Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02"

Transcript

1 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1

2 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Δ Ι Α Ρ Κ Ε Ι Α Ε Ξ Ε Τ Α Σ Η Σ 4 5 Λ Ε Π Τ Α Ε Ρ Ω Τ Η Μ Α 1 ( Μ Ο Ν Α Δ Ε Σ ) Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α Ε νς φίλος σς σς έστειλε με το τχυρομείο έν περιοικό που περιέχει την πρκάτω κριτική ι έν ιλίο. Δυστυχώς, όμως, κτά την ποστολή του περιοικού, το χρτί ράχηκε κι χάθηκν ορισμένες φράσεις. Αφού ιάσετε το κείμενο, σημειώνετε στον πίνκ που κολουθεί τον ριθμό του κάθε κενού του κειμένου ίπλ στην κτάλληλη φράση, όπως στο πράειμ. ΠΡΟΣΕΞΤΕ οι φράσεις που θ χρησιμοποιήσετε είνι ΔΩΔΕΚΑ (12) χωρίς το πράειμ. Υπάρχουν έξι φράσεις που εν τιριάζουν σε κνέν κενό. Μυθιστόρημ: «Σεριάνι στη Ζωή» 2 Πάντ χίρομι ότν ράφω κριτική ι έν ιλίο που μου άρεσε, λλά υτή χίρομι ιπλά. Ο λόος είνι ότι ο συρφές, Κώστς Βελούτσος, είνι ένς πιστός φίλος της Βιλιοκριτικής. Είχ την ευκιρί ν ιάσω το ιλίο «Σεριάνι στη Ζωή» πριν κόμ εκοθεί κι εν είχ ότι θ εκοθεί. Πρόκειτι ι έν ιλίο που ξίζει ν ιάσει κνείς. Το πρώτο πράμ που μου άρεσε είνι ότι η υπόθεση κθημερινά νθρώπιν προλήμτ. Οι χρκτήρες του ιλίου είνι πολύ ξεκάθροι, ο κθένς με τον ικό του ιιίτερο τρόπο. Στο τέλος νιώθεις ότι τους νωρίζεις κλά. Αυτό συμίνει σε κάθε κλό μυθιστόρημ. Η πλοκή πηίνει στο πρελθόν κι ντίστροφ. Αυτό είνι πρίτητο λόω του σενρίου. Πρόλο που η τεχνική υτή είνι , έχει έν μικρό μειονέκτημ ο συρφές εισάει πολλούς χρκτήρες στην ρχή του ιλίου. Όμως, η σχέση τους εν είνι κόμη νωστή στον ννώστη. Πάντως, σε κμί περίπτωση εν κουράζεσι, επειή η φήηση Το τέλος μου άρεσε πολύ, κθώς ήτν πολύ συνισθημτικό, όπως το περίμεν , εν κτάλ σε μερικά σημεί πώς κριώς εξελίχθηκν τ πράμτ νάμεσ στους χρκτήρες. Ο συρφές μάλλον φήνει κάποιο περιθώριο ι την φντσί του ννώστη κι ίσως τελικά υτό ν είνι κλό. Βέι, ι ν είμι πόλυτ ειλικρινής, μου έκνε ότι η Μρί εν έειξε υπομονή με τη Βσιλική. Ίσως εκείνο ν ήτν το μονικό σημείο του ιλίου που θ χρειζότν κάποι λλή. Κάτι που μου άρεσε πάρ πολύ είνι ότι ο συρφές συχνά μς μιλάει ι λϊκά έθιμ κι συνήθειες της φήησης. Μάλιστ το κάνει με ένν τρόπο υθεντικό. Σου ίνει ν κτλάεις ότι τ έχει ζήσει κι ο ίιος προσωπικά κι υτό κάνει την ιστορί πιο ζωντνή στο μυλό του ννώστη. Κριτήρι Αξιολόησης Εμφάνιση: Η ποιότητ της έκοσης υτής είνι ρκετά ικνοποιητική.

