ΚΟΛΛΕΓΙΟ. Έτσι για να διευκολυνθούµε στις πράξεις µας εισάγουµε τους κλασµατικούς αριθµούς. ΑΡΙΘΜΗΤΗΣ ν

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΟΛΛΕΓΙΟ. Έτσι για να διευκολυνθούµε στις πράξεις µας εισάγουµε τους κλασµατικούς αριθµούς. ΑΡΙΘΜΗΤΗΣ ν"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ. ΤΑ ΚΛΑΣΜΑΤΑ. Ορισµοί Όπως έχουµε ήη µάθει το σύνολο των φυσικών ριθµών είνι το εξής: ΙΝ {...} Ακόµη ξέρουµε ότι πολλές φορές το πηλίκο ύο φυσικών ριθµών εν είνι πάντ φυσικός. Πράειµ: Το πηλίκο της ιίρεσης εν είνι ένς φυσικός ριθµός. Έχουµε 0 ΙΝ. Έτσι ι ν ιευκολυνθούµε στις πράξεις µς εισάουµε τους κλσµτικούς ριθµούς. Ονοµάζουµε κλάσµ κάθε ριθµό της µορφής ν µ ότν µ ν είνι φυσικοί ριθµοί κι ν 0 ηλή πρέπει το ν ν είνι ιάφορο του µηενός). Το µ ονοµάζετι ριθµητής ενώ το ν προνοµστής. ΑΡΙΘΜΗΤΗΣ µ ν ΠΑΡΟΝΟΜΑΣΤΗΣ Πρτηρήσεις Έν κλάσµ είνι ίσο µε το µηέν ν ο ριθµητής του είνι µηέν. Έν κλάσµ είνι ίσο µε τη µονά ν ο ριθµητής κι ο προνοµστής είνι ίσοι... Ασκήσεις Ι. Ν ρφούν οι πρκάτω φυσικοί ριθµοί σε κλσµτική µορφή ε. στ. ζ. η. θ. 00 ι. ΙΙ. Ν µεττρέψετε τους πρκάτω εκικούς ριθµούς σε κλάσµτ ε. 0 στ. 0 ζ. 00 η. 00 θ. ι. 0 ΙΙΙ. Ν λύσετε τις πρκάτω εξισώσεις: x y x ε. ω x x+ στ. x ζ. 0 η. x θ. x+ x ι. 0

2 ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Ανάω Κλάσµτ Απλοποίηση Κλσµάτων Ισούνµ Κλάσµτ Ανάωο λέετι το κλάσµ που οι όροι του είνι ριθµοί πρώτοι µετξύ τους. ηλή ν ο Μέιστος Κοινός ιιρέτης ριθµητή κι προνοµστή είνι ίσος µε τη µονά τότε το κλάσµ υτό λέετι νάωο. Πρείµτ: ΠΡΟΣΟΧΗ!!!. Το κλάσµ εν είνι νάωο ιτί ΜΚ ). Το κλάσµ είνι νάωο ιτί ΜΚ ) ΑΠΑΡΑΙΤΗΤΗ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΕΥΡΕΣΗ ΤΟΥ Μ.Κ.. Η ιικσί ι την πλοποίηση κλσµάτων κι την µεττροπή τους σε νάω στηρίζετι στην εξής σική ιιότητ των ρητών ριθµών: Μπορούµε ν πολλπλσιάσουµε ή ν ιιρέσουµε τον ριθµητή κι τον προνοµστή ενός κλάσµτος µε τον ίιο ριθµό κι το κλάσµ ν µην λλάξει. Πρείµτ: ) Έστω ότι έχουµε το. Αν πολλπλσιάσω κι τον ριθµητή κι τον προνοµστή µε το τότε σύµφων µε τον πρπάνω κνόν το κλάσµ ε πρόκειτι ν λλάξει. ηλή: ) Αντίστοιχ στο κλάσµ ν ιιρέσω κι τον ριθµητή κι τον προνοµστή µε τον ίιο ριθµό µε το τότε το κλάσµ εν πρόκειτι ν λλάξει. ηλή:. Τ κλάσµτ που προέκυψν ηλή τ στο πράειµ κι το στο πράειµ είνι ισούνµ των ρχικών κι ντίστοιχ.

3 ΑΡΙΣΤΟΤΕΛΕΙΟ Κλάση Ισουνµίς ονοµάζετι έν σύνολο ισούνµων κλσµάτων. Πράειµ: Το σύνολο 0... είνι η κλάση ισουνµίς του ΜΕΘΟ ΟΛΟΓΙΑ ΑΠΛΟΠΟΙΗΣΗΣ ΚΛΑΣΜΑΤΩΝ Γι ν πλοποιήσουµε κλάσµτ κολουθούµε την εξής µεθοολοί: Υπολοίζουµε τον Μέιστο Κοινό ιιρέτη ριθµητή κι προνοµστή. ιιρούµε κι τον ριθµητή κι τον προνοµστή µε τον ριθµό που ρήκµε. Το κλάσµ που προέκυψε είνι ισούνµο του ρχικού κι είνι νάωο. Πρείµτ:. Γι ν πλοποιήσουµε το κλάσµ υπολοίζουµε τον ΜΚ ) κι µε το ιιρούµε ριθµητή κι προνοµστή ηλή: Το είνι νάωο ιτί ΜΚ ). Το κλάσµ είνι νάωο κι εν πλοποιείτι ιτί ο ΜΚ )... Ασκήσεις Ι. Ν πλοποιήσετε όσ πό τ πρκάτω κλάσµτ εν είνι νάω ε. στ. 0 0 ζ. 0 η. 0 θ. ι. 0 ι. ι. 0 ι. ι. ιε. ιστ. ιζ. 0 ιη. ιθ. 0 κ. κ. κ. κ. 0 κ. κε. κστ. κζ. κη. κθ. λ. λ. 0 λ. 0 λ. λ. λε. 0 λστ. 0 λζ. 0 λη. 0 λθ. 0 µ. µ. 0 µ.

4 ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ µ. 0 µ. 0 µε. 0 µστ. 0 µζ µη. 0 µθ. ΙΙ. Ν µεττρέψετε τ πρκάτω κλάσµτ σε κλάσµτ ισούνµ µε τ ρχικά κι µε προνοµστή το 00. Χρήσιµη άσκηση ι τ ποσοστά) ε. 0 στ. ζ.. Οµώνυµ κι Ετερώνυµ κλάσµτ ύο ή κι περισσότερ κλάσµτ µε ίσους προνοµστές ονοµάζοντι οµώνυµ. ύο κλάσµτ µε ιφορετικούς προνοµστές ονοµάζοντι ετερώνυµ. ύο ή κι περισσότερ ετερώνυµ κλάσµτ τρέποντι σε οµώνυµ σύµφων µε τη πρκάτω µεθοολοί: Γι την πλούστευση των πράξεων πρώτ τρέπουµε όλ τ κλάσµτ σε νάω. Βρίσκουµε το Ελάχιστο Κοινό Πολλπλάσιο των προνοµστών Βάζουµε «κπελάκι» πάνω πό όλ τ κλάσµτ τ οποί έχουµε κι σ υτά ράφουµε τον ριθµό ο οποίος µς είχνει πόσες φορές ο προνοµστής «χωράει» στο ελάχιστο κοινό πολλπλάσιο των προνοµστών Πολλπλσιάζουµε κι τον ριθµητή κι τον προνοµστή του κάθε κλάσµτος µε τον ριθµό που ρίσκετι στο ντίστοιχο «κπελάκι» Όλ τ κλάσµτ έχουν προνοµστή ίσο µε το ΕΚΠ των προνοµστών. Πράειµ: Έχουµε τ κλάσµτ: κι. Πρτηρούµε ότι τ κλάσµτ είνι νάω. Το ΕΚΠ ) Πίρνουµε κάθε κλάσµ χωριστά κι έχουµε: 0 ΠΡΟΣΟΧΗ!!! ΑΠΑΡΑΙΤΗΤΗ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΕΥΡΕΣΗ ΤΟΥ Ε.Κ.Π.

5 ΑΡΙΣΤΟΤΕΛΕΙΟ.. Άσκηση Ν κάνετε οµώνυµ τ πρκάτω κλάσµτ: Σύκριση Κλσµάτων ε ξεχνάµε ποτέ ότι όλοι οι κέριοι ράφοντι ως κλάσµτ µε προνοµστή τη µονά. Έν κλάσµ είνι µελύτερο πό τη µονά ν κι µόνο ν ο ριθµητής του κλάσµτος είνι µελύτερος πό τον προνοµστή του. Πράειµ: Το κλάσµ είνι µελύτερο πό τη µονά είνι όπως λέετι κτχρηστικό κλάσµ) ιτί ο ριθµητής είνι µελύτερος πό τον προνοµστή το. Έν κλάσµ είνι µικρότερο πό τη µονά ν κι µόνο ν ο ριθµητής του κλάσµτος είνι µικρότερος πό τον προνοµστή του. Πράειµ: Το κλάσµ είνι µικρότερο πό τη µονά είνι όπως λέετι νήσιο κλάσµ) Πράειµ: ιτί ο ριθµητής το είνι µικρότερος πό τον προνοµστή το. Αν ύο κλάσµτ έχουν ίιο προνοµστή ηλή ν είνι οµώνυµ) τότε µελύτερο είνι Το κλάσµ είνι µελύτερο πό το κλάσµ ιτί είνι οµώνυµ κι ο ριθµητής του πρώτου κλάσµτος το είνι µελύτερος πό τον ριθµητή του ευτέρου κλάσµτος το. υτό που έχει κι τον µελύτερο ριθµητή. Αν ύο κλάσµτ έχουν ίιο ριθµητή τότε µελύτερο είνι υτό που έχει κι τον µικρότερο προνοµστή.

6 ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πράειµ: Το κλάσµ είνι µικρότερο πό το κλάσµ ιτί ενώ έχουν τον ίιο ριθµητή ο προνοµστής του ευτέρου κλάσµτος το είνι µικρότερος πό τον προνοµστή του πρώτου κλάσµτος το. Γι ν συκρίνουµε ύο κλάσµτ που εν είνι ούτε οµώνυµ ούτε έχουν τον ίιο ριθµητή:. Ελέχουµε µήπως κάποιο πό τ κλάσµτ είνι µελύτερο της µονάς ενώ το άλλο είνι µικρότερο. Τότε µελύτερο θ είνι κι το κλάσµ που θ ξεπερνάει κι το.. Αλλιώς φού τ πλοποιήσουµε τ τρέπουµε σε οµώνυµ µε τη οήθει του Ε.Κ.Π. των προνοµστών κι συκρίνουµε τους ριθµητές τους. Πρείµτ: Το κλάσµ είνι µικρότερο πό το κλάσµ ιτί το εύτερο κλάσµ είνι 0 µελύτερο πό το >0) ενώ το πρώτο είνι µικρότερο πό το <). < < 0 < 0 Γι ν συκρίνουµε τ κλάσµτ κι είµστε νκσµένοι ν τ τρέψουµε σε 0 οµώνυµ κι µετά ν συκρίνουµε τ ισούνµ κλάσµτ που θ προκύψουν. Το Ε.Κ.Π. 0) 0 κι έχουµε ι κάθε έν πό τ κλάσµτ: Ασκήσεις Ι. Ν συκρίνετε τ πρκάτω κλάσµτ µε τη µονά..... ε. στ. x+ x ΙΙ. Ν ιτάξετε τ πρκάτω κλάσµτ κτά φθίνουσ σειρά πό το µελύτερο προς το µικρότερο). 0 0

7 ΑΡΙΣΤΟΤΕΛΕΙΟ. ΙIΙ. Ν ιτάξετε τ πρκάτω κλάσµτ κτά ύξουσ σειρά πό το µικρότερο προς το µελύτερο).. ΙV. Ν συκρίνετε τ πρκάτω κλάσµτ: ε. 0. Πρόσθεση κι Αφίρεση Κλσµάτων Γι ν προσθέσουµε κι ι ν φιρέσουµε κλάσµτ κολουθούµε την εξής µεθοολοί: Απλοποιούµε όσ κλάσµτ εν είνι νάω πρτηρούµε ν τ κλάσµτ είνι οµώνυµ ν εν είνι οµώνυµ τ µεττρέπουµε σε οµώνυµ κολουθώντς την ιικσί στη σελί. ράφουµε µί µεάλη ρµµή κλάσµτος κι σν προνοµστή άζουµε τον κοινό τους προνοµστή κι σν ριθµητή ράφουµε τους ριθµητές µε πρόσηµ τ πρόσηµ που έχουν µπροστά τ κλάσµτ κάνουµε τις πράξεις στον ριθµητή όπως κριώς κάνουµε τις πράξεις στις ριθµητικές πρστάσεις κτλήουµε σε ένν ρητό ριθµό ελέχουµε ν το κλάσµ που προέκυψε είνι νάωο κι ν πλοποιείτι το πλοποιούµε µε τον Μ.Κ.. του ριθµητή κι του προνοµστή. Πράειµ: Σύµφων µε την πρπάνω µεθοολοί θ κάνουµε τις πράξεις στην πρκάτω ριθµητική πράστση: το Ε.Κ.Π.) )

8 + + ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Αυτά τ ύο ήµτ θ τ πρλείπουµε πό εώ κι πέρ Το κλάσµ εν πλοποιείτι ιτί ο ΜΚ ) ηλή είνι νάωο κι στµτάµε εώ... Άσκηση Ν κάνετε τις πράξεις στις πρκάτω ριθµητικές πρστάσεις: ε ζ. + η στ. + θ Πολλπλσισµός Κλσµάτων Γι ν πολλπλσιάσουµε ρητούς που είνι ρµµένοι ως κλάσµτ πολλπλσιάζουµε Πράειµ: τους ριθµητές µετξύ τους κι τους προνοµστές µετξύ τους. Το κλάσµ εν είνι νάωο ιότι ΜΚ 0). Άρ ι ν το κάνουµε νάωο θ πρέπει ν ιιρέσουµε κι τον ριθµητή κι τον προνοµστή µε το. Προσοχή! 0 0 Είνι πρίτητο στην Α Γυµνσίου ν µάθουµε ν πλοποιούµε τ κλάσµτ πριν εκτελέσουµε τους πολλπλσισµούς. ηλή η πρπάνω πράστση πρέπει ν πλοποιηθεί ως εξής: 0 / / / / Αν εξοικειωθείτε πολύ µε τις πλοποιήσεις τότε οι πολλπλσισµοί θ ίνοντι πιο εύκολ κι 0 0 στο τέλος τ κλάσµτ που θ προκύπτουν θ είνι νάω.

9 ΑΡΙΣΤΟΤΕΛΕΙΟ Πολλπλσισµός κλάσµτος µε φυσικό Το ινόµενο ενός κλάσµτος µε ένν φυσικό είνι έν κλάσµ ο οποίος έχει ως προνοµστή τον ίιο κι ως ριθµητή το ινόµενο του ριθµητή µε το φυσικό. Πρείµτ: Αυτό ίνετι ιτί το ράφετι κι ως πιο νλυτικά λοιπόν:. / Όπου είνι υντή η πλοποίηση ν ίνετι. /.. Ασκήσεις Ι. Ν πλοποιήσετε τις πρκάτω πρστάσεις: x y ε. στ. y x ΙΙ. Ν πλοποιήσετε τις πρκάτω πρστάσεις: ε ζ. 0 θ. 0 0 ι. ι. ιε στ. 0 η. 0 0 ι. 0 ι ι. 0 ιζ. 0

10 . υνάµεις Κλσµάτων ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Γι ν υψώσουµε έν κλάσµ σε µί ύνµη υψώνουµε κι τον ριθµητή κι τον προνοµστή του κλάσµτος στη ύνµη υτή. Πρείµτ: ) x x x x ν ν ν 0. ιίρεση Κλσµάτων Γι ν ιιρέσουµε κλάσµτ πολλπλσιάζουµε τον ιιρετέο µε τον ντίστροφο του ιιρέτη. Ή λλιώς ντιστρέφουµε τους όρους του ευτέρου κλάσµτος κι κάνουµε πολλπλσισµό. Πράειµ: Το κλάσµ εν είνι νάωο ιότι Μ.Κ..0). Άρ ι ν το κάνω νάωο θ πρέπει ν ιιρέσω κι τον ριθµητή κι τον προνοµστή µε το. 0 0 Όπως κι στην προηούµενη ενότητ θ έπρεπε πριν εκτελέσουµε τους πολλπλσισµούς ν πλοποιήσουµε την πράστση: ΠΡΟΣΟΧΗ! / / Πρέπει ν πλοποιήσουµε φού έχουµε ντιστρέψει το εύτερο όρο ι ν µην κάνουµε λάθος πλοποίηση. 0

11 ΑΡΙΣΤΟΤΕΛΕΙΟ ιίρεση κλάσµτος µε φυσικό Το πηλίκο ενός κλάσµτος µ έν φυσικό ριθµό είνι έν κλάσµ που έχει ως προνοµστή τον ίιο κι ως ριθµητή το πηλίκο του ριθµητή κι του κερίου. Πρείµτ: ή λλιώς / / 0 0 / Σύνθετ κλάσµτ Τ σύνθετ κλάσµτ είνι πηλίκ κλσµάτων. Σύνθετ είνι τ πρκάτω κλάσµτ: όπου κι είνι κέριοι ριθµοί. Γι ν πλοποιήσουµε τ σύνθετ κλάσµτ κολουθούµε τους πρκάτω κνόνες: Με τον πρπάνω τρόπο τ σύνθετ κλάσµτ ίνοντι πλά. Στις σκήσεις χρησιµοποιούµε τον πρκάτω πιο ρήορο τρόπο: Συµπληρώνουµε ν χρειάζετι µε µονάες:

12 ΑΝΝΑ ΖΟΥΡΝΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ.. Άσκηση Ν ίνουν πλά τ πρκάτω σύνθετ κλάσµτ:.... ε. στ.. Επνάληψη Β Κεφλίου.. Ερωτήσεις Θεωρίς. Πως ονοµάζοντι οι όροι ενός κλάσµτος;. Πότε το κλάσµ ν µ είνι ένς κέριος ριθµός; µ. Ποιος είνι ο ντίστροφος του ; ν. Ποιο κλάσµ ονοµάζετι νάωο;. Πότε έν κλάσµ είνι ίσο µε τη µονά;. Πότε έν κλάσµ είνι µικρότερο πό τη µονά;. Πότε έν κλάσµ είνι µικρότερο πό τη µονά;. Πότε ύο κλάσµτ ονοµάζοντι ισούνµ;. Πως προσθέτω κλάσµτ; 0. Πως πολλπλσιάζω κλάσµτ;;. Πως πολλπλσιάζω έν φυσικό ριθµό µε έν κλάσµ;. Πως ιιρώ κλάσµτ;;. Πως ιιρώ ένν κέριο ριθµό µε έν κλάσµ;. Τι είνι τ σύνθετ κλάσµτ; πως τ κάνουµε πλά;.. Επνληπτικές Ασκήσεις Ι. Ν ίνουν οι πρκάτω πράξεις:

13 ε. ΑΡΙΣΤΟΤΕΛΕΙΟ στ. ζ. ΙΙ. Ν πλοποιηθούν τ πρκάτω κλάσµτ: ε. 0 στ. 0 ζ. η. θ. ι. ι. ι. ι. ι. ιε. ιστ. ιζ. 0 ιη. 0 ιθ. κ. κ. 0 κ. 0 κ. 0 κ. κε. 0 κστ. 0 0 κζ. κη. κθ. 0 λ. 0 λ. λ. λ. λ. 0 λε. λστ. λζ. λη. 0 λθ. µ. 0 µ. 0 µ. 0 µ. µ. 0 µε. 0 µστ. 0 µζ. µη. ΙΙΙ. Ν ίνουν πλά τ πρκάτω σύνθετ κλάσµτ:.... ε. στ. ζ. 0 η. θ. ι. ι. ι. ΙV. Ν ρείτε τους ντίστροφους των πρκάτω ριθµών ν υπάρχουν):.... ε. στ. η. 0

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το Ε Π Α Ν Α Λ Η Ψ Η Σελ.. Τ σύνολ των ριθµών:. Ν: οι Φυσικοί ριθµοί Ν = {0,,,, 4,.. } β. Ζ: οι Ακέριοι ριθµοί Ζ = {. -, -, -, 0 +, +, +,. } γ. Q: οι Ρητοί ριθµοί Q = / Ζ κι β Ζ µε β 0 β δ. Q : οι Άρρητοι

Διαβάστε περισσότερα

Πολλαπλασιασμός-Διαίρεση ρητών παραστάσεων

Πολλαπλασιασμός-Διαίρεση ρητών παραστάσεων ΜΕΡΟΣ Α.0 ΠΡΑΞΕΙΣ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ. 0 ΠΡΑΞΕΙΣ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Πολλπλσισμός-Διίρεση ρητών πρστάσεν Πολλπλσισμός Γι ν πολλπλσιάσουμε ένν κέριο ριθμό με έν κλάσμ ή ι ν πολλπλσιάσουμε δύο κλάσμτ, χρησιμοποιούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ

Διαβάστε περισσότερα

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες Εξίσωση ο υ βθµού Σελ. 8 Ορισµοί - πρτηρήσεις. Κάθε πολυώνυµο που µετά πό νγωγή οµοίων όρων κι διάτξη κτά τις φθίνουσες δυνάµεις του έχει πάρει την µορφή βγ όπου,β,γ πργµτικοί ριθµοί κι λέγετι τριώνυµο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)

Διαβάστε περισσότερα

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)]

1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)] Γι ποιες τιμές του ορίζοντι οι πρστάσεις ; δ 9 7 ε Ν υπολογιστούν οι πρκάτω πρστάσεις : Α = 7 Ν γίνουν οι πράξεις: Β = 7 γ στ [ ( ) ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] Αν = 9 0 8 κι = 0,00 ν υπολογίσετε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες; ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

Σελ. 1. Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος Μαθηµατικά Γ Γυµνασίου ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Σελ. 1. Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος Μαθηµατικά Γ Γυµνασίου ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Ι. Σωτηρόπουλος - Φ. Πετσιάς -. Κάτσιος ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φυσικοί ριθµοί (Ν :,,,,... Ακέριοι ριθµοί (Ζ :...,,,,,... Ρητοί (Q λέγοντι οι ριθµοί που µπορούν ν γρφούν µε τη µορφή κλάσµτος δηλδή, στη µορφή

Διαβάστε περισσότερα

Καρτεσιανές Συντεταγµένες

Καρτεσιανές Συντεταγµένες Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων

Διαβάστε περισσότερα

Α. ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΩΝ

Α. ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΩΝ ΜΑΘΗΜΑ 8 Κεφάλαιο 2o : Τα Κλάσµατα Υποενότητα 2.3: Σύγκριση Κλασµάτων Θεµατικές Ενότητες: 1. Σύγκριση Κλασµάτων. Α. ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΩΝ ΚΑΝΟΝΕΣ ΣΥΓΚΡΙΣΗΣ ΚΛΑΣΜΑΤΩΝ Μεταξύ οµωνύµων κλασµάτων µεγαλύτερο είναι

Διαβάστε περισσότερα

Παρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.

Παρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης. ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Α κι θετικός κέριος τότε η µη ρητική ρίζ της εξίσωσης λέγετι ιοστή ρίζ του κι συµολίζετι. ηλδή = Γράφουµε: = = ( ) = κι = Πρτηρήσεις. Ο συµολισµός έχει όηµ µόο ότ. Στη πράστση

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,

Διαβάστε περισσότερα

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΟ Ν. ΠΕΡΑΜΟΥ ΣΧ. ΕΤ Επαναληπτικές ασκήσεις

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΟ Ν. ΠΕΡΑΜΟΥ ΣΧ. ΕΤ Επαναληπτικές ασκήσεις 1. Ν ρίτ το ΕΚΠ των ριθμών: ) 2, 3, 4 ) 2, 4, 8 ) 3, 5, 6 )4, 7, 9 Επνλπτικές σκήσις 2. Ο ριθμός των σλίων νός ιλίου ίνι μτξύ των ριθμών 100 κι 150. Ότν μτράμ τις σλίς νά 5 ή νά 6, ν πρισσύι κμί. Ν ρίτ

Διαβάστε περισσότερα

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ 78 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 1. Τι ονοµάζετε δύνµη ν ; Ονοµάζετι δύνµη ν µε άση τον ριθµό κι εκθέτη το φυσικό ν > 1, το γινό- µενο πό ν πράγοντες ίσους µε. Ορίζουµε κόµ ότι: 1 0 1 µε 0 - ν. Ποιες

Διαβάστε περισσότερα

Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε

Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε Αλγεβρ Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΥΠΟΙ Ι ΙΟΤΗΤΕΣ ΥΝΑΜΕΩΝ I. ν... ν πράγοντες, ν, ν ν> ν Rκι ν Ν II. ν, ν µ, ν Ν µ ν ν µ, >, µ Ζ, µ ν ν Ν κι εάν Ορισµός : Αν > κι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

ΚΟΛΛΕΓΙΟ. το ξεκίνηµα των µοντέρνων µαθηµατικών. Οι πρώτες του µελέτες πάνω στη θεωρία των συνόλων χρονολογούνται από το 1879.

ΚΟΛΛΕΓΙΟ. το ξεκίνηµα των µοντέρνων µαθηµατικών. Οι πρώτες του µελέτες πάνω στη θεωρία των συνόλων χρονολογούνται από το 1879. ΑΡΙΣΤΟΤΕΛΕΙΟ ΚΟΛΛΕΓΙΟ 1. ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Θεωρία Συνόλων Τα σύνολα είναι οµάδες στοιχείων, διαφορετικά µεταξύ τους, τα οποία έχουν κάποιες συγκεκριµένες κοινές ιδιότητες και οι οποίες είναι καλά ορισµένες.

Διαβάστε περισσότερα

Θεωρία 1 Αποδείξτε ότι η διανυσματική ακτίνα του αθροίσματος των μιγαδικών α+βi και γ+δi είναι το άθροισμα των διανυσματικών ακτίνων τους.

Θεωρία 1 Αποδείξτε ότι η διανυσματική ακτίνα του αθροίσματος των μιγαδικών α+βi και γ+δi είναι το άθροισμα των διανυσματικών ακτίνων τους. Θεωρί - Αποδείξεις Θεωρί Αποδείξτε ότι η δινσμτική κτίν το θροίσμτος των μιδικών κι δ είνι το άθροισμ των δινσμτικών κτίνων τος. Αν Μ κι Μ δ είνι οι εικόνες των κι δ ντιστοίχως στο μιδικό επίπεδο τότε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Μθηµτικά Γ Γυµνσίου ** Άρης Νικολΐδης ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. ίνετι η εξίσση Πόσες λύσεις έχει η εξίσση υτή; Σε ποι σηµεί η ευθεί, τέµνει τους άξονες; Ν κάνετε τη ρφική πράστση της προηούµενης ευθείς..

Διαβάστε περισσότερα

i Είναι εξίσωση δευτερου βαθµού µε τη διαφορά ότι της λείπει ο σταθερός όρος ( ) ( ) ( ) ( )

i Είναι εξίσωση δευτερου βαθµού µε τη διαφορά ότι της λείπει ο σταθερός όρος ( ) ( ) ( ) ( ) ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΔΙΑΚΡΙΝΟΥΣΑ ΑΘΡΟΙΣΜΑ ΚΑΙ ΓΙΝΟΜΕΝΟ ΡΙΖΩΝ Εξίσωση ου θµού Εξίσωση µε πολυώνυµο P( x) ου θµού που περιέχει τον άνωστο x κι έχει την µορφή P( x) Μορφή : x + x+, όπου,, στθεροί πρµτικοί

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1

ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1 ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι

Διαβάστε περισσότερα

ΟΡΙΖΟΥΣΕΣ. άθροισµα του δείκτη (θέση) του στοιχείου είναι άρτιο ή περιττό δηλαδή ( 1) = ( + ), στο στοιχείο α 32 είναι ( 1)

ΟΡΙΖΟΥΣΕΣ. άθροισµα του δείκτη (θέση) του στοιχείου είναι άρτιο ή περιττό δηλαδή ( 1) = ( + ), στο στοιχείο α 32 είναι ( 1) ΟΡΙΖΟΥΣΕΣ ΈΝΝΟΙ ΤΗΣ ΟΡΙΖΟΥΣΣ Γι ένν ν ν τετρωνικό πίνκ, έµε ορίζουσ του πίνκ κι ράφουµε deta A, τον πρµτικό ριθµό που προκύπτει πό µί συκεκριµένη διδικσί υποοισµού ν ο είνι πίνκς η ορίζουσά του υποοίζετι

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως

Διαβάστε περισσότερα

ΕπιφÜνεια εδüφουò. Σχήµα Π5.1: Αγωγός τοποθετηµένος κάτω από την επιφάνεια του εδάφους και επιστροφή ρεύµατος από τη γη.

ΕπιφÜνεια εδüφουò. Σχήµα Π5.1: Αγωγός τοποθετηµένος κάτω από την επιφάνεια του εδάφους και επιστροφή ρεύµατος από τη γη. Πράρτηµ 5 ΠΡΟΣΕΓΓΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΙΩΣΗΣ ΜΕ ΑΓΩΓΟ ΕΠΙΣΤΡΟΦΗΣ ΡΕΥΜΑΤΟΣ Π5. Υπολοισµός επωής πλέµτος Στο σχήµ Π5. προυσιάζετι ένς ευθύρµµος ωός µήκους, ι τον οποίο υπολοίζετι η υτεπωή L συνεκτιµώντς κι την

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

Μελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0

Μελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0 Z. 7. Μελέτη συνάρτησης f() = Απρίτητες γνώσεις Θεωρίς Θεωρί 4. Ν ποδείξετε ότι η συνάρτηση: f() είνι περιττή 0 Απόδειξη: Το πεδίο ορισμού της f είνι το R* R 0 Γι κάθε R*, R* κι f(-) f() ( ) Επομένως η

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ

Διαβάστε περισσότερα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Εκθετική - Λογαριθµική συνάρτηση

Εκθετική - Λογαριθµική συνάρτηση Εκθετική - ογριθµική συνάρτηση Ορισµός δύνµης µε εκθέτη θετικό κέριο..., νν> ν 0 Ορίζουµε: ν πράγοντες,, γι 0., ν ν Αν ν θετικός κέριος, ορίζουµε: ν -ν. ν µ ν ν µ ν Αν >0, µ κέριος κι ν θετικός κέριος,

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x

Β ΒΕ=ΒΑ Β ( Β + Ε ) =ΒΑ. Β + α Β = = = x 2. x α x. α α + x ξισώσις ου θµού ωµτρική ϖίλυση ξισώσων ου θµού Οι ρχίοι Έλληνς µθηµτικοί κθιέρωσν την κτσκυή γωµτρικών σχηµάτων µ κνόν κι ιήτη. Τρις τέτοις κτσκυές θ µλτήσουµ στη συνέχι. Κάθ µι ϖό υτές τις κτσκυές ίνι

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές . ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α} 1997 ΘΕΜΑΤΑ 1 ίνοντι οι πργµτικές συνρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη κι δεύτερη πράγωγο κι πργµτικός ριθµός Θέτουµε Α f() g(), που γι κάθε Έστω κι Β f () Α g () Αν φ g() είνι πργµτική συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙ ΑΛΓΕΒΡΑΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ

ΕΡΓΑΣΤΗΡΙ ΑΛΓΕΒΡΑΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ. Ν χρκτηρίσετε κθεµιά πό τις πρκάτω προτάσεις ως Σωστή (Σ) ή Λάθος (Λ).. Αν 0 κι > 0 τότε + > 0. Αν > > 0 τότε ² - ² > 0 γ. Αν τότε > 0 δ. Αν = τότε

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ.

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ. 1 9.1 9. σκήσεις σχολικού ιλίου σελίδς 185-186 ρωτήσεις κτνόησης 1. Έν ορθοώνιο τρίωνο ( ˆ ο 90 ) έχει 6 κι 8. Ποιο είνι το µήκος της διµέσου Μ ; + 6 + 6 100 10 κι Μ 5. ν ο λόος των κθέτων πλευρών ενός

Διαβάστε περισσότερα

Ασκήσεις σχ. βιβλίου σελίδας

Ασκήσεις σχ. βιβλίου σελίδας 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ( ΟΜΑ ΑΣ) Ασκήσεις σχ. ιλίου σελίδς 19 19 1. Ν λύσετε την η εξίσωση ηµ ηµσυν συν ηµ ηµσυν συν ηµ ηµσυν συν (ηµ + συν ) ηµ ηµσυν συν + ηµ + συν 0 (1 + )ηµ ηµσυν + ( 1)συν 0 Αν συν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ ος Ηµθιώτικος Μθητικός ιγωνισµός στ Μθηµτικά «Η ΥΠΑΤΙΑ» Θέµ 1ο Σάτο 1 Νοεµρίου 009 Α Γυµνσίου Ο ρίσκετι σε έν κινηµτογράφο όπου όλες οι σειρές έχουν κριώς

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σττιστική είνι ο κλάδος των µθηµτικών που συγκεντρώνει στοιχεί τ τξινοµεί κι τ προυσιάζει σε κτάλληλη µορφή ώστε ν µπορούν ν νλυθούν κι ν ερµηνευτούν. Πληθυσµός είνι το σύνολο των

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»

Διαβάστε περισσότερα

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό. Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό

Διαβάστε περισσότερα

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες: Κεφάλιο ο Ερωτήσεις Κτόησης Ν χρκτηρίσετε τις πρκάτω προτάσεις με (Σ) είι σωστές ή με (Λ) είι λθσμέες: ) Γι κάθε ριθμό ισχύει + + + 4 β) Γι κάθε ριθμό ισχύει 4 γ) Οι ριθμοί (-) 6 κι - 6 είι τίθετοι δ)

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1. Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

µε Horner 3 + x 2 = 0 (x 1)(x

µε Horner 3 + x 2 = 0 (x 1)(x 998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Α. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΚΟΙΝΟ ΠΑΡΟΝΟΜΑΣΤΗ

Α. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΚΟΙΝΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Πράξεις Ρητών Παραστάσεων. Θεµατικές Ενότητες:. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων µε Κοινό Παρονοµαστή.. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ Α. ΕΤΗΣΙΑ ΑΣΦΑΛΙΣΤΡΑ Η ρχή της ισουνµίς πιτεί την ισότητ της νλογιστικής προύσς ξίς των σφλίστρων µε την νλογιστική προύσ ξί των προχών (σφάλισης, ράντς ή οποισήποτε άλλης

Διαβάστε περισσότερα