Projektovanje informacionih sistema 39

Σχετικά έγγραφα
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Operacije s matricama

Teorijske osnove informatike 1

3.1 Granična vrednost funkcije u tački

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

18. listopada listopada / 13

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Relacijski model podataka i osnove relacijske algebre

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Elementi spektralne teorije matrica

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Linearna algebra 2 prvi kolokvij,

ELEKTROTEHNIČKI ODJEL

7 Algebarske jednadžbe

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

1.4 Tangenta i normala

SISTEMI NELINEARNIH JEDNAČINA

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Ispitivanje toka i skiciranje grafika funkcija

Linearna algebra 2 prvi kolokvij,

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

RIJEŠENI ZADACI I TEORIJA IZ

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka

1 Promjena baze vektora

SKUPOVI I SKUPOVNE OPERACIJE

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Funkcije dviju varjabli (zadaci za vježbu)

IZVODI ZADACI (I deo)

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

numeričkih deskriptivnih mera.

Kaskadna kompenzacija SAU

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

Dvanaesti praktikum iz Analize 1

5. Karakteristične funkcije

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

TRIGONOMETRIJSKE FUNKCIJE I I.1.

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

radni nerecenzirani materijal za predavanja

Računarska grafika. Rasterizacija linije

INTELIGENTNO UPRAVLJANJE

Matematička analiza 1 dodatni zadaci

Riješeni zadaci: Nizovi realnih brojeva

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

Dijagonalizacija operatora

Riješeni zadaci: Limes funkcije. Neprekidnost

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

5 Ispitivanje funkcija

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

41. Jednačine koje se svode na kvadratne

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim:

Zadaci iz Osnova matematike

Zavrxni ispit iz Matematiqke analize 1

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Zadaci iz trigonometrije za seminar

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

TRIGONOMETRIJA TROKUTA

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Diskretna matematika. Prof. dr Olivera Nikolić

6 Polinomi Funkcija p : R R zadana formulom

Osnovne karakteristike: Sve se predstavlja relacijama (tabelama) Zasniva se na strogoj matematičkoj teoriji Minimalna redundansa podataka Jednostavno

x n +m = 0. Ovo proširenje ima svoju manu u tome da se odričemo relacije poretka - no ne možemo imati sve...

Svaki red se može jednoznačno odrediti (postoji primarni ključ)

Računarska grafika. Rasterizacija linije

ELEMENTARNA MATEMATIKA 1

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Grafičko prikazivanje atributivnih i geografskih nizova

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Uvod u teoriju brojeva

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

Otpornost R u kolu naizmjenične struje

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Uvod u neparametarske testove

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Transcript:

Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona algebra spada u matematičku oblast teorije skupova, relativno je nova disciplina, i na njoj se bazira relacioni model baze podataka. Operatori relacione algebre dijele se u dvije grupe i to: - osnovni operatori, - operatori pridruživanja. Relacioni operatori su sa stanovišta matematičke teorije operatori visokog nivoa jer operišu sa relacijama, dakle sa skupovima vrijednosti (tabelama), a ne samo sa jednom, i kao rezultat daju opet relaciju skup vrijednosti novu relaciju. E.F.Codd je u svome radu relacione operatore podijelio u dvije grupe i to: - tradicionalne operatore - koji su pogodni za ažuriranje - specijalne operatore - koji su pogodni za izvještavanje. 39

40 Projektovanje informacionih sistema 3.1 Tradicionalni operatori Tradicionalni operatori izvode se nad minimum dvije relacije. To su: 3.1.1 Unija - unija (UNION), - presjek (INTERSECT), - razlika (DIFFERENCE), - proizvod (CARTESIAN PRODUCT). Unija dva skupa, dvije relacije A i B, je relacija koja se sastoji od svih elemenata koji pripadaju relacijama ili A ili B. Svaka relacija je po definiciji skup n-torki, pa je i unija dvije relacije skup n-torki, ali ne mora u opštem slučaju biti i relacija. Relacija, naime, ne smije sadržavati različite tipove n-torki pa se teoretski može napraviti unija od dvije relacije koja ima različite atribute. Rezultat je u tom slučaju tabela, ali nije i relacija. Da se ovo ne bi desilo definišu se i ograničenja koja moraju biti zadovoljena kako bi nad dvije relacije bila izvodljiva operacija unija, a da rezultat pri tome opet bude relacija. Za takve relacije se kaže da su union-kompatibilne. Ta ograničenja su: 1. obje relacije moraju imati iste atribute, 2. isti atributi moraju biti definisani nad istim domenom. Operacija unija nad relacijama A i B simbolički se označava sa: A B. Primjer: Unija dvije relacije A i B: A B ŠIFRA # PREZIME IME TEL. BROJ 3244 Aksentijević Petar 0710 334 952 1772 Maksimović Ilija 015 723 543 40 ŠIFRA # PREZIME IME TEL. BROJ 3244 Aksentijević Petar 0710 334 952 2345 Petrović Dara 081 17 318

Projektovanje informacionih sistema 41 3.1.2 Presjek je relacija (C=A B) sa istim atributima i eliminisanim višestrukim, identičnim, n-torkama dakle: C=A B ŠIFRA# PREZIME IME TEL:BROJ 3244 Aksentijević Petar 0710 334 952 1172 Maksimović Ilija 015 723 543 2345 Petrović Dara 081 17 318 Presjek dvije relacije A i B (označava se sa A B ) je nova relacija koja sadrži sve n-torke koje su zajedničke za obje relacije. U prethodnom primjeru to je telefonski pretplatnik sa šifrom 3244, jer je on prisutan u obje relacije: C = A B ŠIFRA # PREZIME IME TEL. BROJ 3244 Aksentijević Petar 0710 334 952 3.1.3 Razlika Razlika A - B dvaju relacija (razlika se označava i sa A/B ) je nova relacija koja ima iste atribute kao i relacije A i B, a tijelo se sastoji samo od onih n-torki koje se nalaze u relaciji A, a ne nalaze u B. Prema tome za razliku važi pravilo: A B B A. U prethodnom primjeru rezultat razlike bio bi shodno tome: a A B ili (A / B) ŠIFRA # PREZIME IME TEL. BROJ 1772 Maksimović Ilija 015 723543 543 B A ili (B / A) ŠIFRA # PREZIME IME TEL. BROJ 2345 Petrović Dara 081 17318 41

42 Projektovanje informacionih sistema 3.1.4 Proizvod Pojam proizvoda u relacionoj algebri je nešto širi od pojma prostog Dekartovog, odnosno Kartezijevog proizvoda. Naime, Kartezijev proizvod dva skupa A i B, definiše se kao skup uređenih parova u kojem prvi element pripada skupu A, a drugi skupu B. U relacionoj algebri, međutim, uvijek želimo da dobijemo uređen skup n-torki, a ne uređen skup parova, pa se stoga definicija Kartezijevog skupa proširuje na taj način što se umjesto skupa elemenata uzima skup n-torki, pri čemu je svaka tako novodobijena n-torka rezultat spajanja uređenog para n-torki. Treba napomenuti da kod izvođenja proizvoda dvije relacije postoji opasnost da dođe do greške ukoliko te dvije relacije imaju atribute sa istim imenima, a nemaju isto značenje. 42 Ilustracije radi pogledajmo primjer proširenog Kartezijevog proizvoda relacija ALFA i BETA ALFA BETA ALFA*BETA A B C D E a 1 b 1 c 1 d 1 e 1 a 2 b 2 * c 2 d 2 e 2 = a 3 b 3 Ali ako bi željeli da napravimo proizvod relacija: i PROFESOR <šifra#, ime, prezime, zvanje, adresa,... > STUDENT <šifra#, ime, prezime, adresa,...> A B C D E a 1 b 1 c 1 d 1 e 1 a 1 b 1 c 2 d 2 e 2 a 2 b 2 c 1 d 1 e 1 a 2 b 2 c 2 d 2 e 2 a 3 b 3 c 1 d 1 e 1 a 3 b 3 c 2 d 2 e 2 to ne bi bilo moguće, jer se imena atributa (ime, prezime i adresa) ponavljaju. Rješenje u ovakvim slučajevima je u preimenovanju atributa u jednoj od relacija, na primjer u relaciji STUDENT: STUDENT <šifrast#, imest, prezimest, adresast,...>

3.2 Specijalni operatori U specijalne operatore spadaju: 3.2.1 Selekcija Projektovanje informacionih sistema 43 selekcija, projekcija, spajanje, dijeljenje. Selekcija, ili kako se još naziva ograničenje ili restrikcija, izdvaja iz relacije samo one n-torke koje zadovoljavaju zadani kriterijum (uslov), koji je definisan logički. N-torke u kojoj je taj logički uslov zadovoljen, definišu onda novu relaciju. Na primjer, nad relacijom ROBA: ROBA < šifra#, naziv, proizvođač, datum, adresa,...> možemo napraviti selekciju po atributu "adresa", i tako iz relacije ROBA izdvojiti samo one n-torke za koje je vrijednost atributa "adresa" neka unapred zadana, na primjer: adresa = Trebinje Na taj način dobijamo novu, izvedenu relaciju, koja onda mora imati i novo ime. Treba naglasiti da upit kojim se vrši selekcija mora uvijek biti logičan i izvodljiv. U protivnom se selekcija ne može provesti. 3.2.2 Projekcija Projekcija relacije daje novu relaciju koja se sastoji samo od određenih (ili samo jednog) atributa zadane relacije. Rezultat operacije projekcija je podskup izabranih atributa neke relacije sa svim njenim n- torkama. Na primjer: Projekcija relacije ROBA iz malopređašnjeg primjera po atributima šifra#, naziv i adresa proizvođača bila bi: 43

44 Projektovanje informacionih sistema ROBA1 < šifra#, naziv, adresa > a imala bi isti broj n-torki kao i relacija ROBA, s obzirom da ne mogu postojati dvije n-torke u relaciji ROBA sa istom šifrom. Često se dešava da se primjenom projekcije, iz nesmotrenosti, mogu izgubiti neki podaci jer u novonastaloj tabeli mogu da se pojave identične n-torke (što u slučaju selekcije nije moglo da se desi), koje onda u nekim softverskim paketima bivaju bez upozorenja brisane, kako bi dobijeni rezultat ponovo bila relacija. Na primjer, projekcija relacije: STUDENT < broj_ind#, ime, prezime, ime_oca, dat_rod,... > po atributu "broj_ind#" ima sigurno isti broj n-torki kao i relacija STUDENT s obzirom da ne postoje dva studenta sa istim brojem indeksa. Ali, projekcija po atributu "ime" imaće po svoj prilici manji broj slogova jer postoji velika vjerovatnoća da će se pojaviti dva ili više studenta sa istim imenom, pa će u projektovanoj relaciji ostati samo jedno od njih jer se identične n-torke eliminišu. 3.2.3 Spajanje (join) Operacija spajanja ima više podvrsta od kojih su dvije najvažnije: 44 prirodno spajanje, spajanje pod nekim uslovom. Prirodno spajanje relacija A i B daje relaciju AB koja ima sve atribute relacije A, i one atribute relacije B koje nema relacija A. Na primjer, relacije A i B A < x1, x2, x3,...xn, y1, y2,...ym > B < y1, y2,...,ym, z1, z2,...zp > spojene prirodno daju relaciju AB: AB < x1, x2,...xn, y1, y2,...ym, z1, z2,...zp > ili, relacije ALFA i BETA:

Projektovanje informacionih sistema 45 ALFA ŠIFRAD# NAZIV MJESTO d001 Comex Toronto d002 Unita Vancouver d003 Dual Beograd BETA ŠIFRAD# ŠIFRAP# BROJ KOM. d001 p991 324 d002 p678 23 d003 p007 12564 spojene prirodnim spajanjem daju kao rezultat relaciju GAMA GAMA ŠIFRAD# NAZIV MJESTO ŠIFRAP# BROJ KOM. d001 Comex Toronto p991 324 d002 Unita Vancouver p678 23 d003 Dual Beograd p007 12564 Ako relacije koje se prirodno spajaju nemaju nijedan zajednički atribut, onda operacija prirodnog spajanja prelazi u Kartezijev proizvod. Spajanje pod nekim uslovom (Ψ) izvodi se nad relacijama samo onda kada one nemaju nijedan isti atribut. Rezultat spajanja je u tom slučaju Kartezijev proizvod tih relacija koji sadrži samo one n-torke koje zadovoljavaju logički uslov definisan izrazom (Ψ), pa se ovakav način spajanja zato i naziva Ψ-spajanje. 3.2.4 Operacija dijeljenja Dijeljenje se ne može izvesti sa proizvoljnim relacijama - tabelama. Da bi operacija A podijeljeno sa B (A:B) bila izvodljiva, potrebno je da se svi atributi relacije B nalaze i u relaciji A. Na primjer, ako imamo dvije relacije A i B: A < x1, x2,...,xn, y1, y2,..., ym > ; B < y1, y2,..., ym > 45

46 Projektovanje informacionih sistema (koje zadovoljavaju postavljeni uslov), rezultat dijeljenja će biti relacija C koja ima samo x-atribute, a tijelo joj se sastoji od onih n-torki relacije A za koje se vrijednosti y-atributa pojavljuju u relaciji B. Dakle: 46 A B C X# Y# 017 a22 033 a43 077 a86 061 a43 044 a43 Y# : a43 = 3.3 Dodatni operatori Pored navedenih operatora u modernoj relacionoj algebri postoji još nekoliko dodatnih, izvedenih, operatora koje su definisali autori poslije E.F.Codda jer se pokazalo da osam osnovnih nije uvijek moglo zadovoljiti sve zahtjeve. Tako se danas koriste još i operatori: proširenja, agregacije, uopštenog dijeljenja, spoljnjeg spajanja uslovni operator (MAYBE). Najinteresantniji od njih je operator MAYBE koji se koristi za manipulisanje Null vrijednostima, i predstavlja proširenje klasične logičke algebre. Naime, u klasičnoj logičkoj algebri postoje samo dvije moguće vrijednosti, dva stanja, koje logička varijabla, ili izraz, mogu uzeti. To su: istina (TRUE) laž (FALSE). Uvođenjem Null vrijednosti definisana je još jedna, treća, mogućnost, označimo je sa U (unknow - nepoznato) pa logičke operacije AND, OR i NOT rezultiraju sada sa tri stanja i to: T (TRUE), F (FALSE) U (UNKNOWN). X# 033 061 044

Projektovanje informacionih sistema 47 Definicija logike tri stanja nije još opšteprihvaćena, ali se najčešće koristi ona koju je predložio E.F.Codd po kojoj operator MAYBE daje rezultat TRUE uvijek onda kada je rezultat neke operacije nepoznat. Priloženi grafički prikaz daje definiciju najvažnijih operatora. AND OR MAYBE NOT T F U T T F U F F F F U U F U T F U T T T T F T F U U T U U T F U F T U T F U F F T Unija Presjek Razlika A-B Razlika B-A Restrikcija Selekcija Prirodno spajanje A 1 B 1 A 2 B 2 A 3 B 3 A 4 B 4 + B 1 C 1 B 2 C 2 B 3 C 3 B 4 C 4 = A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 4 B 4 C 4 47

48 Projektovanje informacionih sistema 48