ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0



Σχετικά έγγραφα
Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Σημειώσεις Μαθηματικών 2

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

2 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

ΑΣΚΗΣΗ 4 f (χ) = 3χ + 2χ + λ με Δ = 4 12λ οπότε αν Δ > 0 λ θα έχω ότι

Θεώρημα Βolzano. Κατηγορία 1 η Δίνεται η συνάρτηση:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

Συνέχεια συνάρτησης σε κλειστό διάστημα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων

2o Επαναληπτικό Διαγώνισμα 2016

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

3. Ειδικά θεωρήµατα Συνέχεια

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ


Κεφάλαιο 4: Διαφορικός Λογισμός

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

Γ. Να δοθεί ο ορισμός του μέτρου ενός μιγαδικού αριθμού z x yi. Δ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,γράφοντας στο γραπτό σας

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Να εξετασθεί αν είναι 1-1 οι συναρτήσεις α) f(x)=4x-1 β) g(x)= γ.

5o Επαναληπτικό Διαγώνισμα 2016

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

Σημειώσεις Μαθηματικών 2

Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις :

γ) Αν f συνεχής στο[α, β], τότε για κάθε γ Є IR ισχύει f (x)dx f (x)dx f (x)dx

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

3o Επαναληπτικό Διαγώνισμα 2016

g(x) =α x +β x +γ με α= 1> 0 και

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 30 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

x είναι f 1 f 0 f κ λ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα:

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

f (x) 2e 5(x 1) 0, άρα η f

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

( ) 0, x 0. x 1, x Να μελετήσετε ως προς τη συνέχεια τη συνάρτηση f( x ) = x. 3. Να προσδιορίσετε το α R, ώστε η συνάρτηση f μεf(x)= π

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 (α,β) τέτοιο ώστε f(χ 0 ΠΡΟΣΟΧΗ 1 Αν επί πλέον η συνάρτηση f είναι γνησίως μονότονη στο [α,β] τότε υπάρχει ένα μοναδικό χ 0 (α,β) τέτοιο ώστε f(χ 0 ΠΡΟΣΟΧΗ.Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β) 0 Τότε υπάρχει ένα τουλάχιστον χ 0 [α,β] τέτοιο ώστε f(χ 0 ΠΡΟΣΟΧΗ 3.Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ (όχι ένωση διαστημάτων.).και f(x) 0 για κάθε χδ Τότε η f διατηρεί πρόσημο στο Δ ΠΡΟΣΟΧΗ 4.Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ (όχι ένωση διαστημάτων.).και f(x) 0 για κάθε χδ.και υπάρχει ένα αδ τέτοιο ώστε f(α)>0 Τότε Και f(x)>0 για κάθε χδ ΠΡΟΣΟΧΗ 5.Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ (όχι ένωση διαστημάτων.).και f(x) 0 για κάθε χδ.και υπάρχει ένα αδ τέτοιο ώστε f(α)<0 Τότε και f(x)<0 για κάθε χδ ΠΡΟΣΟΧΗ 6 Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ (όχι ένωση διαστημάτων.) Τότε η f διατηρεί πρόσημο σε κάθε διάστημα στο οποίο χωρίζεται το Δ από τις ρίζες της f ΔΙΑΦΟΡΕΣ ΜΟΡΦΕΣ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO 1 ΜΟΡΦΗ Αν έχω μια συνάρτηση f και θέλω να δείξω ότι Α) υπάρχει ένα τουλάχιστον χ 0 (α,β) τέτοιο ώστε f(χ 0 ή Β) η f έχει μια τουλάχιστον ρίζα στο (α,β ) ή Γ) η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο (α,β ) ή Δ) η γραφική παράσταση της f τέμνει τον άξονα χ χ σε ένα τουλάχιστον χ 0 (α,β) Τότε κάνω ΘΕΩΡΗΜΑ BOLZANO ΑΣΚΗΣΗ1 Έστω f(x)=4χ -ημπχ-3.να δείξετε ότι η συνάρτηση έχει μια τουλάχιστον ρίζα στο (0,1) f(0).f(1)=-3.1=-3<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (0,1) τέτοιο ώστε f(χ 0

ΜΟΡΦΗ Αν έχω μια εξίσωση Α(χ)=Β(χ) και θέλω να δείξω ότι έχει μια τουλάχιστον ρίζα στο (α,β ) τότε αρκεί να δείξω ότι η ισοδύναμη εξίσωση Α(χ)-Β(χ f(x όπου f(x)= Α(χ)-Β(χ) έχει μια τουλάχιστον ρίζα στο (α,β ) ΑΣΚΗΣΗ Να δείξετε ότι η εξίσωση 5χ 5 (0,1) =e x -1 έχει μια τουλάχιστον ρίζα στο Η εξίσωση ισοδύναμα γίνεται 5χ 5 -e x +1 =0 f(x αν θέσω f(x)= 5χ 5 -e x +1 οπότε αρκεί να δείξω η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο (0,1) f(0)=-1, f(1)=6-e f(0).f(1) <0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (0,1) τέτοιο ώστε f(χ 0 4 x 4 x ΑΣΚΗΣΗ3 Να δείξετε ότι η εξίσωση 0 έχει μια τουλάχιστον x 1 x ρίζα στο (1,) Η εξίσωση για x 1και x ισοδύναμα γίνεται (x +4)(x-)+(x 4 +)(x-1 f(x αν θέσω f(x)=( x +4)(x-)+(x 4 +) (x-1) οπότε αρκεί να δείξω η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο (1,) Η f συνεχής στο R ως πράξεις συνεχών συναρτήσεων άρα και στο [1,] f(1)=-5, f()=0 άρα f(1).f() <0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (1,) τέτοιο ώστε f(χ 0 3 ΜΟΡΦΗ Αν έχω μια εξίσωση f(x και θέλω να δείξω ότι έχει μια ακριβώς ρίζα στο (α,β ) τότε αρκεί να δείξω ότι η f είναι γνησίως μονότονη στο [α,β] και ότι ισχύει το θεώρημα BOLZANO ΑΣΚΗΣΗ4 Να δείξετε ότι η εξίσωση e x =5-5χ έχει μια ακριβώς ρίζα στο (0,1) Η εξίσωση ισοδύναμα γίνεται e x =5-5χ e x -5+5χ =0 f(x αν θέσω f(x)= e x -5+5χ οπότε αρκεί να δείξω η εξίσωση f(x έχει μια ακριβώς ρίζα στο (0,1) Η f είναι γνησίως αύξουσα στο R (εύκολο) f(0)=-4, f(1)=e, f(0).f(1) <0 άρα σύμφωνα με το θεώρημα BOLZANO και αφού η f είναι γνησίως αύξουσα υπάρχει ένα ακριβώς χ 0 (0,1) τέτοιο ώστε f(χ 0

4 ΜΟΡΦΗ Αν έχω μια εξίσωση f(x και θέλω να δείξω ότι έχει δύο τουλάχιστον ρίζες στο (α,β) τότε χωρίζω το διάστημα (α,β) σε δύο υποδιαστήματα (α,γ) και (γ,β) και κάνω το θεώρημα BOLZANO και στα δύο ΑΣΚΗΣΗ5 στο (-1,1) Να δείξετε ότι η εξίσωση χ 3 =6χ -1 έχει δύο τουλάχιστον ρίζες Η εξίσωση ισοδύναμα γίνεται χ 3-6χ +1 =0 f(x αν θέσω f(x)= χ 3-6χ +1 οπότε αρκεί να δείξω η εξίσωση f(x έχει δύο τουλάχιστον ρίζες στο (-1,1) Η f συνεχής στο R ως πράξεις συνεχών συναρτήσεων άρα και στο [-1,0] f(-1)=-6, f(0)=1 άρα f(-1).f(0) <0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 1 (-1,0) τέτοιο ώστε f(χ 1 f(1)=-4, f(0)=1 άρα f(1).f(0) <0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ (0,1) τέτοιο ώστε f(χ Αρα τελικά η εξίσωση f(x έχει δύο τουλάχιστον ρίζες στο (-1,1) ΠΡΟΣΟΧΗ Όταν δίνεται μια ισότητα που περιέχει μια συνεχή συνάρτηση f είναι διαφορετικές οι προτάσεις Η f έχει μια τουλάχιστον ρίζα στο (α,β) Η εξίσωση ολόκληρη έχει μια τουλάχιστον ρίζα στο (α,β ) 5 ΜΟΡΦΗ ΑΣΚΗΣΗ6 Αν η f συνεχής στο R και f 3 (x)+f(x)=4x-1 για κάθε χ R.Να δείξετε ότι η f έχει μια τουλάχιστον ρίζα στο (0,1 ) 4x 1 Είναι f 3 (x)+f(x)=4x-1 f(x).(f (x)+1)=4x-1 f(x)= αφού f (x)+1>0 f ( x) 1 1 3 f(0)= <0, f(1)= >0 άρα f(1).f(0) <0 άρα σύμφωνα με το f (0) 1 f (1) 1 θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (0,1) τέτοιο ώστε f(χ 0 6 ΜΟΡΦΗ ΑΣΚΗΣΗ 7 Αν η f συνεχής στο R και -1< f(x)<0 Να δείξετε ότι η εξίσωση f (x)=f(x)+3x έχει μια τουλάχιστον ρίζα στο (0,1) Η εξίσωση ισοδύναμα γίνεται f (x)=f(x)+3x f (x)-f(x)-3x =0 g(x αν θέσω g(x)= f (x)-f(x)-3x οπότε αρκεί να δείξω η εξίσωση g(x έχει μια τουλάχιστον ρίζα στο (0,1)

Η g συνεχής στο R ως πράξεις συνεχών συναρτήσεων άρα και στο [0,1].g(0)= f (0)-f(0)= f(0).( f(0) -)>0 αφού είναι -1< f(0)<0, g(1)= f (1)-f(1)-3 =( f(1) -3)( f(1) +1)<0 αφού είναι -1< f(1)<0 άρα g(0 ). g(1)<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (0,1) τέτοιο ώστεg (χ 0 4 x ΑΣΚΗΣΗ8 Αν η f συνεχής στο R να δείξετε ότι η εξίσωση f(x)= x x 3 έχει μια τουλάχιστον ρίζα στο (1,) Η εξίσωση για x 1και x ισοδύναμα γίνεται f(x).( x -χ+3)=4-χ f(x).( x -χ+3)-4+χ =0 g(x αν θέσω g(x)= f(x).( x -χ+3)-4+χ οπότε αρκεί να δείξω η εξίσωση g(x έχει μια τουλάχιστον ρίζα στο (1,) Η g συνεχής στο R ως πράξεις συνεχών συναρτήσεων άρα και στο [1,].g(1)=-, g()= άρα g(1 ). g()<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (1,) τέτοιο ώστεg (χ 0 7 ΜΟΡΦΗ Για να δείξω οτι η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο κλειστό [α,β[ τότε πρέπει να προσέξω να είναι f(α).f(β) 0 ΑΣΚΗΣΗ 9 Αν η f συνεχής στο [0,1] και 3 f(0+f(1) =0 να δείξετε ότι η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο κλειστό [0,1[ Είναι f(1) =-3 f(0) Η f συνεχής στο [0,1] f(0).f(1)= f(0)[ -3 f(0)]=-3f (0) 0 άρα f(0).f(1)<0 ή f(0 ή f(1 οπότε υπάρχει ένα τουλάχιστον χ 0 (0,1) τέτοιο ώστε f(χ 0 ή f(0 ή f(1 Αρα τελικά η εξίσωση f(x έχει μια τουλάχιστον ρίζα στο κλειστό [0,1 8 ΜΟΡΦΗ Για να δείξω ότι οι γραφικές παραστάσεις δύο συναρτήσεων f,g τέμνονται σε ένα τουλάχιστον σημείο με τετμημένη χ 0 (α,β) αρκεί να δείξω η εξίσωση f(x)= g(x) έχει μια τουλάχιστον ρίζα στο (α,β) ΑΣΚΗΣΗ 10 Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f(x)=lnx και g(x)= x 1 τέμνονται σε ένα τουλάχιστον σημείο με τετμημένη χ 0 ( e 1,e)

Αρκεί να δείξω η εξίσωση f(x)= g(x) έχει μια τουλάχιστον ρίζα στο (α,β) Η εξίσωση ισοδύναμα γίνεται f(x)= g(x) f(x)- g(x lnx- x 1 =0 φ(χ αν θέσω φ(χ)= lnx- x 1 οπότε αρκεί να δείξω η εξίσωση φ(x έχει μια τουλάχιστον ρίζα στο ( e 1,e) Η φ συνεχής στο (0, ) ως πράξεις συνεχών συναρτήσεων άρα και στο [ e 1,e] φ( e 1 )=-1- e<0, φ(e)=1- e 1 >0 άρα φ( e 1 )φ(e)<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 ( e 1,e) τέτοιο ώστε φ(χ 0 9 ΜΟΡΦΗ Αν η f συνεχής στο ΑΝΟΙΧΤΟ διάστημα Δ και θέλω να δείξω ότι έχει μια τουλάχιστον ρίζα στο Δ τότε βρίσκω με δοκιμή δυο τιμές α,β Δ ώστε f(α).f(β)<0 και κάνω θεώρημα BOLZANO στο (α,β) ΑΣΚΗΣΗ 11 Έστω f(x)=e x - x 1, χ>0 να δείξετε ότι η f έχει μια τουλάχιστον ρίζα στο (0, ) Είναι f(1)=e-1>0, f( 1 )<0 άρα f(1) f( 1 )<0 και αφού η f συνεχής στο (0, ) ως πράξεις συνεχών συναρτήσεων άρα και στο [1, 1 ] άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (1,) (0, ) τέτοιο ώστε f(χ 0 10 ΜΟΡΦΗ Αν η f συνεχής στο ΑΝΟΙΧΤΟ διάστημα (α,β) και θέλω να δείξω ότι έχει μια τουλάχιστον ρίζα στο (α,β) και lim f(x)<0 τότε και f(x)<0 xa κοντά στο α άρα υπάρχει ένας αριθμός γ (α,β) ώστε f(γ)<0 και τότε και f(x)>0 κοντά στο β Τότε f(γ).f(δ)<0 και κάνω θεώρημα BOLZANO στο [γ,δ] lim f(x)>0 x ΑΣΚΗΣΗ 1 Έστω f(x)= x ρίζα στο (1,) 5x 6 3x να δείξετε ότι η f έχει μια τουλάχιστον Η f συνεχής στο ΑΝΟΙΧΤΟ διάστημα (1,) ως πράξεις συνεχών συναρτήσεων lim f(x)= x1 lim 5x 6 = x1 x 3x x1 1 5x 6 lim ( )=+ (1)=+ x 1 x

lim x f(x)= 5x 6 lim = lim x x 3x x 1 5x 6 ( )=-.4=- x x 1 Αφού lim f(x)= - τότε και f(x)<0 κοντά στο 1 άρα υπάρχει ένας αριθμός γ(1,) x1 ώστε f(γ)<0 Αφού lim x f(x)= + τότε και f(x)>0 κοντά στο άρα υπάρχει ένας αριθμός.τότε f(γ).f(δ)<0 και αφού η f συνεχής στο διάστημα (1,) τότε συνεχής και στο [γ,δ] (1,) άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (γ,δ) (1,) τέτοιο ώστε f(χ 0 11 ΜΟΡΦΗ Για να δείξω ότι υπάρχει ένα τουλάχιστον χ 0 (α,β) τέτοιο ώστε Α(χ 0 )=Β(χ 0 ) Τότε θεωρώ τη συνάρτηση f(x)= Α(χ)-Β(χ) και κάνω θεώρημα BOLZANO στο [α,β] οπότε σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον χ 0 (α,β) τέτοιο ώστε f (χ 0 Α(χ 0 )-Β(χ 0 ) Α(χ 0 )=Β(χ 0 ) ΑΣΚΗΣΗ 13 Να δείξετε ότι υπάρχει ένα τουλάχιστον χ 0 (1,e) τέτοιο ώστε χ 0 ln χ 0 + ln χ 0 =e Έστω f(x)=χ.lnx+lnx-e Η f συνεχής στο (0, ) ως πράξεις συνεχών συναρτήσεων άρα και στο [1,e] f(1)=-e, f(e)=1 άρα f(1).f(e)<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον τουλάχιστον χ 0 (1,e) τέτοιο ώστε f (χ 0 χ 0 ln χ 0 + ln χ 0 -e =0 χ 0 ln χ 0 + ln χ 0 =e ΑΣΚΗΣΗ 14 Αν η f συνεχής στο διάστημα [-3,3] και -3< f(x)<3 για κάθε χ [-3,3] Να δείξετε ότι υπάρχει ένα τουλάχιστον ξ(-3,3) τέτοιο ώστε f(ξ)=ξ Έστω g(x)= f(x)-χ Η g συνεχής στο διάστημα [-3,3] ως πράξεις συνεχών συναρτήσεων.g(-3)=f(-3)+3>0,g(3)=f(3)-3<0 άρα g(-3). g(3)<0 άρα σύμφωνα με το θεώρημα BOLZANO υπάρχει ένα τουλάχιστον τουλάχιστον ξ(-3,3) τέτοιο ώστε g(ξ f(ξ)-ξ=0 f(ξ)=ξ