3 Ευκολί νάνωσης: Το ιλίο είνι πλό, ρκετά κλή κι εύκολη. Θ το έχετε ιάσει μέσ σε έν πόευμ. Μέεθος: Το ιλίο ποτελείτι πό λίες (170) σελίες κι το μέεθος των ρμμάτων Μηνύμτ: Μου άρεσε το ίμ ότι μί επιλοή μπορεί ν λλάξει τελείως τη ζωή σου. Είνι κάτι πολύ ληθινό. Κλή εντύπωση μου έκνε, επίσης, το μήνυμ ότι η πρίση των μπορεί ν είνι κτστροφική. Διχρονικότητ: Ότν ξέρεις ενός ιλίου ύσκολ το ξνιάζεις. Εώ θ το ξνιάζ ευχρίστως! Πηή: (ισκευσμένο) στην περίπτωση 0 ΠΑΡΑΔΕΙΓΜΑ την υπόθεση Κτά συνέπει κτά τη ιάρκει πό το πρόν πλούσις ράσης κμί μφιολί περιορίζει τη φντσί Γι υτό ξεκουράζει το μάτι Πρόλ υτά τεράστι εντύπωση το ενιφέρον με ιάστση σίζετι σε ρκετά ποτελεσμτική με λώσσ ηθικών κνόνων ρέει ευχάριστ ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ

4 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Ε Ρ Ω Τ Η Μ Α 2 ( 7 Μ Ο Ν Α Δ Ε Σ ) Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α Διάζετε σε μι εφημερί το πρκάτω κείμενο που νφέρει συμουλές ι ευτυχισμένη ζωή κι σημειώνετε με σε κάθε έν πό τ ερωτήμτ που έχετε μπροστά σς την πάντηση (πό τις,, κι ) που θεωρείτε ότι είνι σωστή, όπως στο πράειμ. ΠΡΟΣΕΞΤΕ ι κάθε ερώτημ υπάρχει μόνο ΜΙΑ (1) σωστή πάντηση. Έτοιμος ι τη ζωή! 4 Το ν μπορείς ν κάνεις υτό που ισθάνεσι, ν λες υτό που νιώθεις, ν κάνεις υτό που θες πρμτικά, ν έχεις τις ικές σου επιλοές, τ ικά σου «θέλω», τ ικά σου «πιστεύω», είνι πό τ πιο σημντικά πράμτ στον άνθρωπο. Μέσ πό την προσπάθει σου κτλίνεις πως στη ζωή τίποτ εν χρίζετι. Πρέπει ν προσπθήσεις, ώστε ν πετύχεις. H ζωή είνι σν έν τριντάφυλλο, κάθε πέτλο κι έν όνειρο, κάθε κάθι κι μί λήθει Μήπως περνάμε περισσότερο χρόνο κοιτάζοντς τ κάθι πρά τ πέτλ; Ο κόσμος, είνι άρε ευτυχισμένος; Πρμτοποιεί τις επιλοές του; Επιλέει ελεύθερ μόνος του; Κάνει ικά του όνειρ; Μκάρι ν ήτν όλ ήρεμ κι όμορφ, ν μη ινότν σε κμί χώρ πόλεμος. Μκάρι ν υπήρχε πντού ειρήνη, ειρήνη στις σχέσεις των λών, στις σχέσεις των νθρώπων, στ μάτι του νθρώπου Μκάρι ν μην υπήρχε η ί, η εκμετάλλευση. Η κορυφή του κάθε νθρώπου είνι η ευτυχί του. Έτσι όπως ετοιμάζεσι ι την νάση της κορυφής ενός ουνού, έτσι ετοιμάζεσι κι ι την κορυφή της ευτυχίς σου. Αρχικά, είσι προετοιμσμένος κτάλληλ ι υτά που θ συνντήσεις στη πορεί. Στη συνέχει, ντιμετωπίζεις ύσκολες στιμές, με συνέπει ν πιστεύεις πως οι προσπάθειές σου εν επρκούν κι ρχίζεις ν ποοητεύεσι πό τον ευτό σου. Αλλά, στο τέλος, πάντ συνεχίζεις. Δεν τ πρτάς. Έχεις στο μυλό σου την κορυφή, τον στόχο σου, το όνειρό σου κι το υλοποιείς. Σκέφτεσι το συνίσθημ που νιώθεις εκείνη τη στιμή στην κορυφή. Σκέφτεσι υτήν τη λήνη που νιώθεις εκεί ψηλά, μκριά πό όλ Μκάρι ν κτλάινε ο κθένς μς την ομορφιά που συνντάει κνείς κάνοντς πορεί σε έν ουνό ή ν μπορεί ν ισθνθεί τ όμορφ πράμτ που λέπει περπτώντς σε τέτοι τοπί. Γι ν το κτφέρει υτό κάποιος είνι σημντικό ν επιιώσει με λί πράμτ ίπλ στη φύση, ι ν τη νιώσει, ν κούσει τον ήχο της κι ν ισθνθεί την ηρεμί που έχει εκείνη τη στιμή. Με υτό τον τρόπο θ ει τη θέ πό εκεί ψηλά, μκριά π όλ κι εν θ πρτηρεί μόνο τ πράμτ, λλά θ μπορεί κι ν τ νιώθει συχρόνως, ν τ ζει! Θ μπορεί ν ζει τις στιμές που ζουν οι ορειάτες. Αξίζει τον κόπο ν ζήσει κνείς τις λυκές κι όμορφες στιμές που σου φήνουν εμπειρίες, ιώμτ, λλά κι ευτυχί, ευτυχί, ι υτά που κάνεις, ι τον ευτό σου, ι τους ύρω σου, ι τη ζωή σου

5 Επιπλέον, μθίνεις ν επιιώνεις ίπλ στη φύση μόνο με τ πρίτητ υλικά θά. Μέσ πό υτό, κτλίνεις πως ο άνθρωπος είνι έν μεάλο κτνλωτικό ον. Γιτί άρε ν χρειζόμστε τόσ πράμτ ύρω μς, ενώ στην ουσί μπορούμε κι επιιώνουμε χωρίς υτά; Μέσ πό την ορεισί μθίνεις ότι στη ζωή πρέπει ν εκτιμάς υτό που έχεις, υτό που ίνεις, λλά κι υτό που πίρνεις. Πρέπει ν ωνίζεσι ι κάτι κλύτερο, ι κάτι πρπάνω, ν πλεύεις ι την ευτυχί σου. Θ υπάρξει η στιμή που ο άνθρωπος κθημερινά θ ίνει κάτι στη κοινωνί, είτε υτό είνι μι κλή πράξη, έν κοινωνικό ενιφέρον, είτε υτό είνι έν ληθινό χμόελο. Έτσι, όπως πετούν τ πουλιά στον ουρνό, έτσι πετούν κι οι νέοι στη ζωή μς. Προσπθούν ν κτλήξουν σε κάποιο μέρος που θ νιώθουν κλά κι σίουροι ι την επιλοή τους. Νέος εν χρκτηρίζετι πάντ ο άνθρωπος που είνι σε νερή ηλικί. Ως νέο άνθρωπο χρκτηρίζουμε κι το άτομο που έχει περάσει υτήν την ηλικί. Ότν λέπουμε ένν άνθρωπο, ο οποίος προσπθεί ι το κλύτερο, μπορούμε ν κτλάουμε πως μέσ του κρύετι ένς νέος. Είνι υτός που έχει πάντοτε στο μυλό του τις κλύτερες λλές ι εκείνον λλά κι ι την κοινωνί. Είνι υτός που η ψυχή του ράζει ι χρά, ευχρίστηση, ενθουσισμό, λλά κι ισιοοξί. Πάντ θέλει ν λύνει τ προλήμτά του, ώστε ν εξελίσσετι σε κάτι κλύτερο πό υτό που είνι, σε κάτι πρπάνω. Πηή: (ισκευσμένο) 0 Σύμφων με τον συρφέ, τι έχει μελύτερη σημσί ι τον άνθρωπο; Ν μοιράζετι τις επιλοές του με άλλους νθρώπους. Ν μη λέει πάντ υτό που πρμτικά ισθάνετι. Ν ονειρεύετι πράμτ που εν έχουν υσκολίες. ΠΑΡΑΔΕΙΓΜΑ Ν μπορεί ν πρμτοποιεί οτιήποτε επιθυμεί. 1 «Η ζωή είνι σν έν τριντάφυλλο», επειή έχει πολλά κάθι, ηλή πολλές υσκολίες. κρύει όμορφ όνειρ, λλά κι λήθειες σν κάθι. είνι όμορφη όπως τ πέτλ του τριντάφυλλου. κάνει τον άνθρωπο τόσο ευτυχισμένο όσο έν τριντάφυλλο. ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ 5

6 2 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Η ευτυχί του νθρώπου είνι σν την κορυφή ενός ουνού, επειή κάθε άνθρωπος που νείνει το ουνό νιώθει ευτυχισμένος. κάθε ευτυχισμένος άνθρωπος θέλει ν νείνει στην κορυφή του ουνού. είνι στόχος υψηλός σν ν νείνει κνείς στην κορυφή του ουνού. ενώ ονειρεύετι κνείς, μπορεί όλ ξφνικά ν του φνούν ουνό. Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α 4 5 Είνι όμορφο ν κάνεις πορεί στο ουνό, επειή μθίνεις ν επιιώνεις χωρίς άλλους νθρώπους. ίνεσι πιο ήρεμος π ό,τι ήσουν πριν. εν λέπεις λλού τόσο όμορφ τοπί. μπορείς ν ρεθείς ίπλ στη φύση. Ο άνθρωπος που κάνει ορεισί νιώθει ευτυχί μόνο ότν νείνει το ουνό. μπορεί ν ζήσει στο ουνό ι πολύ κιρό. ζει την κάθε στιμή κτά την νάση του ουνού. μιλάει στους ύρω του ι τις χρές της φύσης. Μέσ πό την ορεισί ο άνθρωπος μθίνει πως τ υλικά θά είνι χρήσιμ. μθίνει ν κτνλώνει περισσότερ θά. μθίνει ν κτνλώνει τ πολύτως νκί θά. μθίνει ν χρησιμοποιεί ιάφορ υλικά θά. Οι νέοι μοιάζουν με τ πουλιά, επειή πηίνουν εκεί που ισθάνοντι ευτυχισμένοι. νιώθουν σιουριά ότν τξιεύουν. τξιεύουν πολύ κι συχνά. είνι πάντ ελεύθεροι κι νεξάρτητοι. Νέος θεωρείτι υτός που ενώ προσπθεί, εν πετυχίνει το κλύτερο. άζει τ υντά του ι ν ελτιωθεί. είνι ισιόοξος χωρίς ν λύνει τ προλήμτά του. είνι νέος στην ηλικί κι στην ψυχή.

7 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Ε Ρ Ω Τ Η Μ Α ( 7 Μ Ο Ν Α Δ Ε Σ ) Διάζετε την περίληψη του προηούμενου κειμένου. Αφού είτε ξνά κι το πλήρες κείμενο, ράψτε στον πρκάτω πίνκ ίπλ στον ριθμό του κάθε κενού της περίληψης τις κτάλληλες λέξεις/φράσεις, όπως στο πράειμ. ΠΡΟΣΕΞΤΕ οι λέξεις/φράσεις που θ συμπληρώσετε είνι ΕΠΤΑ (7) χωρίς το πράειμ. Περίληψη του προηούμενου κειμένου «Έτοιμος ι τη ζωή!» Ο φηητής του κειμένου νιώθει ότι είνι πολύ σημντικό ι τον άνθρωπο ν μπορεί τ όνειρά του κι ν κολουθεί τις προσωπικές του επιλοές. Η σκληρή προσπάθει είνι πρίτητη ι κνείς ν πετύχει τους στόχους του. Όμως, νρωτιέτι ο φηητής εάν οι άνθρωποι ονειρεύοντι κι ν κάνουν υτά τ όνειρ πρμτικότητ. Εύχετι ν ήτν ο κόσμος ιφορετικός χωρίς πολέμους, υστυχί κι ιιότητες, ηλή μόνο ειρήνη κι ευτυχί. Πρόλ υτά, πιστεύει πως ι ν ίνει κνείς ευτυχισμένος χρειάζετι ν μπορεί ν ντιμετωπίζει τις υσκολίες, ν μην το άζει κάτω κι ν είνι στον στόχο του. Προμοιάζει την πορεί προς την ευτυχί με την νάση σ έν ουνό. Γι υτόν τον λόο, μιλάει ι τη σημσί της ορεισίς κι που έχει κνείς ν ευτεί τις ομορφιές της φύσης. Ανείνοντς μπορεί κνείς ν νιώσει λήνιος, ν νκλύψει υτά η φύση κι ν ζήσει λυκές στιμές. Επιπλέον, μπορεί ν κτνοήσει τη σημσί του κτνλωτισμού κι των υλικών θών. Μθίνει ν ίνει τον προσωπικό του ών, ν μάχετι ι τον ευτό του, λλά κι ι την κοινωνί. Έτσι, ο φηητής νφέρετι στους νέους κι πώς υτοί νζητούν υτά που τους προσφέρουν ευτυχί κι ρμονί. Ότν, όμως, μιλάει ι νέους, μόνο σε υτούς που είνι μικροί, λλά κι στους μεάλους που έχουν ενθουσισμό, στοχεύουν ψηλά κι νζητούν το κλύτερο ι τους 7 ίιους κι την κοινωνί. Γι υτό, η κοινωνική προσφορά των νθρώπων είνι πολύ σπουί είτε έχει ν κάνει με κλή πράξη, είτε με έν πλό χμόελο ν εκπληρώνει ΠΑΡΑΔΕΙΓΜΑ ΤΕΛΟΣ ΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ, ΠΡΟΧΩΡΗΣΤΕ ΣΤΗΝ ΕΞΕΤΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΓΛΩΣΣΑΣ

8 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ 8 Λ Υ Σ Ε Ι Σ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

9 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α 1 στην περίπτωση 0 ΠΑΡΑΔΕΙΓΜΑ την υπόθεση 12 Κτά συνέπει κτά τη ιάρκει 8 πό το πρόν πλούσις ράσης κμί μφιολί 1 περιορίζει τη φντσί Γι υτό 9 ξεκουράζει το μάτι 10 Πρόλ υτά τεράστι εντύπωση 7 το ενιφέρον με ιάστση σίζετι σε 2 ρκετά ποτελεσμτική 4 με λώσσ 9 ηθικών κνόνων 11 ρέει ευχάριστ 5

10 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α 2 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α 1 «Η ζωή είνι σν έν τριντάφυλλο», επειή έχει πολλά κάθι, ηλή πολλές υσκολίες. κρύει όμορφ όνειρ, λλά κι λήθειες σν κάθι. είνι όμορφη όπως τ πέτλ του τριντάφυλλου. κάνει τον άνθρωπο τόσο ευτυχισμένο όσο έν τριντάφυλλο Η ευτυχί του νθρώπου είνι σν την κορυφή ενός ουνού, επειή κάθε άνθρωπος που νείνει το ουνό νιώθει ευτυχισμένος. κάθε ευτυχισμένος άνθρωπος θέλει ν νείνει στην κορυφή του ουνού. είνι στόχος υψηλός σν ν νείνει κνείς στην κορυφή του ουνού. ενώ ονειρεύετι κνείς, μπορεί όλ ξφνικά ν του φνούν ουνό. Είνι όμορφο ν κάνεις πορεί στο ουνό, επειή μθίνεις ν επιιώνεις χωρίς άλλους νθρώπους. ίνεσι πιο ήρεμος π ό,τι ήσουν πριν. εν λέπεις λλού τόσο όμορφ τοπί. μπορείς ν ρεθείς ίπλ στη φύση. 4 Ο άνθρωπος που κάνει ορεισί νιώθει ευτυχί μόνο ότν νείνει το ουνό. μπορεί ν ζήσει στο ουνό ι πολύ κιρό. ζει την κάθε στιμή κτά την νάση του ουνού. μιλάει στους ύρω του ι τις χρές της φύσης.

11 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ 5 Μέσ πό την ορεισί ο άνθρωπος μθίνει πως τ υλικά θά είνι χρήσιμ. μθίνει ν κτνλώνει περισσότερ θά. μθίνει ν κτνλώνει τ πολύτως νκί θά. μθίνει ν χρησιμοποιεί ιάφορ υλικά θά. Οι νέοι μοιάζουν με τ πουλιά, επειή πηίνουν εκεί που ισθάνοντι ευτυχισμένοι. νιώθουν σιουριά ότν τξιεύουν. τξιεύουν πολύ κι συχνά. είνι πάντ ελεύθεροι κι νεξάρτητοι. 11 Νέος θεωρείτι υτός που ενώ προσπθεί, εν πετυχίνει το κλύτερο. άζει τ υντά του ι ν ελτιωθεί. είνι ισιόοξος χωρίς ν λύνει τ προλήμτά του. είνι νέος στην ηλικί κι στην ψυχή.

12 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α ν εκπληρώνει ν κτορθώσει/ν μπορέσει ν επικρτούσε/ν υπήρχε φοσιωμένος/εστισμένος τη υντότητ/ την ευκιρί που κρύει εν πευθύνετι/εν νφέρετι υπόθεση ΠΑΡΑΔΕΙΓΜΑ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΕΛΛΗΝΟΓΛΩΣΣΗ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΔΙΑΠΟΛΙΤΙΣΜΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗ ΔΙΑΣΠΟΡΑ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΜΟΝΑΔΕΣ 25 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, Ε.ΔΙΑ.Μ.ΜΕ. Ρέθυμνο, 2014 1 ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Άσκηση 1 (6

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π

Διαβάστε περισσότερα

Η Υγεία σας - και - η Κατάστασή σας

Η Υγεία σας - και - η Κατάστασή σας Η Υγεί σς - κι - η Κτάστσή σς Kidney Disease and Quality of Life (KDQOL-SF ) Αυτή η έρευν σς ρωτά γι τις πόψεις σς γι την υγεί σς. Αυτές οι πληροφορίες θ µς βοηθήσουν ν δούµε πώς ισθάνεσθε κι πόσο κλά

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7 ΧΟΗ ΕΠΑΓΓΕΜΑΤΙΚΗ ΚΑΤΑΡΤΙΗ ΜΕΤΑΦΟΡΕΩΝ ΕΚOMEE (ΑDR) ΘΕΑΙΑ & ΚΕΝΤΡΙΚΗ ΕΑΔΟ ΓΡΑΦΕΙΑ & ΑΙΘΟΥΕ ΔΙΔΑΚΑΙΑ: ΚΟΥΤΑΡΕΙΑ 12 ΜΕΙΑOΝΟ (ΑΠΕΝΑΝΤΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΠΕΙΡΑΙΩ) Τ.Κ.: 38333 ΒΟΟ ΤΗ.: 24210 34944 / 6977 280182

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη.

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη. ΚΕΦΑΑΙΟ 1: ΝΟΜΟΘΕΤΙΚΟ ΠΑΙΙΟ - ΤΑΞΙΝΟΜΗΗ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ 1 Ποιος έχει την υποχρέωση ν πρδώσει στον οδηό τις ρπτές οδηίες σχετικές με τη μετφερόμενη επικίνδυνη ύλη; Ο πρλήπτης. Η τροχί. Ο ποστολές.

Διαβάστε περισσότερα

ΚΛΑΔΟΣ 10 1 Ποιος θεωρείται "τρίτος" για την ασφάλιση αστικής ευθύνης οχημάτων. α Ο οδηγός. β Ο συμβαλλόμενος και οι νόμιμοι εκπρόσωποί του.

ΚΛΑΔΟΣ 10 1 Ποιος θεωρείται τρίτος για την ασφάλιση αστικής ευθύνης οχημάτων. α Ο οδηγός. β Ο συμβαλλόμενος και οι νόμιμοι εκπρόσωποί του. 1 Ποιος θεωρείτι "τρίτος" ι την σφάλιση στικής ευθύνης οχημάτων. Ο οηός. Ο συμλλόμενος κι οι νόμιμοι εκπρόσωποί του. Το πρόσωπο του οποίου η ευθύνη κλύπτετι πό την σφλιστική σύμση. Εκείνος με τον οποίο

Διαβάστε περισσότερα

ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ

ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ 1. Θεωρείς τη διπργμάτευση σν μι διδικσί άκρως συνεργσιμότητς ντγωνιστική 2. Συμμετέχεις σε μι διπργμάτευση με σκοπό ν πετύχεις μι ν νικήσεις δίκιη συμφωνί 3. Σε τι ποτέλεσμ

Διαβάστε περισσότερα

Newsletter. Δεκέμβριος 2011. Christmas Party! στο Yogastudio Maroussi Παρασκευή 23 Δεκεµβρίου, 20.00

Newsletter. Δεκέμβριος 2011. Christmas Party! στο Yogastudio Maroussi Παρασκευή 23 Δεκεµβρίου, 20.00 Newsletter Δεκέμβριος 2011 Christmas Party! στο Yogastudio Maroussi Πρσκευή 23 Δεκεµβρίου, 20.00 Ελάτε ν γιορτάσουµε σε µί κεφάτη Χριστουγεννιάτικη τµόσφιρ µε πολύ µουσική, χορό, χορτοφγικό µπουφέ κι εκπλήξεις!

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες; ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Α Φ ΠΡΟ ΩΠΩΝ & ΑΝΣΑ Φ

Α Φ ΠΡΟ ΩΠΩΝ & ΑΝΣΑ Φ 1 Ποιες σφλίσεις περιλμάνει ο κλάος ζωής; Ασφλίσεις θνάτου, επιίωσης, μικτές κι ζωής με επιστροφή σφλίστρου Ασφλίσεις προσόων Ασφλίσεις σωμτικων λών, θνάτου ή νπηρίς,/σθένεις Ολ τ πρπάνω 2 Μόνιμη ολική

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ»

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ» ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mρτίου Aρ. πρ. 66 ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ. Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Ι. Μπουνάκης Σχολικός Σύµουλος Μθηµτικών Τχ. /νση

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ

ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ 363 ΜΤΗΗ Μ ΛΥ ΤΩΝΥ ΥΝΤΗ ΤΩΝ ΛΛΩΝ ΛΥΩΝ ΤΥ ΤΩΝ ΛΩΝ ΤΗ ΥΤ Μστροιάννης Ν. νάρυρος Μθημτικός πιμορφωτής Ν.Τ. ΛΗΗ Το θέμ προς διπρμάτευση νφέρετι στη σχέση των εμδών που σχημτίζοντι σε τρίωνο

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ ος Ηµθιώτικος Μθητικός ιγωνισµός στ Μθηµτικά «Η ΥΠΑΤΙΑ» Θέµ 1ο Σάτο 1 Νοεµρίου 009 Α Γυµνσίου Ο ρίσκετι σε έν κινηµτογράφο όπου όλες οι σειρές έχουν κριώς

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

«Ανάλυση χρονολογικών σειρών»

«Ανάλυση χρονολογικών σειρών» Διτμημτικό Πρόγρμμ Μετπτυχικών Σπουδών των Τμημάτων Μθημτικών κι Μηχνικών Η/Υ & Πληροφορικής «Μθημτικά των Υπολογιστών κι των Αποφάσεων». (Κτεύθυνση: Σττιστική Θεωρί Αποφάσεων κι Εφρμογές). Διπλωμτική

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ ρ. Στυλινός Γ. Λόζιος Επ. Κθηγητής του Τµήµτος Γεωλογίς του Εθνικού & Κποδιστρικού Πνεπιστηµίου Αθηνών Το εφρµοσµέν

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Πνεπιστήμιο Πτρών Σχολή Ανθρωπιστικών κι Κοινωνικών Επιστημών Πιδγωγικό Τμήμ Δημοτικής Εκπίδευσης Πρόγρμμ Μετπτυχικών Σπουδών Mετπτυχική Εργσί Πεποιθήσεις κι κίνητρ. Μι ερευνητική προσέγγιση σε πολιτισμικά

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ Από το Πρακτικό 5/2013 της συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρατίου, της 24 ης Μαϊου 2013

ΑΠΟΣΠΑΣΜΑ Από το Πρακτικό 5/2013 της συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρατίου, της 24 ης Μαϊου 2013 ΑΠΟΣΠΑΣΜΑ Από το Πρκτικό 5/2013 της συνεδρίσης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρτίου, της 24 ης Μϊου 2013 Αριθμός Απόφσης 24/2013 ΠΕΡΙΛΗΨΗ Προέλεγχος πολογισμού εσόδων - εξόδων του Δήμου

Διαβάστε περισσότερα

Είναι υποχρεωτικό για τις οδικές μεταφορές επικίνδυνων εμπορευμάτων.

Είναι υποχρεωτικό για τις οδικές μεταφορές επικίνδυνων εμπορευμάτων. ΚΕΦΑΑΙΟ 1: ΝΟΜΟΘΕΤΙΚΟ ΠΑΙΙΟ - ΤΑΞΙΝΟΜΗΗ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ 1 Ποιος έχει την υποχρέωση ν πρδώσει στον οδηό τις ρπτές οδηίες σχετικές με τη μετφερόμενη επικίνδυνη ύλη; Ο πρλήπτης. Η τροχί. Ο ποστολές.

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

Διάλογος 1: Στο μπάνιο

Διάλογος 1: Στο μπάνιο Ενότητ 2 - Σελίδ 1 Διάλοος 1: Στο μπάνιο Διάλοος 2: Ρντεού στο κομμωτήριο Διάλοος 3: Μεσημερινό Διάλοος 4: Ψυχωί δισκέδση Διάλοος 5: Ένς ένοικος έχει πράπονο B1 A2 A2 B1 B2 Διάλοος 1: Στο μπάνιο Συνομιλί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 4 IOYNIOY 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1.

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες ΔΙΑΓΩΝΙΣΜΑ Α Θέµ ο Από τις πρκάτω πολλπλές πντήσεις ν επιλέξετε τη σωστή..κάθε µετφορικό trn :. συνδέετι µε έν συγκεκριµένο µινοξύ β. συνδέετι µε οποιοδήποτε µινοξύ γ. µπορεί ν µετφέρει πό έως 6 διφορετικά

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν. ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.

Διαβάστε περισσότερα

ÊáëÞ áñ Þ, êáëþ ñïíéü!

ÊáëÞ áñ Þ, êáëþ ñïíéü! 2 Eíüôçôá 1 ÊáëÞ áñ Þ, êáëþ ñïíéü! introduce myself speak about holiday activities speak about the past (1) sing a song introduce myself to someone older ôá åëëçíéêü êé åìåßò... Κλημέρ, πιδιά! Κλημέρ,

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΑΡΙΘ. 426 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ

ΑΠΟΦΑΣΗ ΑΡΙΘ. 426 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ Δ/ΝΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΑΠΟΦΑΣΗ ΑΡΙΘ. 426 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ ΘΕΜΑ: «Έγκριση λειτουργίς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ ΚΕΦΑΑΙΟ 1: ΔΕΞΑΜΕΝΗ 30 Τ κπάκι των νθρωποθυρίδων μπορούν ν πρμένουν νοικτά: Κτά τη μετφορά με δεξμενή φορτωμένη 15% του συνολικού όκου. Κτά τις ερσίες κθρισμού της δεξμενής (gasfree). Κτά την εκφόρτωση

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο Οι Νέες Τεχνολογίες ως Εργλείο κτνόησης σικών εννοιών στο Γυµνάσιο ΗΜΗΤΡΙΟΣ ΚΟΝΤΟΓΕΩΡΓΟΣ Μθηµτικός-Υπεύθυνος του Μθηµτικού Εργστηρίου του Λυκείου Ελληνικού kontod@yahoo.gr ΚΩΝ/ΝΟΣ ΜΑΡΑΓΚΟΣ Μθηµτικός -Κθ.

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000 ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ερινό Εξάµηνο 1999-2000, 1 Ιουνίου 2000 Α Οδηγίες: Απντήστε όλες τις ερωτήσεις. Ν επιστρέψετε τ θέµτ. 1. (65 µόρι) ίνετι ο κόλουθος πίνκς πιτούµενων

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142.

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142. ΑΝΑΡΤΗΤΕΑ Λιβδειά 24 04-2015 Αριθ Πρωτ: 10259 ΑΠΟΣΠΑΣΜΑ Από το πρκτικό της ριθμ15-11 ης Συνεδρίσης της Οικονομικής Επιτροπής Δήμου Λεβδέων Αριθμός πόφσης : 142 Περίληψη Εκθεση ποτελεσμάτων εκτέλεσης προϋπολογισμού

Διαβάστε περισσότερα

«Ι ΑΚΤΙΚΗ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρήµατα Σταθερού Σηµείου και ιδακτικές Εφαρµογές. Γεώργιος Κυριακόπουλος

«Ι ΑΚΤΙΚΗ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρήµατα Σταθερού Σηµείου και ιδακτικές Εφαρµογές. Γεώργιος Κυριακόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟ ΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ KΑΙ ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΨΥΧΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής:

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής: III Ο Ρ Ι Ζ Ο Υ Σ Ε Σ Μετθέσεις Θεωρούμε έν σύνολο Ν με πεπερσμένο το πλήθος ντικείμεν Τ ριθμούμε υτά κτά κάποιο τρόπο, κι στη συνέχει, νφερόμεθ σ υτά με τον ριθμό τους Εστω, λοιπόν, Ν {,,, } το δοσμένο

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Είνι γνωστό ότι γι πολλά ορισµέν ολοκληρώµτ δεν υπάρχουν νλυτικές µέθοδοι κριβούς επίλυσής τους. Ετσι λοιπόν έχουν νπτυχθεί προσεγγιστικές µέθοδοι υπολογισµού τέτοιων

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ 1 2 3 4 5 6 7 8 Ποιες θεωρούντι ορνωμένες ορές στην Ελλά; Η ορά ξιών του Χρημτιστηρίου Αθηνών Η ορά πρώων του Χρημτιστηρίου Αθηνών Η Ηλεκτρονική Δευτεροενής Αορά Τίτλων Όλες οι υπόλοιπες πντήσεις Τ προϊόντ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α Β ΤΡΙΤΗ 3 IOYNIOY 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα