tko, d ost vektorj 2 + in ( ) 1 2 vzporedn. [R: = 3 ] 2. Izrzi vektor = 8 + z vektorje e = 2 3 in f = 3 + 2. [R: = e + 2 f ] 3. V nslednjih nlogh je D prlelogr in = in =. V nlogh izrzi vektor UV z vektorje in. () U : = 1 : 2, V : V D = 2 : 1, UV =? () U : U = 3 : 2, V : V D = 1 : 4, UV =? () U : U = 2 : 1, V : V D = 1 : 4, UV =? 4. V nslednjih nlogh je DEF prvilni šestkotnik in = in = F. V nlogh izrzi vektor UV z vektorje in. () EU : UF = 2 : 1, EV : V D = 2 : 1, UV =? () U : U = 3 : 2, V : V D = 1 : 4, UV =? 5. V nslednjih nlogh je trikotnik in = in =. V nlogh izrzi vektor UV z vektorje in. () U : U = 2 : 3, V : = 4 : 5, UV =? () D je težiščni, U : UD = 1 : 3, V : V = 1 : 4, UV =? 6. V nslednjih nlogh je DEF GH kok(e je nd ) in =, = D in = E. V nlogh izrzi vektor UV z vektorji, in. () U je sredin ploskve EF GH, V je sredin ro G, UV =? () GU : UE = 2 : 1, V : V G = 1 : 2, UV =? 7. Izrčunj rzerji T : T E in T : T D n sliki. T E D D : D = 2 : 3 E : = 1 : 4 11

8. V prlelogru D leži n n digonlid točk U, d velj U : UD = 1 : 3, točk V p je presečišče preie (, U) in preie (, ). V kolike rzerju deli točk V strnio? [Nig: Iskno rzerje je V : V = 2 : 1. Če je =, D =, je npr.: V = in V = nu + 1 D = ( n + 1) + ( 3n 1).] 4 4 4 4 4 9. V tristrni piridi D z osnovno ploskvijo je E težišče ploskve D, točk F p rzpolovišče strnie. Točk X leži n dljii F D tko, d se dljii X in E sekt. V kkšne rzerju deli točk X dljio F D? [R: DX : XF = 2 : 1 ] 10. Kok DEF GH (E je nd ) i središče ploskve GF v točki T. V kkšne rzerju odreže prlelogr F HD dljio T? [R: 2 : 1 ] 12