6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )"

Transcript

1 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

2 6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) 1. α) Πολλαπλασιάζω κάθετα και αναλυτικά: β) Σύνολο 2. Κυκλώνω τους αριθμούς που διαιρούνται με το : Πρόβλημα: Ένας λαδέμπορος είχε στην αποθήκη του κιλά λάδι και θέλει να το βάλει σε δοχεία των 15 κιλών. Πόσα δοχεία θα χρειαστεί; Λύση Απάντηση:

3 4. Γράφω ένα αντίστροφο πρόβλημα με βάση το προηγούμενο πρόβλημα και το λύνω: Λύση Απάντηση: 5. Υπολογίζω έξυπνα τα παρακάτω γινόμενα: 6. Κάνω τις παρακάτω διαιρέσεις κάθετα με τις δοκιμές τους:

4 7. Τα 25 κ. κρέας κοστίζουν 225. Πόσο κοστίζουν τα 17 κ. απ0 το ίδιο κρέας; ( αναγωγή) Λύση Απάντηση:. 41. Πολλαπλασιάζω με τριψήφιο πολλαπλασιαστή Τι πρέπει να γνωρίζω: Ο πολλαπλασιασμός με τριψήφιο πολλαπλασιαστή, γίνεται με τον ίδιο τρόπο που γίνεται ο πολλαπλασιασμός με διψήφιο και μονοψήφιο. Αλλάζει μόνο το πλήθος των μερικών γινομένων x x x άθροισμα δύο μερικών γινομένων άθροισμα τριών μερικών γινομένων

5 Ακόμα Για να πολλαπλασιάσω έναν αριθμό με 10, 100 ή γράφω πρώτα τον αριθμό και μετά βάζω τόσα μηδενικά όσα έχει το 10, το 100 ή το Παράδειγμα: 52 x 10 = 520 προσθέτω ένα μηδενικό 52 x 100 = προσθέτω δύο μηδενικά 52 x = προσθέτω τρία μηδενικά Το τελευταίο ψηφίο ενός αριθμού -γενικά- μας βοηθά να καταλάβουμε αν είναι πολλαπλάσιο του 2, 5 ή Κάνε τους παρακάτω πολλαπλασιασμούς με τις δοκιμές τους: x x x x

6 2. Συμπληρώνεις τα κενά: α 128 Χ = δ 95 Χ = β 110 Χ = ε 276 Χ = γ Χ = ζ 230 Χ = ΕΝΟΤΗΤΑ 41 ΠΟΛΛΑΠΛΑΣΙΑΖΩ ΜΕ ΤΡΙΨΗΦΙΟ ΠΟΛΛΑΠΛΑΣΙΑΣΤΗ 1. Κάνω κάθετα τις πράξεις: α. 612x176 γ. 180x145 ε.219x143 β. 617x169 δ. 209x406 στ. 224x Κάνω κάθετα τις πράξεις και επαληθεύω: α. 347x27 γ. 473x72 β. 278x34 δ. 872x43

7 3. Σημειώνω Χ στο σωστό ή τα σωστά κουτάκια: ΑΡΙΘΜΟΙ Πολ/σιο του 2 Πολ/σιο του 5 Πολ/σιο του Συμπληρώνω ό,τι λείπει: - 245x10= - 27x. = x1.000= - 115x...= x 100= x = Ένα κατάστημα πούλησε σε ένα χρόνο 206 κιβώτια χαρτομάντιλα, το καθένα από τα οποία περιείχε 105 κουτάκια των 8 χαρτομάντιλων. Πόσα χαρτομάντιλα πούλησε συνολικά το κατάστημα; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.: 6. Ο Γιάννης πήρε από την τράπεζα 25 δεσμίδες των 137 χαρτονομισμάτων. Αν τα χαρτονομίσματα ήταν των 50 Ε το καθένα, πόσα χρήματα πήρε ο Γιάννης από την τράπεζα; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:

8 ΕΝΟΤΗΤΑ 41 ΠΟΛΛΑΠΛΑΣΙΑΖΩ ΜΕ ΤΡΙΨΗΦΙΟ ΠΟΛΛΑΠΛΑΣΙΑΣΤΗ 1. Κάνω κάθετα τις πράξεις: α) 123x55 β) 456x55 γ) 789x55 δ) 123x66 ε) 456x66 στ) 789x66 2. Ο πληθυσμός ενός χωριού της Κρήτης είναι 335 άτομα, ενώ ο πληθυσμός ολόκληρου του νησιού είναι 136 φορές μεγαλύτερος. Πόσοι είναι οι κάτοικοι ολόκληρου του νησιού; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:

9 3. Μια ημέρα πέρασαν από έναν σταθμό διοδίων 849 φορτηγά, ενώ ο αριθμός των επιβατικών αυτοκινήτων ήταν δωδεκαπλάσιος. Πόσα επιβατικά αυτοκίνητα πέρασαν από τα διόδια εκείνη την ημέρα; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.: 4. Ένα κατάστημα πούλησε σε μια εβδομάδα 188 κινητά τηλέφωνα προς 176 Ε το καθένα. Πόσα χρήματα εισέπραξε το κατάστημα; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:.

10 5. Κάνω κάθετα τις πράξεις: α. 123x333 β. 456x333 γ. 789x33 δ. 123x177 ε. 456x177 στ. 789x Από μια εταιρία έφυγαν 15 φορτηγά μεταφέροντας αχλάδια. Αν κάθε φορτηγό μεταφέρει 740 τελάρα και κάθε τελάρο περιέχει 16kg αχλάδια, πόσα κιλά αχλάδια μετέφεραν τα φορτηγά; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:

11 Κεφ Βρες ποιος από τους παρακάτω αριθμούς είναι πολλαπλάσιο του 2, του 5 ή του 10 : 25, , , 82, 1.350, , 248, του 2 :. του 5 :. του 10 : 2. Συμπλήρωσε τα κενά: 128 Χ = Χ = Χ.. = Χ. = Χ. = Χ. = Να κάνεις τους παρακάτω πολλαπλασιασμούς: 516

12 287 x 134 x x x x ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Kεφ Κυκλώνω τους αριθμούς που είναι ΠΟΛΛΑΠΛΑΣΙΑ. :

13 του του του του Κάνω τους πολλαπλασιασμούς ΚΑΘΕΤΑ : x x x x Λύνω τα προβλήματα : Το λεωφορείο του κυρίου Παυσανία έκανε πέρσι καθημερινά 278 χιλιόμετρα σε όλη τη διάρκεια του έτους. Πόσα χιλιόμετρα διήνυσε συνολικά όλο το έτος ; Απάντηση : Η κυρία Ειρήνη έχει κατάστημα με ποδήλατα. Από τότε που άνοιξε το κατάστημα έχει πουλήσει μέχρι σήμερα, 123 ανδρικά ποδήλατα προς 320 το καθένα, 102 γυναικεία ποδήλατα προς 285 το καθένα και 234 παιδικά ποδήλατα προς 155 το καθένα. Πόσα χρήματα έχει εισπράξει συνολικά μέχρι σήμερα ; Απάντηση :

14 ΕΝΟΤΗΤΑ 42 ΔΙΑΙΡΩ ΜΕ ΔΙΨΗΦΙΟ ΔΙΑΙΡΕΤΗ 1. Κάνω κάθετα τις πράξεις: α. 250:25 β. 198:12 γ. 356:11 δ. 200:16 ε :14 στ :15 όπου υπάρχει υπόλοιπο το κυκλώνω. 2. Οι εισπράξεις στο ταμείο ενός θεάτρου ήταν Ε. Αν το εισιτήριο κόστιζε 18 Ε, πόσοι θεατές παρακολούθησαν την παράσταση; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.: 3. Σε ένα υαλοπωλείο ο ιδιοκτήτης πούλησε 21 ίδια σερβίτσια και εισέπραξε Ε. Ποια ήταν η τιμή του κάθε σερβίτσιου; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:

15 4. Ένας αγρότης αγόρασε κλήματα. Αν σε κάθε σειρά φύτεψε 24 κλήματα, πόσες σειρές έχει ο αμπελώνας; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.: 5. Αν ένας γιατρός παίρνει σε κάθε επίσκεψη 46 Ε, πόσες επισκέψεις πρέπει να δεχτεί ώστε να συγκεντρώσει Ε; ΛΥΣΗ: ΔΕΔΟΜΕΝΑ ΖΗΤΟΥΜΕΝΑ ΑΠ.:..

16 6. Κάνω κάθετα τις πράξεις και επαληθεύω: α :42 γ :48 β :38 δ :59 ΚΕΦ: 42 ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 1. Να κάνετε τις διαιρέσεις και κατόπιν τις επαληθεύσεις τους

17 2. Να εκτελέσετε τις πράξεις και να βρείτε το αποτέλεσμα της αριθμητικής παράστασης: ( ) : 32 = ( ) : 45 = ( ) : 82 = 3. Το μεικτό βάρος 5 όμοιων βαρελιών κρασιού είναι 1500 κιλά.το απόβαρο κάθε βαρελιού είναι 75 κιλά.πόσα κιλά κρασί χωράει το κάθε βαρέλι; ΛΥΣΗ: ΑΠ.: 4. Ένας παραγωγός μάζεψε το πρωί από ένα περιβόλι 2575 κιλά ντομάτες και το απόγευμα από ένα άλλο περιβόλι του 1950 κιλά. Όλη αυτή την ποσότητα τη συσκεύασε σε τελάρα 25 κιλών. Πόσα τελάρα γέμισε; ΛΥΣΗ: ΑΠ.:

18 5. Ο ταξιδιωτικός πράκτορας εισέπραξε από τα εισιτήρια 26 ταξιδιωτών εννιά χιλιάδες εφτακόσια πενήντα ευρώ. Ποια ήταν η τιμή του ενός εισιτηρίου; ΛΥΣΗ: ΑΠ.: ΜΑΘΗΜΑΤΙΚΑ: ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ Θυμάμαι ότι από ένα πρόβλημα μπορώ να φτιάξω καινούργια προβλήματα, αν το ζητούμενο το χρησιμοποιήσω ως δεδομένο και τα δεδομένα του πρώτου προβλήματος ως ζητούμενα στα καινούργια μου προβλήματα. ΑΣΚΗΣΗ ΓΙΑ ΕΜΠΕΔΩΣΗ Λύνω τα παρακάτω προβλήματα και μετά φτιάχνω από ένα αντίστροφο πρόβλημα για το καθένα και το λύνω: Το πλοίο που πραγματοποιούσε τη γραμμή Πειραιάς Ρέθυμνο μετέφερε την Παρασκευή επιβάτες και την Κυριακή στην επιστροφή του για Πειραιά, μετέφερε Πόσοι επιβάτες ταξίδεψαν συνολικά στα δυο δρομολόγια; Λ Υ Σ Η ΑΠΑΝΤΗΣΗ:

19 ΑΝΤΙΣΤΡΟΦΟ ΠΡΟΒΛΗΜΑ: Λ Υ Σ Η ΑΠΑΝΤΗΣΗ: Ένα κατάστημα επίπλων εισέπραξε από την πώληση 15 καναπέδων ευρώ. Πόσο στοίχιζε ο ένας καναπές; Λ Υ Σ Η ΑΠΑΝΤΗΣΗ:

20 ΑΝΤΙΣΤΡΟΦΟ ΠΡΟΒΛΗΜΑ: Λ Υ Σ Η ΑΠΑΝΤΗΣΗ: ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΓΩΓΗΣ ΣΤΗ ΜΟΝΑΔΑ Κεφ Μια βιοτεχνία πλεχτών υπολογίζει ότι για 18 πουλόβερ χρειάζεται 36 κ. νήμα.πόσα κιλά νήμα χρειάζεται για 75 πουλόβερ; Γ ΛΥΣΗ Α ΑΠΑΝΤΗΣΗ:

21 2. Ένας εργάτης για 16 ημερομίσθια πήρε 1200.Για να πάρει 1875 πόσες μέρες πρέπει να εργαστεί; Γ ΛΥΣΗ Α ΑΠΑΝΤΗΣΗ: 3. Για 12 μ. μεταξωτό ύφασμα πληρώσαμε 720. Για 11 μ. μεταξωτό ύφασμα πόσο θα πληρώσουμε; Γ ΛΥΣΗ Α ΑΠΑΝΤΗΣΗ:

22 4. Ένας γεωργός από χωράφι 72 στρεμμάτων έβγαλε κ. σιτάρι.πόσα κιλά σιτάρι θα βγάλει από 80 στρέμματα; Γ ΛΥΣΗ Α ΑΠΑΝΤΗΣΗ: 5. Ένα αυτοκίνητο σε 5 ώρες διανύει μια απόσταση 600 χμ..με την ίδια σταθερή ταχύτητα σε πόσες ώρες θα διανύσει απόσταση 720 χμ.; Γ ΛΥΣΗ Α ΑΠΑΝΤΗΣΗ:

23 Α Ν Α Γ Ω Γ Η Σ Τ Η Μ Ο Ν Α Δ Α Όταν έχουμε να λύσουμε ένα πρόβλημα στο οποίο μας δίνεται η τιμή των πολλών μονάδων και ζητούμε την τιμή και πάλι άλλων πολλών μονάδων, ακολουθούμε τη μέθοδο αναγωγής στη μονάδα. Σύμφωνα με αυτήν τη μέθοδο βρίσκουμε πρώτα την τιμή της μιας μονάδας και μετά βρίσκουμε την τιμή των πολλών μονάδων που είναι και το ζητούμενο του προβλήματος που έχουμε να επιλύσουμε. π.χ. Τα 8 τετράδια κοστίζουν 16 ευρώ. Πόσο κοστίζουν τα 25 τετράδια; Σκέψη: Πρέπει να βρω πρώτα την τιμή του ενός τετραδίου, οπότε κάνω την πράξη της διαίρεσης, (αφού γνωρίζω την τιμή των πολλών μονάδων και ψάχνω την τιμή της μιας μονάδας) και μετά θα βρω την τιμή και των 25 τετραδίων κάνοντας πολλαπλασιασμό, αφού θα γνωρίζω την τιμή του ενός τετραδίου και θα ψάχνω την τιμή των πολλών. Επομένως θα εφαρμόσω τη μέθοδο αναγωγής στη μονάδα. Λύση: 16 : 8 = 2 Άρα το ένα τετράδιο κοστίζει 2 ευρώ 25 x 2 = 50 Άρα τα 25 τετράδια κοστίζουν 50 ευρώ Απάντηση: Τα 25 τετράδια κοστίζουν 50 ευρώ.

24 Σημείωση: Εάν σε ένα πρόβλημα μας δίνεται η τιμή ενός μέρους μιας μονάδας και μας ζητείται η τιμή των πολλών και πάλι βρίσκουμε την τιμή της μιας ολόκληρης μονάδας και μετά βρίσκουμε την τιμή των πολλών. π.χ. Το 1 τέταρτο του κιλού γραβιέρας Κρήτης κοστίζει 3 ευρώ. Πόσο κοστίζουν τα 5 κιλά; Σε αυτήν την περίπτωση για να βρούμε την τιμή του ενός κιλού, αντί της διαίρεσης, πολλαπλασιάζουμε την τιμή του ενός τετάρτου του κιλού, δηλαδή τα 3 ευρώ με το 4 για να βρούμε το 1 κιλό πόσο κοστίζει ( 3 x 4 = 12) και στη συνέχεια βρίσκουμε την τιμή των πολλών μονάδων, δηλαδή 5 x 12 = 60 ευρώ. ΑΣΚΗΣΗ Λύνω τα παρακάτω προβλήματα με αναγωγή στη μονάδα: 1. Μια παρέα από παιδιά αγοράζουν 5 χάρτες της Ελλάδας και πληρώνουν 55 ευρώ. Πόσο θα πληρώσουν για τους χάρτες της Δ τάξης που έχει 25 παιδιά; Λ Υ Σ Η Α Π Α Ν Τ Η Σ Η:

25 2. Με μισό κιλό αλεύρι φτιάχνουμε 45 κουραμπιέδες. Πόσους κουραμπιέδες μπορούμε να φτιάξουμε με 3 κιλά αλεύρι; Λ Υ Σ Η Α Π Α Ν Τ Η Σ Η: ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ 1. Μια ποδοσφαιρική ομάδα χρειάζεται 85 για να αγοράσει 5 φανέλες. Πόσο κοστίζουν οι 11 φανέλες; (να λυθεί με αναγωγή στη μονάδα) Λύση Απ:

26 2. Ο ιδιοκτήτης ενός ξενοδοχείου εισέπραξε απ την ενοικίαση 16 δίκλινων δωματίων. Αν το ξενοδοχείο έχει 4 ορόφους και κάθε όροφος έχει 34 δίκλινα δωμάτια, πόσα χρήματα θα εισπράξει ο ξενοδόχος απ την ενοικίαση όλων των δωματίων; (προσπαθώ να βρω και να γράψω τα ενδιάμεσα ερωτήματα και λύνω το πρόβλημα) Λύση Απ: 3. Ένας τραγουδιστής από μια συναυλία στην Πάτρα είχε έσοδα και από μια άλλη στα Γιάννενα είχε έσοδα Η τιμή του εισιτηρίου ήταν και στις δυο συναυλίες 25. Σε ποια από τις δυο συναυλίες είχε περισσότερα άτομα και πόσα; (προσπαθώ να βρω και να γράψω τα ενδιάμεσα ερωτήματα και λύνω το πρόβλημα) Λύση Απ:

27 Βήματα επίλυσης προβλημάτων: 1. Το διαβάζουμε καλά, ώστε να ξεχωρίσουμε τα δεδομένα από τα ζητούμενα. 2. Καταγράφουμε τα δεδομένα όσο μπορούμε πιο καθαρά και κάνουμε έναν πίνακα, ώστε να υπάρχει καλή παρουσίαση του προβλήματος. 3. Αντικαθιστούμε τους μεγάλους αριθμούς με πιο μικρούς, ώστε να αντιληφθούμε πιο εύκολα το πρέπει να κάνουμε. 4. Κάνουμε επαλήθευση των πράξεων 5. Ελέγχουμε λογικά τη λύση. Κατά πόσο δηλ. το αποτέλεσμα είναι λογικό ή όχι. Προβλήματα 1. Ο παππούς του Μιχάλη είναι υπεραιωνόβιος! Γιορτάζει σήμερα τα εκατοστά δέκατα πέμπτα γενέθλιά του! Πόσες μέρες έζησε μέχρι σήμερα; (1 έτος = 365 μέρες) Λύση Απ:.

28 2. Κάνε κάθετα τις διαιρέσεις : 412:27, 1612 : 33, 5579: Πόσες σελίδες ενός άλμπουμ χρειάζονται για να τοποθετηθούν 1250 γραμματόσημα, όταν σε κάθε σελίδα χωρούν 30 γραμματόσημα; Λύση Απ:

29 4. Ένα ορθογώνιο παραλληλόγραμμο έχει διαδοχικές πλευρές 3 και 5 εκατοστά. Σχημάτισε ένα πρόβλημα εμβαδού και λύσε το. Λύση Απ: 5.Σχημάτισε ένα αντίστροφο από το προηγούμενο πρόβλημα και λύσε το.( Να κάνεις το ζητούμενο δεδομένο και το δεδομένο ζητούμενο) Λύση Απ:

30 6.Τρία κιβώτια με κονσέρβες τόνου περιέχουν 90 κονσέρβες συνολικά. Πόσες κονσέρβες περιέχουν τα 15 κιβώτια, πόσες τα 63 και πόσες τα 100 κιβώτια; Λύση Απ: ΠΡΟΒΛΗΜΑΤΑ 1.Ένας γεωργός πούλησε 13 τελάρα με ντομάτες που το καθένα περιείχε 24 κιλά ντομάτες. Το κάθε κιλό το πουλούσε με 2,40. Πόσα χρήματα εισέπραξε συνολικά; Λύση Απ:

31 2. Ένας αγροτικός συνεταιρισμός εισέπραξε από την πώληση των προϊόντων του Τα μέλη του συνεταιρισμού είναι 17. Πόσα χρήματα πήρε ο καθένας από την πώληση των προϊόντων; Λύση Απ: 3.Ένας οινοποιός συσκεύασε σε φιάλες των 12 κιλών κιλά κρασί. Πόσες φιάλες χρειάστηκε; Λύση Απ: 4.Ο κ. Γιώργος είναι συλλέκτης γραμματοσήμων. Έχει γεμίσει 28 σελίδες από το άλμπουμ και στην κάθε μία έχει τοποθετήσει 16 γραμματόσημα. Πόσα γραμματόσημα έχει ο κ. Γιώργος; Λύση Απ:

32 Οδύσσεια Τα απίθανα... τριτάκια!

33 Tετάρτη τάξη Οι παρουσιάσεις μου σε ιστοσελίδες αποθήκευσης και διαμοιρασμού αρχείων κειμένου Word, Adobe PDF, καθώς και παρουσιάσεων Powerpoint

34

35

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη. 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14)

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη. 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14) 1. Υπολογίζω τα γινόμενα. 44 Χ 10 = 57 Χ 10 = 35 Χ 10 = 34 Χ 100 = 27 Χ 100 = 42 Χ 10 = 39 Χ 100 = 15

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να

Διαβάστε περισσότερα

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 35 40) Πηγή πληροφόρησης: e-selides 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 35 40) 1.Παρατηρώ και συμπληρώνω κατάλληλα:

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 21 26) Πηγή πληροφόρησης: e-selides 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ - κεφ. 21 26 Συμπληρώνουμε σωστά τον παρακάτω

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

Ασκήσεις

Ασκήσεις Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614 185 212 709 221 127 667 + 127 + 111 + 100 + 202 + 103 548 921 916 943 955 345 538 816 248 347 723 707 340 248 394 307 + 249 + 237 + 185

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα.

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα. Μάθημα 8 ο Ασκήσεις. Συμπλήρωσε τα παρακάτω κενά : Η Κυριακή έκοψε ένα μήλο σε ίσα μέρη Το μήλο είναι η ακέραιη μονάδα. Χωρίστηκε σε τέσσερα () ίσα μέρη. Τι μέρος του μήλου αντιπροσωπεύει κάθε κομμάτι

Διαβάστε περισσότερα

(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία.

(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. Περίμετρος ενός σχήματος είναι το άθροισμα των πλευρών του το οποίο εκφράζεται με τη μονάδα

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 27 34) Πηγή πληροφόρησης: e-selides ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤA MΑΘΗΜΑΤΙΚΑ Δ' 5 η επανάληψη Μαθήματα 27-34

Διαβάστε περισσότερα

ΑΝΑΛΟΓΑ ΑΝΤΙΣΤΡΟΦΟΣ ΑΝΑΛΟΓΑ - ΠΟΣΟΣΤΑ. 1. Ο καυστήρας του καλοριφέρ καίει 60 λίτρα πετρέλαιο σε 6 ώρες. Πόσα λίτρα πετρέλαιο θα κάψει σε 15 ώρες ;

ΑΝΑΛΟΓΑ ΑΝΤΙΣΤΡΟΦΟΣ ΑΝΑΛΟΓΑ - ΠΟΣΟΣΤΑ. 1. Ο καυστήρας του καλοριφέρ καίει 60 λίτρα πετρέλαιο σε 6 ώρες. Πόσα λίτρα πετρέλαιο θα κάψει σε 15 ώρες ; ΑΝΑΛΟΓΑ ΑΝΤΙΣΤΡΟΦΟΣ ΑΝΑΛΟΓΑ - ΠΟΣΟΣΤΑ 1. Ο καυστήρας του καλοριφέρ καίει 60 λίτρα πετρέλαιο σε 6 ώρες. Πόσα λίτρα πετρέλαιο θα κάψει σε 15 ώρες ; 60 λίτρα πετρέλαιο 6 ώρες 15 ώρες Χ ; λίτρα πετρέλαιο θα

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΣΧΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΣΧΑ Όνομα:. Δ ΔΗΜΟΤΙΚΟΥ Ημερομηνία :. 1. Συμπληρώνω τον πίνακα : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΣΧΑ Δ Μ δέκατα εκατοστά χιλιοστά Αριθμός 5,36 0,430 0,043 37,009 8,495 10,001 80,407 0,77 0,009 1,76 2. Γράφω με λέξεις

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 27 32 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ ΚΕΦ. 27 Προσθέσεις Αφαιρέσεις τετραψήφιων - Προβλήματα 1. Χθες

Διαβάστε περισσότερα

Ημερομηνία: Ονοματεπώνυμο:

Ημερομηνία: Ονοματεπώνυμο: Ημερομηνία: Ονοματεπώνυμο: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Λύνω τα προβλήματα: α. Η Ανδρομάχη αγόρασε ένα τετράδιο με 2 και 35 λ., ένα μαρκαδόρο με 3 και 2 λ. και ένα σετ υλικών για

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Μαθηματικά Ε Τεύχος 1οο ΑΡΒΑΝΙΤΙΔΗΣ ΘΕΟΔΩΡΟΣ ΣΠΥΡΙΔΩΝΙΔΗΣ ΑΝΤΩΝΙΟΣ ΑΚΡΙΒΟΠΟΥΛΟΥΥ ΓΕΩΡΓΙΑ Μαθηματικά Ε Μαθηματικά Ε Υπενθύμιση Δ τάξης Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο

Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Περιεχόμενα Προλογικό σημείωμα... 9 Ενότητα 1 Κεφάλαιο 1 Υπενθύμιση Α μέρος... 13 Κεφάλαιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 37ο. Παίρνοντας αποφάσεις! Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 37ο. Παίρνοντας αποφάσεις! Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 37ο Λύνω προβλήµατα µε αντιστρόφως ανάλογα ποσά Παίρνοντας αποφάσεις! Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: 1. Να εξασκηθείς στην αναγνώριση δύο ποσών που είναι

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου

Διαβάστε περισσότερα

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Γ Δ η μ ο τ ι κ ο ύ 1 ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Μαθαίνω... Τριψήφιοι λέγονται οι αριθμοί που έχουν τρία ψηφία. Οι τριψήφιοι αριθμοί αποτελούνται από Εκατοντάδες (Ε), Δεκάδες (Δ) και Μονάδες

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Τι είναι τα πολλαπλάσια ;

Τι είναι τα πολλαπλάσια ; Μαθηματικά Κεφάλαιο 10 Πολλαπλάσια και διαιρέτες Όνομα: Ημερομηνία: / / Θεωρία Πώς τα βρίσκουμε; Τι είναι τα πολλαπλάσια ; Πολλαπλάσια ενός φυσικού αριθμού ονομάζονται οι αριθμοί που προκύπτουν όταν τον

Διαβάστε περισσότερα

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ...

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ... Eλέγχω τις γνώσεις μου Aσκήσεις 1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό:......

Διαβάστε περισσότερα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 33 38 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ - Κεφ. 33 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕ ΤΟ,,.000. Κάνω τους

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Mαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά Μαθηματικά Κεφάλαιο 36 Αντιστρόφως ανάλογα Όνομα: Ημερομηνία: / / ή αντίστροφα ποσά Θεωρία Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα οποία, όταν πολλαπλασιάζεται η τιμή του ενός ποσού με

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016-2017 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.

Διαβάστε περισσότερα

Στην Ε τάξη μάθαμε...

Στην Ε τάξη μάθαμε... 7 Στην Ε τάξη μάθαμε... Αριθμοί και Πράξεις (1) Παραδείγματα 1. Να εκτελέσετε τις πράξεις νοερά. (α) 42 + 36 (β) 15 + 17 (γ) 199 + 199 (δ) 403-299 (ε) 342-143 Λύση: (α) 42 + 36 = 40 + 2 + 30 + 6 = 40 +

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 7 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 7 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 7 η Ενότητα Κεφ. 40 45 Πηγή: e-selides 1. Γράφω και διαβάζω αριθμούς. Αριθμοί μέχρι το 7.000 Χ Ε Δ Μ 4.324 Τέσσερις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5 Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)

Διαβάστε περισσότερα

Ρητοί Αριθμοί - Η ευθεία των αριθμών

Ρητοί Αριθμοί - Η ευθεία των αριθμών ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά A Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Μέρος Β - Ασκήσεις. Κεφάλαιο 1 ο. 1. Σε ένα χωράφι καλλιεργούνται 200 δένδρα, ελιές, λεμονιές και πορτοκαλιές. Οι ελιές μαζί με τις λεμονιές

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

Ðåñéå üμåíá Α Περίοδος Β Περίοδος

Ðåñéå üμåíá Α Περίοδος Β Περίοδος Ðåñéå üμåíá Α Περίοδος Κεφάλαιο 1 Επανάληψη της Γ τάξης... 7 Κεφάλαιο 2 Διαχειρίζομαι αριθμούς ως το 10.000...13 Κεφάλαιο 3 Γνωρίζω τους αριθμούς ως το 20.000...19 Κεφάλαιο 4 Αναλύω και συγκρίνω αριθμούς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα Παίζω, Σκέφτοµαι, Μαθαίνω Φύλλα εργασίας Μαθηµατικά Τεύχος Α Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα 116 σελίδες Περιεχόµενα 1η ενότητα:

Διαβάστε περισσότερα

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί 10-0059MATHIMATIKAGDIMOTIKOU4_10 MAΘHTHΣ MAΘHM Γ 13/2/2013 10:31 πμ Page 1 9 η ενότητα Αριθμοί μέχρι το 10.000 Κλάσματα και δεκαδικοί Πράξεις γεωμετρία 53 54 55 56 57 58 59 Κεφάλαιο 53 : Αριθμοί μέχρι

Διαβάστε περισσότερα

3 μ. = 30 δεκ. 3,5 δεκ. = 35 εκατ. 2 μ. = χιλ. 5 χιλ. = 0,005 μ. 5 μ. = 500 εκατ. 2,5 μ. = 250 εκατ. 2 χμ. = μ 7,5 εκατ. = 0,075 μ.

3 μ. = 30 δεκ. 3,5 δεκ. = 35 εκατ. 2 μ. = χιλ. 5 χιλ. = 0,005 μ. 5 μ. = 500 εκατ. 2,5 μ. = 250 εκατ. 2 χμ. = μ 7,5 εκατ. = 0,075 μ. 1. Συμπληρώνω τις παρακάτω ισότητες : Μάθημα 28 ο 3 μ. = 30 δεκ. 3,5 δεκ. = 35 εκατ. 2 μ. = 2.000 χιλ. 5 χιλ. = 0,005 μ. 5 μ. = 500 εκατ. 2,5 μ. = 250 εκατ. 2 χμ. = 2.000 μ 7,5 εκατ. = 0,075 μ. 4 μ. =

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων

Διαβάστε περισσότερα

Κριτήρια διαιρετότητας. Κριτήριο για το 2. Κριτήριο για το 5. Κριτήριο για το 10,100, Θεωρία. Όνομα: Μαθηματικά Κεφάλαιο 11.

Κριτήρια διαιρετότητας. Κριτήριο για το 2. Κριτήριο για το 5. Κριτήριο για το 10,100, Θεωρία. Όνομα: Μαθηματικά Κεφάλαιο 11. Μαθηματικά Κεφάλαιο 11 Κριτήρια διαιρετότητας Όνομα: Ημερομηνία: / / Θεωρία Κριτήρια διαιρετότητας Κριτήρια διαιρετότητας λέγονται οι κανόνες με τους οποίους μπορώ να συμπεράνω χωρίς να κάνω τη διαίρεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Πότε δύο ποσά λέγονται ανάλογα; Ποια είναι η σχέση που συνδέει δύο ανάλογα ποσά x, y; Τι είναι ο συντελεστής αναλογίας; Πάνω σε τι σχήµα βρίσκονται τα ζεύγη (x, y) για δύο ανάλογα ποσά x, y; Πότε δύο ποσά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΓΙΑΝΝΗΣ ΠΑΤΕΡΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΑΚΟΛΟΥΘΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ακολουθία ονομάζουμε

Διαβάστε περισσότερα

Αριθμητής = Παρονομαστής

Αριθμητής = Παρονομαστής Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Απάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2

Απάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2 Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 8 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» 04 Για μαθητές της Στ Τάξης Δημοτικού ΘΕΜΑ ο Πόσες φορές ο δεκαδικός αριθμός 4.400,800

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13 ο. Μάντεψε το µυστικό κανόνα µου. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 13 ο. Μάντεψε το µυστικό κανόνα µου. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 13 ο Κριτήρια διαιρετότητας Μάντεψε το µυστικό κανόνα µου Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: 1. Να µάθεις να ξεχωρίζεις ποιοι αριθµοί διαιρούνται µε το 2, το

Διαβάστε περισσότερα

Θεωρία και ασκήσεις στα κλάσματα

Θεωρία και ασκήσεις στα κλάσματα Θεωρία Θεωρία και ασκήσεις στα κλάσματα. Πως λέγονται οι όροι ενός κλάσματος. Ο αριθμός που βρίσκεται πάνω από την γραμμή του κλάσματος λέγεται αριθμητής ενώ ο αριθμός που βρίσκεται κάτω από αυτήν λέγεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΕΡΟΣ Α: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΕΡΟΣ Α: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΕΡΟΣ Α: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ 1. Να βρεθεί η τιµή (α) 657 + 1638 + 68 (β) 5983 696 + 45 98 =... (1 µονάδα) =.... 2. Να βρεθεί η τιµή (α) 615,87 + 9,4 + 54,544 (β) 334,4 56,76

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

Διαγώνισμα Ανάπτυξης Εφαρμογών Σε Προγραμματιστικό Περιβάλλον

Διαγώνισμα Ανάπτυξης Εφαρμογών Σε Προγραμματιστικό Περιβάλλον Διαγώνισμα Ανάπτυξης Εφαρμογών Σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017-2018 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.

Διαβάστε περισσότερα

Μαθηματικά. Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου:

Μαθηματικά. Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου: Όνομα:. Γ ΔΗΜΟΤΙΚΟΥ Ημερομηνία :. Μαθηματικά Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου: Άσκηση 1: Κάνω τις παρακάτω πράξεις με τον νου μου: 45 + 37= 61-29= 460 + 230= 360 150= 52 + 18= 74-13=

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο. Στην ιχθυόσκαλα. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 2 ο. Στην ιχθυόσκαλα. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 2 ο Υπενθύµιση - Οι αριθµοί µέχρι το 1..000..000 Στην ιχθυόσκαλα Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να εκτιµάς το αποτέλεσµα πριν κάνεις την αριθµητική πράξη.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 6 Ο ΑΝΑΛΟΓΑ ΠΟΣΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Προκειμένου να προσδιορίσουμε τη θέση ενός

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

+ = x 8x = x 8x 12 0 = 2 + = + = x 1 2x. x 2x 1 0 ( 1)

+ = x 8x = x 8x 12 0 = 2 + = + = x 1 2x. x 2x 1 0 ( 1) ΠΡΟΒΛΗΜΑΤΑ ΣΤΙΣ ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΜΕΘΟ ΟΛΟΓΙΑ Τα προβλήµατα των Μαθηµατικών χωρίζονται στις παρακάτω βασικές κατηγορίες : Κατηγορία 1η : Αναζητούν έναν άγνωστο Ονοµάζουµε χ αυτόν που αναζητούµε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων

Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων Κεφάλαιο 23 ο Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων Η σωστή ενέργεια Όπως είδαμε στο προηγούμενο κεφάλαιο για να προσθέσουμε και να αφαιρέσουμε κλάσματα, πρέπει να είναι ομώνυμα. Τώρα μπορούμε

Διαβάστε περισσότερα

1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ Ισότητα Ευκλείδειας διαίρεσης : Αν, δ φυσικοί αριθµοί µε δ 0, τότε υπάρχουν δύο άλλοι φυσικοί αριθµοί π και υ έτσι ώστε να ισχύει = δ π + υ όπου υ < δ Η διαίρεση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+

Διαβάστε περισσότερα

ΗΜΟΤΙΚΟΥ Τεύχος Α. Παίζω, Σκέφτοµαι, Μαθαίνω. Λύσεις ασκήσεων. για τα. αθηµατικά

ΗΜΟΤΙΚΟΥ Τεύχος Α. Παίζω, Σκέφτοµαι, Μαθαίνω. Λύσεις ασκήσεων. για τα. αθηµατικά Παίζω, Σκέφτοµαι, Μαθαίνω ΗΜΟΤΙΚΟΥ Τεύχος Α M Λύσεις ασκήσεων για τα αθηµατικά Κεφάλαιο 1 σελ.: 6 / άσκηση 1 Αριθµός Ανάλυση αριθµού Αριθµολέξεις 3.050 3.000+50 Τρεις χιλιάδες πενήντα 7.213 7.000+200++3

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα