Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02"

Transcript

1 Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 0 Μ 0 Ν Α Δ Ε Σ 1

2 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Δ Ι Α Ρ Κ Ε Ι Α Ε Ξ Ε Τ Α Σ Η Σ Λ Ε Π Τ Α Ε Ρ Ω Τ Η Μ Α 1 ( Μ Ο Ν Α Δ Ε Σ ) Δ Ε Ι Γ Μ Α Τ Α Δ όπως ιάζετε προσεκτικά το πρκάτω άρθρο σχετικά με το έλιο σε μι εφημερί κι σημειώνετε στον πίνκ που κολουθεί τον ριθμό του κάθε κενού του κειμένου ίπλ στην κτάλληλη φράση, στο πράειμ. ΠΡΟΣΕΞΤΕ οι φράσεις που πρέπει ν συμπληρώσετε είνι ΔΕΚΑ (10) χωρίς το πράειμ. Υπάρχουν πέντε φράσεις που εν χρειάζεστε. Ξεκριστείτε, κάνει κλό! Το έλιο, πό το χμόελο έως το τρντχτό ξεκάρισμ, είνι κομμάτι του συνισθημτικού κόσμου μς : Πρόξως, υτοί που το νόησν, , ήτν οι επιστήμονες, οι οποίοι μόλις την τελευτί εικοσετί κτέχθηκν ν σχοληθούν μζί του. Τι κινούριο έχουν, λοιπόν, ν μς πουν οι επιστήμονες; Τ τελευτί χρόνι, με τη οήθει των προημένων πεικονιστικών μεθόων του εκεφάλου, , οι επιστήμονες έμθν πολλά ι τη φυσιολοί του έλιου κι μπορούν ν μς εξηήσουν τ «ιτί» των πρτηρήσεών μς. Ας πάρουμε, λοιπόν, τ πράμτ πό την ρχή: Πότε κι ιτί ελάμε άρε; Γελάμε, λένε οι επιστήμονες, ότν έν ερέθισμ φθάσει σε συκεκριμένες περιοχές του εκεφάλου. Πρκτικά, το ερέθισμ μπορεί ν είνι ισθητηρικό (το ρλητό), χημικό (το πρωτοξείιο του ζώτου εν έχει ονομστεί τυχί «το έριο του έλιου») ή πνευμτικό (το χιούμορ). Εξελικτικά, το ρλητό θ πρέπει ν υπήρξε η πρώτη ιτί έλιου Αυτό που προκλεί το έλιο πό το ρλητό είνι η ντίρση του ορνισμού σε έν συνήθιστο ισθητηρικό ερέθισμ (ρλητό). Γιτί, όμως, ν προκλείτι έλιο πό έν συνήθιστο εξωτερικό ερέθισμ; Δεν θ ήτν λοικότερο ν προκλείτι φόος; Οι επιστήμονες υποστηρίζουν ότι εξελικτικά το έλιο του ορνισμού σε ένν κίνυνο, ήτν μί πό τις εκφράσεις του φόου που ημιουρούσε η έκπληξη πό έν πρόσμενο ή τρομκτικό ή ενικά συντρκτικό εονός.. Η πρόκληση του ισθήμτος της νκούφισης, πόρροι του έλιου, πρμένει, κόμη κι σήμερ, ένς πό τους λόους ι τους οποίους ελάμε Όσο ι την ιιότητ του έλιου ν συνέει τους νθρώπους κι ν σπάει τον πάο μετξύ τους υτή είνι ιμφισήτητη. Υπάρχει άνθρωπος που εν ισθάνθηκε ν επικοινωνεί κι ν νωρίζει τον μέχρι προ ολίων στιμών ή περστικό με τον οποίο μοιράστηκε το ίιο έλιο; Εκτός πό την ισθητηρική κι την πνευμτική, έλιο προκλείτι κι πό τη χημική ιέερση κι, ειικότερ, πό την εισπνοή του πρωτοξειίου του ζώτου. Αν κι νκλύφθηκε πριν πό ύο ιώνες, μόλις πρόσφτ οι επιστήμονες μπόρεσν ν εντοπίσουν το σημείο του εκεφάλου στο οποίο κτλήει η ράση του: πρόκειτι ι το «μετιχμικό σύστημ», του εκεφάλου όπου εράζουν τ συνισθήμτ. Πρλύοντς το νευρικό κύκλωμ του «μετιχμικού συστήμτος» το πρωτοξείιο του ζώτου που «εκλύετι» στον εκέφλό μς μειώνει τις νστολές μς κι μς κάνει ν ελάμε με τ πάντ.

3 Μελετώντς άτομ υπό την επίρση του πρωτοξειίου του ζώτου, κθώς κι άτομ τ οποί είχν χάσει την ικνότητ ν ντιλμάνοντι τ στεί ή κόμη κι την ικνότητ ν ελούν, οι επιστήμονες έμθν πολλά ι τη φυσιολοί του έλιου. Γνωρίζουμε, λοιπόν, σήμερ ότι το «μετιχμικό σύστημ» ποτελεί κομικό σημείο ι την «πρωή» του έλιου. Ανεξάρτητ πό το είος της ιέερσης, όλ τ νευρωνικά κυκλώμτ φθάνουν κάποι στιμή στο «μετιχμικό σύστημ» το οποίο «ποφσίζει» ι την τυτότητ του έλιου μς (έντονο, ικριτικό, ξεκριστικό). Κι ότν , το έλιο κτλμάνει ολόκληρο το σώμ: συνοεύετι πό σύσπση των ζυωμτικών μυών (τέτοι που ύσκολ μπορούμε ν μιμηθούμε, ότν προσποιούμστε πως ελάμε...), ο κρικός πλμός υξάνετι, οι νπνοές ενισχύοντι, το ιάφρμ κι οι κοιλικοί μύες συσπώντι, οι σκελετικοί μύες χλρώνουν κι ομοίως χλρώνουν κι οι σφικτήρες. Δισκευή πό το άρθρο της Ιωάννς Σουφλέρη, «Ξεκριστείτε κάνει κλό!», ΤΟ ΒΗΜΑ, κι ΙΣΤΟΡΙΑ μς χρκτηρίζει μί πό τις πλέον ρχέονες περιοχές θυμόμστε ευχάριστ έν χμοελστό πρόσωπο άνωστο συνιτυμόν ή συντξιιώτη 0 ΠΑΡΑΔΕΙΓΜΑ η ελωτοποιός ράση του εννήθηκε ως ντίρση κθώς κι με κλσικό πειρμτισμό οι εκεφλικές ιερσίες ολοκληρωθούν ή πλή μυϊκή σύσπση ερνάμε επειή εν ελάμε του πρωτόονου νθρώπου εντελώς κι επί μκρόν οι νλητικές κι θερπευτικές ιιότητες του έλιου ύστερ πό εκεφλικούς τρυμτισμούς τ ευρήμτ των επιστημόνων ύστερ πό πνευμτική ιέερση ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ

4 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Ε Ρ Ω Τ Η Μ Α ( Μ Ο Ν Α Δ Ε Σ ) Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α Κθώς ντιράφτε έν άρθρο που ρήκτε σε έν σχολικό ιλίο, μερικά ποσπάσμτά του μπερεύτηκν κι μπήκν σε λάθος σειρά. Το πρώτο μέρος τους ρίσκετι στον πρώτο πίνκ. Προσπθείτε ν ρείτε το εύτερο μέρος των ποσπσμάτων στον εύτερο πίνκ, άζοντς το ράμμ κάθε εύτερου μέρους ίπλ στον ριθμό του κτάλληλου πρώτου μέρους, όπως στο πράειμ. ΠΡΩΤΟΣ ΠΙΝΑΚΑΣ ΠΡΟΣΕΞΤΕ τ ποσπάσμτ που λείπουν είνι ΔΕΚΑ (10) χωρίς το πράειμ. Υπάρχουν τρί ποσπάσμτ που εν χρειάζεστε Πολύς λόος έχει ίνει ι τ Γκράφιτι, τ μηνύμτ ηλή κι τις πρστάσεις που λέπουμε κθημερινά πάνω στους τοίχους. Είνι έν φινόμενο με ρχί κτωή, ΠΑΡΑΔΕΙΓΜΑ Είνι εονός πως στ πιιά ρέσει πολύ ν ράφουν στ θρνί τους, που είνι οι κθημερινοί τους σύντροφοι. Έν μεάλο μέρος της επιφάνεις των θρνίων κλύπτουν στίχοι, οι περισσότεροι πό τους οποίους είνι πό τ νωστά λϊκά τρούι της εποχής Επίσης, πολλά πό τ Γκράφιτι των θρνίων έχουν ως κύριο θέμ τους τον έρωτ, την άπη, τη φιλί κι τη λτρεί Μι άλλη κτηορί των Γκράφιτι εκφράζουν το θυμσμό ι κάποι ελληνική ομά ποοσφίρου ή μπάσκετ κι τη λτρεί ι θλητές, άρ Άλλοι μθητές προτιμούν ν ράφουν το όνομά τους με μικρά ή τεράστι ράμμτ, ν ηλώνουν την τυτότητά τους, τ ενιφέροντά τους, τη συμπάθει ή την ντιπάθειά τους ι κάποιον ή κι τις πολιτικές τους ιέες. Άλλοι έρχοντι Πολλοί μθητές προτιμούν ν χωρίζουν κάθετ το θρνίο τους, οριοθετώντς έτσι τη ική τους ιιοκτησί πό του συμμθητή τους. Άλλοι ράφουν πό το ιλίο τους τ ύσκολ σημεί του μθήμτος Τέλος, υπάρχουν κι οι περιπτώσεις όπου κι πάλι οι μθητές ίνοντι «κλλιτέχνες» στ εικστικά Γκράφιτι: Σίουρ τ Γκράφιτι ποτελούν ένν τρόπο έκφρσης κι επικοινωνίς κόμη κι μείωσης της εσωτερικής έντσης κι στενχώρις των μθητών. Πολύ συχνά οι μθητές κι οι μθήτριες κουρσμένοι πό τ μθήμτ, Μ υτόν τον τρόπο τ πιιά εκφράζουν τ συνισθήμτά τους, κτθέτουν τις σκέψεις τους, τις ήη ιμορφωμένες πόψεις τους ι τη ζωή κι τον κόσμο, τη νώμη τους ι το σχολείο κι φνερώνουν τ κοινωνικά τους πρότυπ, τ οποί συχνά μπορεί ν χρκτηρίζοντι «ρνητικά», Βέι, πολλά πιιά ιμρτύροντι ι την υπάρχουσ κτάστση, ζητώντς ένν κόσμο ειρήνης κι άπης, κι, τέλος, είνι κι υτά που ικτέχοντι Δισκευή πό το κείμενο «Τ Graffiti των θρνίων» της Σοφίς Σρρή. Ν.Ελληνικά (Ά Τάξ. 1ου Κύκλ. Τεχ. Επ. Εκπ.)

5 ΔΕΥΤΕΡΟΣ ΠΙΝΑΚΑΣ χ που πρτηρείτι με μεάλη συχνότητ κι υνμική κι στις μέρες μς, στους ρόμους των μελουπόλεων, στις πνεπιστημικές σχολές λλά κι σε άλλ ημόσι κτίρι. Επειή πολλά έχουν ειπωθεί ι τ πρπάνω μηνύμτ, θ νφερθούμε σε κάτι άλλο σχετικό, στ Γκράφιτι των σχολικών θρνίων κυρίως υμνσίων κι λυκείων. ΠΑΡΑΔΕΙΓΜΑ ι κάποιο νωστό ποοσφιριστή ή τρουιστή. Πίσω πό τ περισσότερ μπορούμε ν ξεχωρίσουμε λόω των ιιίτερων χρκτηριστικών του το κοριτσίστικο χέρι. Πολλοί πό τους στίχους ιπνέοντι πό ένν υθορμητισμό κι μι ισιοοξί ι άπη, ειρήνη, ευτυχί κι εμπνέουν σε υτόν που τους ιάζει μι έντονη τάση ονειροπόλησης. μις κι το άκουσμ κλσικής μουσικής τους ηρεμεί κι τους ημιουρεί μι ψυχική ευφορί. ε στ ζ η θ ι κ λ μ πό την ρχέονη επιθυμί του νθρώπου ν ιιωνίσει το όνομά του ράφοντάς το κάπου, λλά κι πό έν ίσθημ μις πρόσκιρης ιιοκτησίς. Όπως κι ν έχουν τ πράμτ, το εονός είνι ότι όσο υπάρχουν τ θρνί, τ πιιά θ εξκολουθούν ν ράφουν, ίνοντς το στίμ της εποχής τους λλά κι της ψυχής τους. πολλοί προτιμούν ν ζωρφίζουν λωμένες κριές, λουλούι, εωμετρικά σχέι, τοπί, κόμη κι περιπιχτικά σκίτσ με ντίστοιχ σχόλι ι κάποιον συμμθητή ή κθηητή τους. ιτί τ πιιά είνι φυσικό ν επηρεάζοντι πολλές φορές πό τις μφισητούμενες ξίες κι τ πρόσκιρ, πολλές φορές, είωλ που ποτελούν ντικείμεν λτρείς της κτνλωτικής κοινωνίς των μεάλων. που επιλέχθηκε τιριάζει σε μθητές κι νέους κι ημιουρεί μι ευχάριστη ιάθεση. Τ πρόσωπ ή τ σχήμτ μπορεί ν τ ει κάποιος πό ιάφορες οπτικές ωνίες κι ν έχει την ίσθηση ότι τ λέπει άμεσ. εώ ντιλμνόμστε ότι πρόκειτι ι το χέρι κυρίως των μθητών, μις κι η έντονη φυσική ρστηριότητ κι κυρίως η συμμετοχή σε ομικά, ντωνιστικά πιχνίι, όπως η κλθοσφίριση, ποτελεί χρκτηριστικό κυρίως ικό τους. ι ν τ ιάσουν στην προφορική εξέτση ή ν τ ντιράψουν σε κάποιο ιώνισμ, ή λληλορφούν μετξύ τους ι ιάφορ θέμτ, ή πλά κάνουν ρνητικά σχόλι ι κάποιον συμμθητή ή κθηητή τους. Τι ράφουν όμως; Πρτηρώντς τ σχολικά θρνί μπορούμε ν προλημτιστούμε, ν χμοελάσουμε πλώς, κόμη κι ν εκπλούμε. ή με υτοσχέι ποιήμτ κι άλλοτε με έκφρση τέχνης που προσείζει τη ζωρφική. Σε κάθε περίπτωση έι ποτελούν μι μορφή ιμρτυρίς που μένει ποτυπωμένη πάνω σ ένν υλικό φορέ, μέχρι κάποιος ν τη ιράψει. σε σύκρουση με την κτάστση που επικρτεί στην πολιτική, οικονομική κι κοινωνική ζωή, ζητώντς ρστικές λλές κι εκηλώνοντς έν φιλοσοφικό πνεύμ. ντί ν πρκολουθούν, προτιμούν ν ράφουν στ θρνί τους κι, μάλιστ, νοώντς τις πορεύσεις του σχολείου κι τις συμουλές των κθηητών τους ή κόμη κι τις κυρώσεις ι τη φθορά των θρνίων. ή μπορεί ν ποτελούν προσωπικά ημιουρήμτ των ίιων των μθητών κτά τη ιάρκει έμπνευσης. ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ

6 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α ΠΡΩΤΟΣ ΠΙΝΑΚΑΣ 0 ΠΑΡΑΔΕΙΓΜΑ ΔΕΥΤΕΡΟΣ ΠΙΝΑΚΑΣ χ

7 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Ε Ρ Ω Τ Η Μ Α ( Μ Ο Ν Α Δ Ε Σ ) Διάζετε σε μί εφημερί το πρκάτω άρθρο σχετικά με το φινόμενο της επιστημονικής πάτης. Κθώς το ιάζετε, σημειώνετε με σε κάθε έν πό τ ερωτήμτ που έχετε μπροστά σς την πάντηση (πό τις,, κι ) που θεωρείτε ότι είνι σωστή, όπως στο πράειμ. ΠΡΟΣΕΞΤΕ οι πντήσεις που πρέπει ν ώσετε είνι ΠΕΝΤΕ () χωρίς το πράειμ. Γι κάθε ερώτημ υπάρχει μόνο μί σωστή πάντηση. Οι επιστήμονες, πολλές φορές, θεωρούντι πό όλους εμάς τους... κοινούς θνητούς «μικροί θεοί», ικνοί με τις νκλύψεις τους ν λλάξουν τη ρότ της ζωής μς. Κι, όντως, τ πράμτ συχνά είνι κάπως έτσι, φού η επιστημονική έρευν εν ποτελεί μόνο έν θεωρητικό ντικείμενο που πσχολεί μι «κλίκ» ειικών, λλά μετφράζετι σε πτές λλές ι τον πκόσμιο πληθυσμό σε πολλά κι ιφορετικά επίπε. Οι επιστήμονες, όμως, είνι κι οι ίιοι... κοινοί θνητοί, οι οποίοι μάλιστ ολοέν κι περισσότερο, σύμφων με μι νέ, άκρως ενιφέρουσ μελέτη, είχνουν με τις πράξεις τους τον (κκό) ήινο χρκτήρ τους, ημοσιεύοντς μελέτες με «κτσκευσμέν» στοιχεί, μελέτες με πλιά στοιχεί που πλσάροντι ως κινούρι, μελέτες που σίζοντι στη λοοκλοπή. Στη συκεκριμένη περίπτωση, λοιπόν, τ φινόμεν (μις κλής ημοσίευσης σε έν έκριτο επιστημονικό περιοικό) κυριολεκτικώς πτούν, φού η επιστημονική πάτη είχνει ν ιντώνετι ολοέν κι περισσότερο σύμφων με την εν λόω έρευν. Στο πλίσιο της ιερεύνησης του θέμτος της επιστημονικής πάτης, ύο επιστήμονες που έχουν ως κύριο πείο έρευνς το ν «ξετρυπώνουν» τ πθοόν, τ οποί κθιστούν ύνμο το νοσοποιητικό σύστημ του νθρώπινου ορνισμού, έλν το θέμ στο μικροσκόπιο. Έτσι, οι ύο ερευνητές κολουθούν επί έτη την ίι τκτική κι σε ό,τι φορά την επιστημονική έρευν, ποκλύπτοντς την πθοένειά της που μπορεί ν θέσει σε σορό κίνυνο ολόκληρο το επιστημονικό σώμ. Oι ύο επιστήμονες, οι οποίοι είχν ιιίτερη ευισθησί σχετικά με το θέμ της ξιοπιστίς των επιστημονικών ερευνών, κθώς ντιμετώπιζν τον «ράκο» εκ των έσω, ως εκότες επιστημονικών επιθεωρήσεων, ποφάσισν ν ενώσουν τις υνάμεις τους, ώστε ν κάνουν την πιο ενελεχή έρευν που έχει ίνει ως σήμερ σχετικά με τους λόους της πόσυρσης επιστημονικών μελετών πό τις επιστημονικές επιθεωρήσεις. Συνεράστηκν κι με ένν νλυτή στην επικοινωνί των ιτρικών θεμάτων, έχοντς, ως ρχική πρόθεση την νκάλυψη των λόων ι τους οποίους ίνοντι λάθη στ επιστημονικά άρθρ, τ οποί οηούν σε πόσυρσή τους, με στόχο την έκοση οηιών ι την ποφυή τους. Έκπληξη ι την επιστημονική ομά προκάλεσε το πόρισμ της νάλυσης που έειξε ότι ο «σιλιάς» της πόσυρσης ήτν η πάτη κι όχι τ λάθη. Συκεκριμέν, το είμ της συκεκριμένης μελέτης φορούσε την νλυτική νσκόπηση.07 ερευνητικών άρθρων των πείων της ιοϊτρικής κι των επιστημών ζωής τ οποί είχν εμφνιστεί στη άση εομένων κι είχν ποσυρθεί ως τις Μΐου 01. Ιού τι κρπούς πέωσε η νζήτηση των επιστημόνων: το % των ποσύρσεων φορούσε λάθος ενώ, ντιθέτως, το 67,% φορούσε επιστημονικά «πρστρτήμτ» - συμπεριλμνομένων πάτης ή υποψίς ι πάτη (ποσοστό,%), προυσίσης ενός πλιότερου άρθρου ως κινούριου σε άλλο επιστημονικό έντυπο (1,%) κθώς κι 7 ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ

8 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ 8 Δ Ε Ι Γ Μ Α Τ Α λοοκλοπής (9,8%). Οι ερευνητές σημειώνουν ότι ως σήμερ οι τελείς ή πρπλνητικές νκοινώσεις των επιστημονικών περιοικών κι των κημϊκών κέντρων σχετικά με την πόσυρση των ημοσιευμένων μελετών είχν οηήσει σε υποεκτίμηση σχετικά με τον ρόλο της πάτης στη συνεχιζόμενη «επιημί» των ποσύρσεων. Μάλιστ, τ νέ, επικιροποιημέν στοιχεί που προκύπτουν πό τη μελέτη είχνουν ότι η νάκληση μελετών εξιτίς πάτης εκπλσιάστηκε πό το 197 ως σήμερ! Προφνώς, οι ριθμοί υτοί φίνοντι κι είνι εντυπωσικοί (ν όχι τρομκτικοί). Ωστόσο, ο κύριος ερευνητής σπεύει ν προσθέσει ότι πρέπει ν ούμε τ πράμτ υπό το σωστό πρίσμ: «Πρ ότι η επιστημονική πάτη έχει υξηθεί, πρέπει ν νφέρουμε πως με άση το σύνολο της επιστημονικής πρωής η πόσυρση μελετών εξιτίς πάτης ντιστοιχεί σε 1 νά περίπου άρθρ. Έτσι, τελικώς, εν μπορούμε ν πούμε ότι τ ποσοστά είνι μεάλ, ενώ πρέπει επίσης ν υπορμμίσουμε ότι η πλειονότητ των επιστημόνων εν συμμετέχει σε κτσκευσμένες μελέτες. Την ίι στιμή, έι, είνι σημντικό ν νφέρουμε ότι προφνώς υπάρχουν κι μελέτες που, ενώ ποτελούν προϊόν πάτης, εν ποσύρθηκν ποτέ, κριώς επειή το σύστημ θέλει πό πολλές πλευρές ν κλύψει την πάτη - κάτι τέτοιο εν θ όλευε ούτε τους επιστήμονες ούτε τ κημϊκά ιρύμτ τ οποί εκπροσωπούν ούτε τ επιστημονικά περιοικά». Σε κάθε περίπτωση, το πρόλημ της επιστημονικής πάτης μπορεί ν έχει σημντικό κοινωνικό κόστος, ειικά στις περιπτώσεις των ιτρικών επιστημών. Έχει, ι πράειμ, συμεί το εξής περισττικό: ερευνητής είχε κτσκευάσει, φού είχε χρημτιστεί, ποτελέσμτ που εν ήτν έκριτ, ι το συσχετισμό ενός είους εμολίου με συκεκριμέν υσάρεστ συμπτώμτ. Ότν η έρευνά του με τ τροποποιημέν στοιχεί ημοσιεύθηκε σε έκριτο επιστημονικό περιοικό, οήησε σε κίνημ κτά των εμολίων! Ότν, τελικά, η πάτη ξεσκεπάστηκε, πήρε πολύ χρόνο ι ν πεισθεί το εμπλεκόμενο κοινό πως εν υπάρχει κίνυνος με τον εμολισμό, ενώ ο ερευνητής ιτρός έχσε την άει άσκησης του επέλμτος. Το κκό, όμως, εν μπόρεσε ν ξείνει άμεσ. Περιπτώσεις σν κι υτή, υστυχώς, «εννούν» υσπιστί στην κοινωνί προς όλον τον επιστημονικό κλάο, κάτι που είνι άικο, φού η πλειονότητ των επιστημόνων ουλεύει ι το κοινό κλό. Τέλος, η λήθει είνι πως η τήρηση της επιστημονικής εοντολοίς φορά τον επιστήμον τον ίιο. Συχνά, όμως, σε επιστημονικές κοινότητες όπου τ συμφέροντ που πίζοντι είνι μεάλ, το πρώτο πράμ που εκπίπτει είνι, υστυχώς, η ιεολοί. Το κλό με την τεχνολοική εποχή μς είνι, έι, πως είνι πλέον πολύ εύκολο ν ινώσει την επιστημονική πάτη με άση τη χρήση ειικών λοισμικών. Δισκευή πό το άρθρο ««Επιημί» επιστημονικής πάτης. Τ κρούσμτ επιστημονικής πάτης έχουν εκπλσιστεί πό το 197 ως σήμερ», Το Βήμ Σύμφων με το κείμενο η επιστημονική έρευν φορά: υστηρά τη θεωρί κι τη μελέτη. την εφρμοή της πράξης ι το κοινό κλό. σημντικές κι πολυεπίπεες μετολές. συκεκριμένους ερευνητές κι επιστήμονες. ΠΑΡΑΔΕΙΓΜΑ

9 1 Ανάμεσ στο κύριο ερευνητικό ντικείμενο των επιστημόνων κι τη μελέτη τους υπάρχει συνάφει κθώς μφότερ φορούν τις πθοένειες ενός συστήμτος. χλρή σχέση ιτί η τκτική που κολουθείτι είνι ιφορετική. μι σχετική νλοί ως προς το ντικείμενο της έρευνς. μηενική σχέση κθώς είνι ιφορετικό το πείο της ιερεύνησης. Ο σικός στόχος που έθεσν οι ερευνητές ι τη μελέτη τους ήτν η ιερεύνηση των τρόπων σύντξης ενός επιστημονικού άρθρου. η νίχνευση κι η ποφυή των λόων πόσυρσης των άρθρων. η ποκάλυψη των ιάφορων μέσων επιστημονικής εξπάτησης. η εξέτση των νλοιών νάμεσ στην ιτρική κι τη ενική επιστήμη. Η φράση «κθώς ντιμετώπιζν το «ράκο» εκ των έσω» στην ρχή της τρίτης πρράφου σημίνει. ότι οι επιστήμονες ντιμετώπιζν με φόο το ενεχόμενο της πάτης.. ότι οι επιστήμονες είχν ήη ξεπεράσει τις υσκολίες της πάτης.. ότι οι επιστήμονες ιέθετν ήη προσωπική εμπειρί του προλήμτος.. ότι πολλοί συνάελφοι των επιστημόνων είχν ιπράξει πάτες. 9 Η σημσί της πάτης στη ιικσί πόσυρσης των άρθρων εν έχει ιεξοικά μελετηθεί ως τώρ. εν είχε υπολοιστεί εόντως ως τώρ. έτυχε της έουσς προσοχής των ερευνητών. εν είνι τόσο ρύνουσ όσο τ λάθη. Σε κάποιες περιπτώσεις, όπως στο πράειμ των εμολίων, η επιστημονική ηθική οηεί το κοινό σε υσπιστί κι την επιστήμη σε θιά κρίση. ε συμπίπτει με τη ενική επιστημονική εοντολοί. υποχωρεί στο ωμό των οικονομικών συμφερόντων. ντνκλά τη ενική ηθική του συνόλου των επιστημόνων. ΓΥΡΙΣΤΕ ΣΕΛΙΔΑ

10 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Ε Ρ Ω Τ Η Μ Α ( Μ Ο Ν Α Δ Ε Σ ) Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α Διάζετε την περίληψη του προηούμενου άρθρου. Αφού είτε ξνά κι το πλήρες κείμενο, ράψτε στον πρκάτω πίνκ ίπλ στον ριθμό του κάθε κενού της περίληψης τις κτάλληλες λέξεις/φράσεις, όπως στο πράειμ. ΠΡΟΣΕΞΤΕ οι λέξεις/φράσεις που πρέπει ν συμπληρώσετε είνι ΠΕΝΤΕ () χωρίς το πράειμ Περίληψη του προηούμενου άρθρου ι το φινόμενο της επιστημονικής πάτης 10 Πολλές φορές οι επιστήμονες μπορούν ν είνι περήφνοι, ιτί οι νκλύψεις τους μπορούν ν λλάξουν τη ροή των εονότων στη ζωή μς. Πρόλη τη σπουιότητ των τους κι τη σημσί της επιστημονικής έρευνς, οι επιστήμονες συχνά υποπίπτουν σε ολισθήμτ, κθώς πρποιούν τ εομέν της επιστημονικής έρευνς, κτσκευάζουν στοιχεί ή τελούν , χρησιμοποιούν ηλή στοιχεί άλλων ερευνητών χωρίς νφορά σ υτούς, ιπράττοντς έτσι πάτη. Η τελευτί, μάλιστ, είχνει συνεχώς ν υξάνετι κι ι τον λόο υτό έτυχε ιεξοικής ιερεύνησης πό ύο επιστήμονες που έχουν ως σικό ντικείμενο την πθοόνων μέσ στον νθρώπινο ορνισμό. Οι επιστήμονες νίχνευσν μέσ πό τη μελέτη ενός μεάλου είμτος επιστημονικών άρθρων τους λόους πόσυρσής τους. Στόχος τους ήτν η έκοση ειικών οηιών ι την ποφυή της πόσυρσης. Τ ερευνητικά τους πορίσμτ κτέειξν πως ο κύριος λόος πόσυρσης των άρθρων, σε συντριπτικό ποσοστό, φορά επιστημονικές «πτεωνιές» ηλή φινόμεν πάτης. Σε κάποιες περιπτώσεις, μάλιστ, η επιστημονική πάτη μένει τιμώρητη, ιτί το σύστημ επιθυμεί ν τη Έν πρόσφτο ε πράειμ επιστημονικής πάτης με σημντικό κοινωνικό κόστος φορά τη ισπορά ψευών στοιχείων ι τη χρήση ενός εμολίου πό επιστήμον που πήρε χρήμτ ι ν ιστρελώσει τ πορίσμτ της έρευνάς του. Λόω τέτοιων περιπτώσεων συχνά κτηορείτι όλη η επιστημονική κοινότητ που ουλεύει ι το κοινό κλό εξιτίς κι της υσπιστίς που προκλεί μι τέτοι συμπεριφορά. Τελικά, κι οι επιστήμονες, σύμφων με το άρθρο, είνι άνθρωποι κι ενέχετι ν θυσιάζουν την ηθική τους ή ν τη εοντολοί με στόχο τον πλουτισμό κι τη ιάκρισή τους. Το κλό, όμως, στην περίπτωση της επιστημονικής πάτης είνι πως στην εποχή μς υπάρχει η τεχνολοί ιάνωσής της. Η θερπεί του φινομένου πάντως είνι στ χέρι των επιστημόνων, ιτρών κι μη 0 1 ευρημάτων ΠΑΡΑΔΕΙΓΜΑ ΤΕΛΟΣ ΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ, ΠΡΟΧΩΡΗΣΤΕ ΣΤΗΝ ΕΞΕΤΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΓΛΩΣΣΑΣ

11 Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 0 Μ 0 Ν Α Δ Ε Σ 11

12 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α 1 Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α κι ΙΣΤΟΡΙΑ μς χρκτηρίζει μί πό τις πλέον ρχέονες περιοχές 0 ΠΑΡΑΔΕΙΓΜΑ 8 η ελωτοποιός ράση του εννήθηκε ως ντίρση 7 1 θυμόμστε ευχάριστ έν χμοελστό πρόσωπο άνωστο συνιτυμόν ή συντξιιώτη 6 κθώς κι με κλσικό πειρμτισμό οι εκεφλικές ιερσίες ολοκληρωθούν 10 ή πλή μυϊκή σύσπση ερνάμε επειή εν ελάμε του πρωτόονου νθρώπου εντελώς κι επί μκρόν 1 οι νλητικές κι θερπευτικές ιιότητες του έλιου τ ευρήμτ των επιστημόνων ύστερ πό εκεφλικούς τρυμτισμούς 9 ύστερ πό πνευμτική ιέερση

13 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α ΠΡΩΤΟΣ ΠΙΝΑΚΑΣ 0 ΠΑΡΑΔΕΙΓΜΑ ΔΕΥΤΕΡΟΣ ΠΙΝΑΚΑΣ χ θ μ ζ κ η λ ε 1

14 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α 1 Ανάμεσ στο κύριο ερευνητικό ντικείμενο των επιστημόνων κι τη μελέτη τους υπάρχει συνάφει κθώς μφότερ φορούν τις πθοένειες ενός συστήμτος. χλρή σχέση ιτί η τκτική που κολουθείτι είνι ιφορετική. μι σχετική νλοί ως προς το ντικείμενο της έρευνς. μηενική σχέση κθώς είνι ιφορετικό το πείο της ιερεύνησης. 1 Ο σικός στόχος που έθεσν οι ερευνητές ι τη μελέτη τους ήτν η ιερεύνηση των τρόπων σύντξης ενός επιστημονικού άρθρου. η νίχνευση κι η ποφυή των λόων πόσυρσης των άρθρων. η ποκάλυψη των ιάφορων μέσων επιστημονικής εξπάτησης. η εξέτση των νλοιών νάμεσ στην ιτρική κι τη ενική επιστήμη. Η φράση «κθώς ντιμετώπιζν το «ράκο» εκ των έσω» στην ρχή της τρίτης πρράφου σημίνει. ότι οι επιστήμονες ντιμετώπιζν με φόο το ενεχόμενο της πάτης.. ότι οι επιστήμονες είχν ήη ξεπεράσει τις υσκολίες της πάτης.. ότι οι επιστήμονες ιέθετν ήη προσωπική εμπειρί του προλήμτος.. ότι πολλοί συνάελφοι των επιστημόνων είχν ιπράξει πάτες. Η σημσί της πάτης στη ιικσί πόσυρσης των άρθρων εν έχει ιεξοικά μελετηθεί ως τώρ. εν είχε υπολοιστεί εόντως ως τώρ. έτυχε της έουσς προσοχής των ερευνητών. εν είνι τόσο ρύνουσ όσο τ λάθη. Σε κάποιες περιπτώσεις, όπως στο πράειμ των εμολίων, η επιστημονική ηθική οηεί το κοινό σε υσπιστί κι την επιστήμη σε θιά κρίση. ε συμπίπτει με τη ενική επιστημονική εοντολοί. υποχωρεί στο ωμό των οικονομικών συμφερόντων. ντνκλά τη ενική ηθική του συνόλου των επιστημόνων.

15 Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Λ Υ Σ Ε Ι Σ - Ε Ρ Ω Τ Η Μ Α 0 1 ευρημάτων λοοκλοπή νίχνευση/ποκάλυψη συκάλυψει/κλύψει ίκως ΠΑΡΑΔΕΙΓΜΑ πριάζουν/προσάλλουν 1

16 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ Η Ν Ι Κ Η Σ Γ Λ Ω Σ Σ Α Σ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ Ε Λ Λ Η Ν Ο Μ Α Θ Ε Ι Α Σ Δ Ε Ι Γ Μ Α Τ Α 16

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

Α Φ ΠΡΟ ΩΠΩΝ & ΑΝΣΑ Φ

Α Φ ΠΡΟ ΩΠΩΝ & ΑΝΣΑ Φ 1 Ποιες σφλίσεις περιλμάνει ο κλάος ζωής; Ασφλίσεις θνάτου, επιίωσης, μικτές κι ζωής με επιστροφή σφλίστρου Ασφλίσεις προσόων Ασφλίσεις σωμτικων λών, θνάτου ή νπηρίς,/σθένεις Ολ τ πρπάνω 2 Μόνιμη ολική

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΕΛΛΗΝΟΓΛΩΣΣΗ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΔΙΑΠΟΛΙΤΙΣΜΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗ ΔΙΑΣΠΟΡΑ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΜΟΝΑΔΕΣ 25 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, Ε.ΔΙΑ.Μ.ΜΕ. Ρέθυμνο, 2014 1 ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Άσκηση 1 (6

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΚΛΑΔΟΣ 10 1 Ποιος θεωρείται "τρίτος" για την ασφάλιση αστικής ευθύνης οχημάτων. α Ο οδηγός. β Ο συμβαλλόμενος και οι νόμιμοι εκπρόσωποί του.

ΚΛΑΔΟΣ 10 1 Ποιος θεωρείται τρίτος για την ασφάλιση αστικής ευθύνης οχημάτων. α Ο οδηγός. β Ο συμβαλλόμενος και οι νόμιμοι εκπρόσωποί του. 1 Ποιος θεωρείτι "τρίτος" ι την σφάλιση στικής ευθύνης οχημάτων. Ο οηός. Ο συμλλόμενος κι οι νόμιμοι εκπρόσωποί του. Το πρόσωπο του οποίου η ευθύνη κλύπτετι πό την σφλιστική σύμση. Εκείνος με τον οποίο

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7 ΧΟΗ ΕΠΑΓΓΕΜΑΤΙΚΗ ΚΑΤΑΡΤΙΗ ΜΕΤΑΦΟΡΕΩΝ ΕΚOMEE (ΑDR) ΘΕΑΙΑ & ΚΕΝΤΡΙΚΗ ΕΑΔΟ ΓΡΑΦΕΙΑ & ΑΙΘΟΥΕ ΔΙΔΑΚΑΙΑ: ΚΟΥΤΑΡΕΙΑ 12 ΜΕΙΑOΝΟ (ΑΠΕΝΑΝΤΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΠΕΙΡΑΙΩ) Τ.Κ.: 38333 ΒΟΟ ΤΗ.: 24210 34944 / 6977 280182

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

γ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς :

γ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς : Α) Μετάφρση Έγινε, λοιπόν, φνερό ότι πρέπει ν ορίσουµε νόµους γι την πιδεί κι ότι πρέπει ν την κάνουµε ίδι γι όλους. Ποιος όµως θ είνι ο χρκτήρς υτής της πιδείς κι µε ποιον τρόπο θ πρέπει ν διφύγουν την

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη.

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη. ΚΕΦΑΑΙΟ 1: ΝΟΜΟΘΕΤΙΚΟ ΠΑΙΙΟ - ΤΑΞΙΝΟΜΗΗ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ 1 Ποιος έχει την υποχρέωση ν πρδώσει στον οδηό τις ρπτές οδηίες σχετικές με τη μετφερόμενη επικίνδυνη ύλη; Ο πρλήπτης. Η τροχί. Ο ποστολές.

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ ρ. Στυλινός Γ. Λόζιος Επ. Κθηγητής του Τµήµτος Γεωλογίς του Εθνικού & Κποδιστρικού Πνεπιστηµίου Αθηνών Το εφρµοσµέν

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Η Υγεία σας - και - η Κατάστασή σας

Η Υγεία σας - και - η Κατάστασή σας Η Υγεί σς - κι - η Κτάστσή σς Kidney Disease and Quality of Life (KDQOL-SF ) Αυτή η έρευν σς ρωτά γι τις πόψεις σς γι την υγεί σς. Αυτές οι πληροφορίες θ µς βοηθήσουν ν δούµε πώς ισθάνεσθε κι πόσο κλά

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ 1 2 3 4 5 6 7 8 Ποιες θεωρούντι ορνωμένες ορές στην Ελλά; Η ορά ξιών του Χρημτιστηρίου Αθηνών Η ορά πρώων του Χρημτιστηρίου Αθηνών Η Ηλεκτρονική Δευτεροενής Αορά Τίτλων Όλες οι υπόλοιπες πντήσεις Τ προϊόντ

Διαβάστε περισσότερα

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ Α. ΕΤΗΣΙΑ ΑΣΦΑΛΙΣΤΡΑ Η ρχή της ισουνµίς πιτεί την ισότητ της νλογιστικής προύσς ξίς των σφλίστρων µε την νλογιστική προύσ ξί των προχών (σφάλισης, ράντς ή οποισήποτε άλλης

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

Κεφάλαιο 6ο Leader-Follower model Leader-Follower εταιρεία I ο ηγέτης Η µεθοδολογία είναι γενική.

Κεφάλαιο 6ο Leader-Follower model Leader-Follower εταιρεία I ο ηγέτης Η µεθοδολογία είναι γενική. Κεφάλιο 6ο Ας δούµε έν - δύο πράµτ κόµ σε σχέση µε πίνι όπου τ άτοµ έχουν έν άπειρο ριθµό στρτηικών. Leader-Follower model (Ηέτης - Ακόλουθος: είνι η νωστή ισορροπί κτά tackelberg. Το πρόληµ του Leader-Follower

Διαβάστε περισσότερα

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο Οι Νέες Τεχνολογίες ως Εργλείο κτνόησης σικών εννοιών στο Γυµνάσιο ΗΜΗΤΡΙΟΣ ΚΟΝΤΟΓΕΩΡΓΟΣ Μθηµτικός-Υπεύθυνος του Μθηµτικού Εργστηρίου του Λυκείου Ελληνικού kontod@yahoo.gr ΚΩΝ/ΝΟΣ ΜΑΡΑΓΚΟΣ Μθηµτικός -Κθ.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ

ΠΙΣΤΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΕΠΙΠΕΔΟΥ Δ 1 2 3 4 5 6 7 8 Ποιες θεωρούντι ορνωμένες ορές στην Ελλά; Η ορά ξιών του Χρημτιστηρίου Αθηνών Η ορά πρώων του Χρημτιστηρίου Αθηνών Η Ηλεκτρονική Δευτεροενής Αορά Τίτλων Όλ τ πρπάνω Τ προϊόντ της χρημτοράς

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ

ΜΕΤΡΗΣΗ ΜΙΑΣ ΠΛΕΥΡΑΣ ΤΡΙΓΩΝΟΥ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΑΛΛΩΝ ΠΛΕΥΡΩΝ ΤΟΥ ΚΑΙ ΤΩΝ ΠΡΟΒΟΛΩΝ ΤΗΣ ΣΕ ΑΥΤΕΣ 2 ΥΝ ΤΗ Υ Τ ΤΗΝ ΥΗ 363 ΜΤΗΗ Μ ΛΥ ΤΩΝΥ ΥΝΤΗ ΤΩΝ ΛΛΩΝ ΛΥΩΝ ΤΥ ΤΩΝ ΛΩΝ ΤΗ ΥΤ Μστροιάννης Ν. νάρυρος Μθημτικός πιμορφωτής Ν.Τ. ΛΗΗ Το θέμ προς διπρμάτευση νφέρετι στη σχέση των εμδών που σχημτίζοντι σε τρίωνο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 4 IOYNIOY 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1.

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Πνεπιστήμιο Πτρών Σχολή Ανθρωπιστικών κι Κοινωνικών Επιστημών Πιδγωγικό Τμήμ Δημοτικής Εκπίδευσης Πρόγρμμ Μετπτυχικών Σπουδών Mετπτυχική Εργσί Πεποιθήσεις κι κίνητρ. Μι ερευνητική προσέγγιση σε πολιτισμικά

Διαβάστε περισσότερα

Τα οικονομικά της Υγείας: μια >υσάρεστη επιστήμη ή ένα χρήσιμο εργαλείο για τις πολιτικές Υγείας;

Τα οικονομικά της Υγείας: μια >υσάρεστη επιστήμη ή ένα χρήσιμο εργαλείο για τις πολιτικές Υγείας; Τ οικονομικά της Υγείς: μι υάρετη επιτήμη ή έν χρήιμο εργλείο γι τις πολιτικές Υγείς; Ιωάννης Κυριόπουλος Κθηγητής Οικονομικών της Υγείς, Διευθυντής του Τομέ Οικονομικών της Υγείς, Εθνική Σχολή Δημόις

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α Β ΤΡΙΤΗ 3 IOYNIOY 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ

2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ 1.3 ΜΕΤΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ ΚΙ ΕΦΠΤΟΜΕΝΗΣ ΘΕΩΡΙ 1. Μετβολή του ηµιτόνου : Ότν µί οξεί ωνί υξάνετι, υξάνετι κι το ηµίτονο της. ηλδή ν ω > φ τότε ηµω > ηµφ. Μετβολή του συνηµιτόνου : Ότν µί οξεί ωνί

Διαβάστε περισσότερα

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ VI ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ Α ΕΙ Η ΡΑΝΤΩΝ ΚΑΙ ΣΥΝΑΦΕΙΣ ΤΜ Οι ράντες ζωής ιφέρον πό τις "βέβιες" ράντες (πο εξετάζοντι στ οιονοµιά µθηµτιά ιότι οι τβολές µις ράντς ζωής εξρτώντι πό την επιβίωση

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν. ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.

Διαβάστε περισσότερα

Αλγόριθµοι Άµεσης Απόκρισης

Αλγόριθµοι Άµεσης Απόκρισης Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεί εισγωγής γι τη Φυσική Α Λυκείου Οι πρκάτω σημειώσεις δινέμοντι υπό την άδει: Creative Commons Ανφορά Δημιουργού - Μη Εμπορική Χρήση - Πρόμοι Δινομή 4.0 Διεθνές. 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5)

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) ΔΙΓΩΝΙΣΜ Θέµ 1 ο πό τις πρκάτω πολλπλές πντήσεις ν επιλέξετε τη σωστή. 1. Ηκυττρική διφοροποίηση συνίσττι. στην πύση της λειτουργίς όλων των γονιδίων β. στην εκλεκτική λειτουργί των γονιδίων γ. σε δυνµί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ ΚΕΦΑΑΙΟ 1: ΔΕΞΑΜΕΝΗ 30 Τ κπάκι των νθρωποθυρίδων μπορούν ν πρμένουν νοικτά: Κτά τη μετφορά με δεξμενή φορτωμένη 15% του συνολικού όκου. Κτά τις ερσίες κθρισμού της δεξμενής (gasfree). Κτά την εκφόρτωση

Διαβάστε περισσότερα

β. CH 3 COOK γ. NH 4 NO 3 δ. CH 3 C CH. Μονάδες Ποιο από τα παρακάτω ζεύγη ενώσεων όταν διαλυθεί σε νερό δίνει ρυθµιστικό διάλυµα.

β. CH 3 COOK γ. NH 4 NO 3 δ. CH 3 C CH. Μονάδες Ποιο από τα παρακάτω ζεύγη ενώσεων όταν διαλυθεί σε νερό δίνει ρυθµιστικό διάλυµα. ΘΕΜΑ ο Στις ερωτήσεις. έως.4, ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση... Το πλήθος των τοµικών τροχικών στις στιβάδες L κι Μ είνι ντίστοιχ:. 4

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ Σ χ ο λ ή Διο ίκ η σ η ς κ Ο ικ ο ν ο μ ί ς Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΔΙΕΡΕΥΝΗΣΗ ΑΠΟΨΕΩΝ ΧΡΗΣΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΤΩΝ ΕΞΩΤΕΡΙΚΩΝ ΙΑΤΡΕΙΩΝ ΤΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ ος Ηµθιώτικος Μθητικός ιγωνισµός στ Μθηµτικά «Η ΥΠΑΤΙΑ» Θέµ 1ο Σάτο 1 Νοεµρίου 009 Α Γυµνσίου Ο ρίσκετι σε έν κινηµτογράφο όπου όλες οι σειρές έχουν κριώς

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος Πρόχειρες σημειώσεις Βσισμένες στο ιλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Μέρος Α: Κυκλώμτ συνεχούς ρεύμτος Κ. Μουτζούρης Τμήμ Ηλεκτρονικής, ΤΕΙ Αθήνς Θερινό εξάμηνο 009

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z Έν εξιρετικό υποψήφιο ο ή 4 ο θέµ Ν µελετηθεί προσεκτικά ίνοντι οι µη µηδενικοί µιγδικοί ριθµοί,, των οποίων οι εικόνες A, Β, Γ στο µιγδικό επίπεδο είνι σηµεί του κύκλου y ( ( ( Ν ποδείξετε ότι Ν ποδείξετε

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ Από το Πρακτικό 5/2013 της συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρατίου, της 24 ης Μαϊου 2013

ΑΠΟΣΠΑΣΜΑ Από το Πρακτικό 5/2013 της συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρατίου, της 24 ης Μαϊου 2013 ΑΠΟΣΠΑΣΜΑ Από το Πρκτικό 5/2013 της συνεδρίσης της Οικονομικής Επιτροπής του Δήμου Αγίου Ευστρτίου, της 24 ης Μϊου 2013 Αριθμός Απόφσης 24/2013 ΠΕΡΙΛΗΨΗ Προέλεγχος πολογισμού εσόδων - εξόδων του Δήμου

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων y y=e y= ð 3 e Ä Ã Å 2 y = ln lnð 1 O A Â 1 lnð 2 e 3 ð 4 Δημήτρης Α. Ντρίζος Σχολ. Σύμ. Μθημτικών ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμολή των γεωμετρικών νπρστάσεων στην πόδειξη μθημτικών προτάσεων

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα