III VEŽBA: FURIJEOVI REDOVI

Σχετικά έγγραφα
3.1 Granična vrednost funkcije u tački

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Osnovne teoreme diferencijalnog računa

Elementi spektralne teorije matrica

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

PRIMJER 3. MATLAB filtdemo

Zavrxni ispit iz Matematiqke analize 1

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

5. Karakteristične funkcije

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

ELEKTROTEHNIČKI ODJEL

Ispitivanje toka i skiciranje grafika funkcija

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

18. listopada listopada / 13

Riješeni zadaci: Limes funkcije. Neprekidnost

Funkcije dviju varjabli (zadaci za vježbu)

numeričkih deskriptivnih mera.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

5 Ispitivanje funkcija

Teorijske osnove informatike 1

Operacije s matricama

Matematka 1 Zadaci za drugi kolokvijum

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

APROKSIMACIJA FUNKCIJA

Termovizijski sistemi MS1TS

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Program testirati pomoću podataka iz sledeće tabele:

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

4 Numeričko diferenciranje

SISTEMI NELINEARNIH JEDNAČINA

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Zadaci iz trigonometrije za seminar

radni nerecenzirani materijal za predavanja

Riješeni zadaci: Nizovi realnih brojeva

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

7 Algebarske jednadžbe

Numerička matematika 2. kolokvij (1. srpnja 2009.)

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

TEORIJA REDOVA. n u k (n N) (2) k=1. u k. lim S n = S, kažemo da zbir (suma) reda. k=1 S = k=1

Algoritmi zadaci za kontrolni

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

Mašinsko učenje. Regresija.

Matematička analiza 1 dodatni zadaci

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Računarska grafika. Rasterizacija linije

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

8 Funkcije više promenljivih

Eliminacijski zadatak iz Matematike 1 za kemičare

Kaskadna kompenzacija SAU

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Poglavlje 7. Blok dijagrami diskretnih sistema

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Signali i sustavi - Zadaci za vježbu II. tjedan

Računarska grafika. Rasterizacija linije

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Jednodimenzionalne slučajne promenljive

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Eksponencijalna i logaritamska funkcija

Obrada signala

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Spektralna analiza audio signala

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Termovizijski sistemi MS1TS

Prediktor-korektor metodi

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

IZVODI ZADACI (I deo)

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

1 / 79 MATEMATIČKA ANALIZA II REDOVI

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Dijagonalizacija operatora

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

3. OSNOVNI POKAZATELJI TLA

Transcript:

III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/. Koeficijenti X[k] nazivaju se koeficijenti urijeovog reda ili spektralni koeficijenti signala x(t). Celobrojna promenljiva k predstavlja redni broj harmonika osnovne učestanosti f. Na ovaj način se signal razlaže na harmonijske komponente, čime se može vršiti dodatna analiza signala. urijeov koeficijent za k =, X[], predstavlja srednju vrednost signala x(t) na intervalu t t t + : 1 X [ ] = t + t x( t) dt Pomoću urijeovih koeficijenata X[k] može se predstaviti funkcija x(t) na intervalu odgovarajućim redom t t t + kf t x t = + X k e j 2π ( ) [ ], t t t + k = kf t koji se naziva urijeov razvoj funkcije x(t) u red, ili kraće, urijeov red. Signali e j 2π X[ k] se nazivaju harmonijske komponente signala, ili kraće harmonici. Izvan intervala t t t +, prethodni red ne opisuje funkciju x(t) u opštem slučaju. Van ovog intervala vrednosti koje se dobijaju ovim redom će biti jednake vrednostima funkcije x(t) samo ukoliko je ta funkcija periodična, pri čemu širina intervala predstavlja celobrojni umnožak osnovnog perioda funkcije x(t). Stoga su urijeovi redovi najvecu primenu upravo i našli u analizi vremenski kontinualnih periodičnih funkcija. Ukoliko postoji beskonačno mnogo ne nultih urijeovih koeficijenata, prilikom proračuna vrednosti funkcije x(t) u okviru intervala od interesa, u realnom slučaju uzima se samo konačan broj članova u razvoju u red. Samim tim se umesto urijeovog razvoja kao dovoljno dobra aproksimacija funkcije ponekad uzima tzv. N-ta parcijalna suma urijeovog reda ili prekinuti urijeov razvoj: x N N ( t) = X [ k ] e k = N t t t j 2πkf t, + 18

3.2. Zadaci Zadatak 1 - Razvoj signala u urijeov red na zadatom intervalu Dat je signal x( t) = 1cos(1 π t). a) Primenom simboličkog paketa naći kompleksne koeficijente razvoja date funkcije na intervalu t = ( 7.5ms,7.5ms). b) U dva prozora jedne slike, pomoću komande stem prikazati moduo i fazu koeficijenata X[k] za 1 k 1. c) U dva prozora jedne slike, pomoću komande plot prikazati moduo i fazu koeficijenata X[k] za 5 k 5. d) U četiri prozora jedne slike, nacrtati dve periode signala x N (t) koji odgovara N-toj parcijalnoj sumi urijeovog reda za N = 1, N = 3, N = 3 i N. e) U tri prozora jedne slike, nacrtati dve periode signala e = lim x ( t) x ( t), gde je x ( t ) K-ta parcijalna suma urijeovog reda signala (t), Primer za x( t) = sin(1πt ). N N M M x za N = 1, N = 3, N = 3. % signal x(t)=sin(1pi *t) syms t k % simbolicke konstante = 15/1; w = 2*pi/; Ck=(1/)*int(sin(1*pi*t)*exp(-j*w*k*t),t,-/2, /2) % rezultat simbolicke integracije se iskopira u program % odredjivanje koeficijenata c[k] za -3<=k<=3 k = -1:1:1; ck = 2^(1/2)*(-3+4*i.*k + 3*exp(2*i*pi.*k) % Ima smisla crtati samo dvadesetak koeficijenata pomocu %komande stem ro = abs(ck); fi = angle(ck); subplot(2,1,1) stem(k,ro); title('moduo koeficijenata') subplot(2,1,2) stem(k,fi); title('faza koeficijenata') close all; K % brisanje definicija svih varijabli: k,ck k = -5:1:5; 19

ck = 2^(1/2)*(-3+4*i.*k+3*exp(2*i*pi.*k) % Ima smisla crtati samo dvadesetak koeficijenata pomocu % komande stem ro = abs(ck); fi = angle(ck); subplot(2,1,1) plot(k,ro); axis tight; grid on title('moduo koeficijenata') subplot(2,1,2) plot(k,fi); axis tight; title('faza koeficijenata'), grid on % za N->beskonacno dobija se periodicno produzenje osnovne % periode rezolucija crtanja=1 tacaka=>dt=2/1 dt = 2*/1; t = -:dt:; x = sin(1*pi.*t).*((t>-/2)&(t</2))+sin(1*pi.*(t+)).*(t<- /2)+sin(1*pi.*(t-)).*(t>/2); k = -1:1:1; ck1 = 2^(1/2)*(-3+4*i.*k+3*exp(2*i*pi.*k) k1 = -3:1:3; ck3 = 2^(1/2)*(-3+4*i.*k1+3*exp(2*i*pi.*k1)+ 4*i*exp(2*i*pi.*k1).*k1)./exp(i*pi.*k1)./pi./(16.*k1.^2-9); k2 = -3:1:3; ck3 = 2^(1/2)*(-3+4*i.*k2+3*exp(2*i*pi.*k2) +4*i*exp(2*i*pi.*k2).*k2)./exp(i*pi.*k2)./pi./(16.*k2.^2-9); Nmax = length(t); x1 = zeros(1,nmax); % N-ta parcijalna suma N=1 x3 = zeros(1,nmax); % N-ta parcijalna suma N=3 x3 = zeros(1,nmax); % N-ta parcijalna suma N=3 Index_od_t=1; for t = -:dt: for n = 1:1:21 x1(index_od_t)=x1(index_od_t)+ck1(n)*exp(i*k(n)*w*t); for n=1:1:61 x3(index_od_t)=x3(index_od_t)+ck3(n)*exp(i*k1(n)*w*t); for n=1:1:61 x3(index_od_t)=x3(index_od_t)+ck3(n)*exp(i*k2(n)*w*t); Index_od_t = Index_od_t+1; t = -:dt:; subplot(2,2,1) 2

plot(t,x); axis tight; grid subplot(2,2,2) plot(t,x1); axis tight; grid subplot(2,2,3) plot(t,x3); axis tight; grid subplot(2,2,4) plot(t,x3); axis tight; grid e1 = abs(x-x1); e3 = abs(x-x3); e3 = abs(x-x3); % greske subplot(3,1,1) plot(t,e1); axis tight; grid on subplot(3,1,2) plot(t,e3); axis tight; grid on subplot(3,1,3) plot(t,e3); axis tight; grid on Rezultat simboličke integracije: Ck = 2^(1/2)*(3+4*i*k+3*exp(i*pi*k)^2 +4*i*exp(i*pi*k)^2*k)/exp(i*pi*k)/pi/(16*k^2-9) Dobijeni grafici: 21

Slika 3.1. Grafički prikazi dobijeni priloženim Matlab programom 22