Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις"

Transcript

1 Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα) οότε έχουμε θετικά τόξα είτε κατά την αρνητική φορά (δεξιόστροφα) οότε έχουμε αρνητικά τόξα. Σχήμα Ο τριγωνομετρικός κύκλος Τα τόξα μετρώνται σε ακτίνια. Ο κύκλος έχει ακτίνια και η σχέση τους με τις μοίρες ( ο ) δίνεται στον αρακάτω ίνακα. Πίνακας Σχέση Ακτινίων Μοιρών ακτίνιο 80 ο / ακτίνια 60 ο ο /80 ακτίνια Σε κάθε σημείο του τριγωνομετρικού κύκλου αντιστοιχούν άειρα τόξα. Για αράδειγμα στο σημείο M αντιστοιχούν όλα τα τόξα της μορφής κω όου κ. Στο σημείο Α αντιστοιχούν τα τόξα κ, στο Β τα τόξα κ/, στο Α τα τόξα (κ) και στο Β τα τόξα κ-/. Σε ένα σημείο του τριγωνομετρικού κύκλου Μ(a,b) και για την γωνία ω ου σχηματίζεται με τον άξονα xx ορίζουμε τους αρακάτω βασικούς τριγωνομετρικούς αριθμούς. Πίνακας Οι τριγωνομετρικοί Αριθμοί Ημίτονο sin( ω ) ημ( ω ) Συνημίτονο cos( ω ) σ υν ( ω ) Εφατομένη tan( ω ) εφ( ω ) Συνεφατομένη cot( ω ) σφ( ω ) Γεωμετρικά η εφατομένη αντιστοιχεί στο τμήμα ΑΜ και είναι φανερό ότι δεν ορίζεται για τα τόξα κ/ και κ-/ και η συνεφατομένη στο τμήμα ΒΜ και είναι φανερό ότι δεν ορίζεται για τα τόξα κ και (κ). b c a c b a a b

2 Σχήμα Η εφατομένη και η συνεφατομένη Ο τριγωνομετρικός ίνακας χωρίζεται σε τέσσερα τεταρτημόρια στα οοία τα ρόσημα του ημιτόνου και συνημιτόνου των τόξων ου αντιστοιχούν σε αυτά δίνονται στο ακόλουθο σχήμα. Σχήμα Το ρόσημα στα τεταρτημόρια Στον ίνακα ου ακολουθεί αρουσιάζονται οι τιμές των τριγωνομετρικών αριθμών των βασικών τόξων (γωνιών) του ρώτου τεταρτημόριου. Πίνακας Τριγωνομετρικοί αριθμοί βασικών τόξων ου τεταρτημόριου. Γωνία ω ακτίνια Γωνία ω μοίρες sin( ω ) cos( ω )

3 Χρησιμοοιώντας τις ακόλουθες σχέσεις αναγωγής, μορούμε να σχετίσουμε τους τριγωνομετρικούς αριθμούς τόξων με τους τριγωνομετρικούς αριθμούς τόξων στο ο τεταρτημόριο. Πίνακας 4 Σχέσεις αναγωγής στο ο τεταρτημόριο ω ± ω ± ω ± ω κ ± ω sin(...) sin( ω) cos( ω ) sin( ω) cos( ω) ± sin( ω) cos(...) cos( ω ) sin( ω) cos( ω) ± sin( ω) cos( ω ) tan(...) tan( ω) cot( ω) ± tan( ω) cot( ω) ± tan( ω) cot(...) cot( ω) tan( ω) ± cot( ω) tan( ω) ± cot( ω) Παίρνοντας τις τετμημένες και τις τεταγμένες στα αρακάτω σχήματα είναι εύκολο να οδηγηθούμε στις αραάνω σχέσεις αναγωγής στο ο τεταρτημόριο. Τέλος, είναι φανερό ότι ισχύουν οι αρακάτω βασικοί τριγωνομετρικοί τύοι. Πίνακας 5 Βασικοί Τριγωνομετρικοί τύοι sin( ω) tan( ω) cot( ω) sin ( ω) cos ( ω) cos( ω) tan( ω) sin( ω) sin( ω) cos( ω) cos( ω)

4 Στη συνέχεια αραθέτουμε σε ομάδες τριγωνομετρικές ταυτότητες ου μορούν να αοδειχθούν και έτσι γνωρίζουμε ότι ισχύουν. Η ισχύς τους θεωρείται δεδομένη και δεν ααιτείται η αόδειξή τους.. Τριγωνομετρικές τιμές αθροισμάτων και διαφορών γωνιών sin( ω ± φ) sin( ω)cos( φ) ± cos( ω)sin( φ) cos( ω ± φ) cos( ω)cos( φ) sin( ω)sin( φ) tan( ω) ± tan( φ) cot( ω)cot( φ) tan( ω ± φ) cot( ω ± φ) tan( ω) tan( φ) cot( ω) ± cot( φ) 4. Τύοι μετασχηματισμών αθροισμάτων ή διαφορών σε γινόμενα και γινομένων σε αθροίσματα ή διαφορές. ω φ ω φ sin( ω ) sin( φ) sin cos ω φ ω φ sin( ω ) sin( φ) sin cos ω φ ω φ cos( ω ) cos( φ) cos cos ω φ φ ω cos( ω ) cos( φ) sin sin sin( ω )sin( φ) ( cos( ω φ ) cos( ω φ )) cos( ω )cos( φ) ( cos( ω φ ) cos( ω φ )) sin( ω )cos( φ) ( sin( ω φ ) sin( ω φ )) 5. Τριγωνομετρικοί αριθμοί διλάσιων γωνιών sin( ω ) sin( ω)cos( ω) cos(ω ) cos ( ω) sin ( ω) sin ( ω) cos ( ω) tan( ω) tan( ω ) tan ( ω) ω tan( ) sin( ω) ω tan ( ) ω tan ( ) cos( ω) ω tan ( ) 4

5 6. Τριγωνομετρικοί τύοι αοτετραγωνισμού cos( ω) sin ( ω) cos( ω) cos ( ω) cos( ω) tan ( ω) cos( ω) cos( ω) cot ( ω) cos( ω) 7. Τριγωνομετρικές εξισώσεις Στις τριγωνομετρικές εξισώσεις καλούμαστε να ροσδιορίσουμε τα τόξα x ου ικανοοιούν την εξίσωση. Στον ίνακα ου ακολουθεί βλέουμε τις βασικές τριγωνομετρικές εξισώσεις. Εξίσωση Λύση sin( x) sin( φ) x κ φ ή x (κ ) φ cos( x) cos( φ) x κ ± φ tan( x) tan( φ) x κ φ cot( x) cot( φ) x κ φ Για την είλυση ιο ολύλοκων εξισώσεων εργαζόμαστε ώστε, με τη χρήση τριγωνομετρικών ταυτοτήτων και τύων, να μετατρέψουμε την εξίσωση σε μία εξίσωση (ή ένα σύστημα εξισώσεων) της αραάνω μορφής. 7. Νόμοι σε τυχαίο τρίγωνο Έστω ότι έχουμε τα ακόλουθο τυχαίο τρίγωνο. Τότε ισχύουν οι ακόλουθοι νόμοι ου συνδέουν τα μήκη των λευρών του τριγώνου με τα τόξα των γωνιών του. Νόμος ημιτόνου Νόμος συνημιτόνου a b c a b c bccos( A) sin( A) sin( B) sin( C) 5

6 7. Βασικές τριγωνομετρικές συναρτήσεις Στα αρακάτω σχήματα βλέουμε τις βασικές τριγωνομετρικές συναρτήσεις. Είναι φανερό ότι είναι εριοδικές συναρτήσεις με ερίοδο η ημίτονο και η συνημίτονο και με ερίοδο η εφατομένη και η συνεφατομένη. Πεδίο ορισμού της ρώτης και της δεύτερης είναι όλο το ενώ εδίο τιμών το [-,]. f ( x) sin( x) f ( x) cos( x) f ( x) tan( x) 6

7 f ( x) cot( x) Η εφατομένη και η συνεφατομένη έχουν εδίο τιμών όλο το ενώ τα εδία ορισμού τους βρίσκονται εάν αό το αφαιρέσουμε τα σημεία στα οοία δεν ορίζονται (δείτε αραάνω). Στο αρακάτω σχήμα αρατηρούμε ότι για την συνάρτηση sin( ax) όσο το α μεγαλώνει τόσο μικραίνει η ερίοδος της συνάρτησης σε /α. f ( x) sin( x), g( x) sin( x), h( x) sin( x ) sin( x) 0.5 sin( x) sin( x) Είσης συνάρτηση [α,-α]. - asin( x) όσο το α (θετικό) μεγαλώνει τόσο το εδίο τιμών μεταβάλλεται σε sin( x) sin( x) Η γραφική αράσταση της συνάρτησης sin( x θ ) μετατοίζει τη γραφική αράσταση της sin( x) κατά θ. 7

8 0.5 sin( x ) sin( x) Ανάλογη είναι και η συμεριφορά της συνάρτησης συνημίτονο. Ενδεικτικές ασκήσεις. 5. Υολογίστε τα sin( ), cos( ), cos( ). Παρατηρώ ότι και, Οότε 6 cos( ) cos( ) cos( )cos( ) sin( )sin( ) sin( ) sin( ) sin( )cos( ) cos( )sin( ) cos( ) cos( ) cos( )cos( ) sin( )sin( ) Το τελευταίο αοδεικνύεται είσης χρησιμοοιώντας την σχέση 5 Οότε 5 cos( ) cos( ) sin( ).. Υολογίστε το sin(x y) εάν είναι γνωστό ότι sin( x) και 5 το x ανήκει στο ο τεταρτημόριο και το y στο ο. Υολογίζω τα x x cos( ) sin ( ) cos(y) και ότι y 5 44 y sin( ) cos ( ) Των οοίων το ρόσημο καθορίζεται αό το τεταρτημόριο στο οοίο ανήκουν. Οότε 8

9 5 4 6 sin( x y) sin( x)cos( y) cos( x)sin( y) Να αοδείξετε ότι αν xy,, ισχύει: sin( x y)sin( x y) sin ( x) sin ( y ) ος τρόος: sin( x y)sin( x y) (sin( x)cos( y) cos( x)sin( y))(sin( x)cos( y) cos( x)sin( y)) (sin ( x)cos ( y) cos ( x)sin ( y)) sin ( x)( sin ( y)) ( sin ( x))sin ( y) sin ( x) sin ( x)sin ( y) sin ( y) sin ( y)sin ( x) sin ( x) sin ( y) Εναλλακτικά χρησιμοοιώντας τον τύο sin( ω )sin( φ) ( cos( ω φ ) cos( ω φ )) sin( x y)sin( x y) (cos(( x y) ( x y)) cos(( x y) ( x y)) (cos( y) cos( x)) ( sin ( y) sin ( x)) sin ( x) sin ( y) 4. Να λυθεί η εξίσωση cos( x) sin( x). Έχουμε cos( x) sin( x) cos( x) sin( x) cos( x) sin( x) cos( x) sin( x) sin( ) cos( ) 6 x sin( x) cos( x)cos( ) sin( x)sin( ) cos( ) cos( ) x k x k 6 6 cos( x ) cos( ) ή ( k ). 6 6 x k x k Να αοδείξετε ότι σε κάθε μη ορθογώνιο τρίγωνο ΑΒC ισχύει: tan( A) tan( B) tan( C) tan( A) tan( B) tan( C) Αφού το τρίγωνο δεν είναι ορθογώνιο, ορίζονται οι tan( A), tan( B), tan( C), γιατί είναι ABC,, και A B C, οότε έχουμε: 9

10 tan( A) tan( B) tan( A B) tan( C) tan( C) tan( A)tan( B) tan( A) tan( B) ( tan( A) tan( B)) tan( C) tan( A) tan( B) tan( C) tan( A) tan( B) tan( C) tan( A) tan( B) tan( C) tan( A) tan( B) tan( C) 6. Να αοδειχθεί ότι για κάθε x ισχύει: sin( x) sin( x) 4sin ( x) sin( x) sin( x x) sin( x)cos( x) sin( x)cos( x) sin( x)cos( x)cos( x) sin( x)( sin ( x)) sin( x)( sin ( x)) sin( x) sin ( x) sin( x) sin ( x) sin( x) sin ( x) sin( x) 4sin ( x) 7. Να αοδειχθεί ότι για κάθε x ισχύει: cos( x) cos( x x) cos( x) cos( x) sin( x) sin( x) (cos ( x) )cos( x) sin( x)cos( x)sin( x) cos ( x) cos( x) cos( x)( cos ( x)) cos ( x) cos( x) cos( x) cos ( x) 4cos ( x) cos( x) cos( x) 4cos ( x) cos( x) 4 8. Να αοδειχθεί ότι για κάθε x ισχύει: 8sin ( x) 4sin( x) cos(4 x) 4 4 8sin ( x) (4sin ( x)) (sin ( x)) ( cos( x)) ( cos( x) cos ( x)) 4cos( x) cos ( x) 4cos( x) cos(4 x) 4sin( x) cos(4 x) 9. Να λυθεί στο [0,] η εξίσωση cos( x) sin( x) 0. Παρατηρούμε ότι cos( ) sin( ) 0 sin ( ) sin( ) 0 x x x x sin ( x) sin( x) 0 Οότε εάν θέσουμε y sin( x) η εξίσωση είναι ισοδύναμη με την y y 0με y [,]. Η δευτεροβάθμια αυτή έχει ρίζες ρ, ρ αό τις οοίες η δεύτερη αορρίτεται. Αό την ρ έχουμε 0

11 x k 6 sin( x) sin( x) sin( ) ή ( k ). 6 5 x ( k ) x k 6 6 Εειδή x [0, ] έχουμε 0 k 0 k k k Που ικανοοιείται για κ0 οότε Είσης x k 0 k k k Που ικανοοιείται για κ0 οότε 5 x Να αοδειχθεί ότι για κάθε x ισχύει: 4sin( x) cos( x) sin(5 x) cos(4 x) cos(6 x) cos(0 x) 4sin( x)cos( x)sin(5 x) sin( x)cos( x)sin(5 x) sin( x) [ sin(5x x) sin(5x x) ] sin( x)(sin(8 x) sin( x)) sin( x)sin(8 x) sin ( x) cos(8x x) cos(8x x) cos(4 x) cos(4 x) cos(6 x) cos(0 x). Να λυθεί η εξίσωση cos(7 x)cos( x) sin(6 x)sin( x). cos(7 x)cos( x) sin(6 x)sin( x) cos(7 x)cos( x) sin(6 x)sin( x) cos(7x x) cos(7x x) cos(6 x x) cos(6 x x) cos(9 x) cos(5 x) cos(5 x) cos(7 x) cos(9 x) cos(7 x) cos(9 x) cos( 7 x) 9x k 7x x k x k ή ( k ). k 9x k 7x 6x k x 8 6

12 . Να αοδείξετε ότι σε κάθε τρίγωνο με γωνίες Α,Β,C ισχύει: A B C sin( A) sin( B) sin( C) 4cos( )cos( )cos( ) A B C A B C Εειδή A B C έχουμε sin( ) cos( ) και A B C cos( ) sin( ). A B A B C C sin( A) sin( B) sin( C) sin( )cos( ) sin( )cos( ) C A B A B C C A B A B cos( )cos( ) cos( )cos( ) cos( )(cos( ) cos( )) A B A B A B A B C cos( )cos( )cos( ) C A B A B C cos( )cos( )cos( ) 4cos( )cos( )cos( ). Να λυθεί η εξίσωση cos( x) cos( x) cos(5 x) cos(7 x) 0. cos( x) cos( x) cos(5 x) cos(7 x) 0 cos( x) cos(7 x) (cos( x) cos(5 x)) 0 7x x 7x x 5x x 5x x cos( ) cos( ) cos( ) cos( ) 0 cos(4 x)cos( x) cos(4 x)cos( x) 0 cos(4 x)(cos( x) cos( x)) 0 x x x x cos(4 x)(sin( )sin( )) 0 4cos(4 x )sin( x )sin( x ) 0 cos(4 x)sin( x)sin( x) 0 cos(4 x) 0 ή sin( x) 0 ή sin( x) 0 Αό την η έχουμε: 4x k x k 8 cos(4 x) cos( ) ή ( k ). x k x k 8 sin( x) sin(0) x k ± 0 x k ( k ). sin( x) sin(0) x k ± 0 x k ( k ). 4. Να λυθεί το σύστημα Η δεύτερη εξίσωση γίνεται x y. cos( x) cos( y)

13 y x x y y x cos( x) cos( y) sin( )sin( ) sin( )sin( ) y x y x y x x y sin( ) sin( ) sin( ) sin( ) x y sin( ) sin( ) x y k x y 4k ή ( k ) x y 4 k x y 4k Οότε το σύστημα είναι ισοδύναμο με τα δύο ακόλουθα x y x y y x 5 x y 4k x 4k x 4k 5 y k y k 6 6 k 5 5 x k x k 6 6 ή x y x y y x x y 4k x 4k x 4k 7 y k y k 6 6 k 7 7 x k x k Να αοδείξετε ότι σε κάθε τρίγωνο με γωνίες Α,Β,C και λευρές a,b,c ισχύει: a b A B C tan( ) tan( ) a b Αό το νόμο των ημιτόνων a b a sin( A) sin( A) sin( B) b sin( B) a sin( A) Με τη βοήθεια των ιδιοτήτων των αναλογιών αό την έχουμε b sin( B) A B A B sin cos a b sin( A) sin( B) A B A B A B C tan( )cot( ) tan( ) tan( ) a b sin( A) sin( B) A B A B sin cos

14 A B C A B C Εειδή A B C έχουμε cot( ) tan( ). 6. Να αοδείξετε ότι σε κάθε τρίγωνο με γωνίες Α,Β,C και λευρές a,b,c ισχύει: A ττ ( a) cos( ) bc Όου τ είναι η ημιερίμετρος του τριγώνου. b c a Αό το νόμο των συνημιτόνων έχουμε cos( A). bc Αό τη γνωστή ταυτότητα A A A b c a cos( A) cos ( ) cos ( ) cos( A) cos ( ) bc A b c a bc A ( b c) a A ( b c a)( a b c) cos ( ) cos ( ) cos ( ) bc bc bc Αλλά a b c τ b c a τ a b c a ( τ a) A τ( τ a) A τ( τ a) cos ( ) cos( ) 4bc bc 4

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ογελ ΣΥΚΕΩΝ ο ΓΕΛ ογελ ΣΥΚΕΩΝ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου ΣΧΟΛΙΚΟ ΕΤΟΣ 3-4 ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ Ειμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί

Διαβάστε περισσότερα

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων 1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 3ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανειστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παασταυρίδης Στάυρος Καθηγητής

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com/ Οι τριγωνομετρικοί αριθμοί (Εαναλητικά) Ε ί εδη γωνία είναι η κλίση µεταξύ δυο

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις: Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =

Διαβάστε περισσότερα

Εργασία 1 ΑΝ ΙΙΙ 07_08

Εργασία 1 ΑΝ ΙΙΙ 07_08 Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px

Διαβάστε περισσότερα

Εργασία 1 ΑΝ ΙΙΙ 08_09

Εργασία 1 ΑΝ ΙΙΙ 08_09 Εργασία ΑΝ ΙΙΙ 8_9 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px

Διαβάστε περισσότερα

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ Λύσεις των βασικών τριγωνοµετρικών εξισώσεων ηµx = ηµθ x = κ + θ x = κ + ( θ), κ Z συνx = συνθ x = κ + θ x = κ θ, κ Z εφx = εφθ x = κ + θ, κ Z σφx = σφθ x =

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3) ΘΕΜΑΤΑ Έστω f µια ραγµατική συνάρτηση µε τύο f() α) Αν η f είναι συνεχής, να αοδείξετε ότι α - 9 α,, > β) Να βρείτε την εξίσωση της εφατοµένης της γραφικής αράστασης C f της συνάρτησης f στο σηµείο Α(4,

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Πώς ; ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας.

Πώς ; ΣΤ)Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας. ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. Γωνία Τριγωνοµετρικός αριθµός o ή rad o ή 6 rad 45 ο ή 4 rad 6 ο ή rad 9 ο ή rad ημ (ημίτονο) συν (συνημίτονο) εφ (εφατομένη) +εν ορ-ζεται

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία .0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Εαναλητικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Α. α. Βλέε Πόρισµα σελίδα 5 σχολικού βιβλίου. β. Βλέε σελίδα 4 σχολικού βιβλίου. Β. α. (Σ), β. (Σ), γ. (Σ), δ. (Σ).

Διαβάστε περισσότερα

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f. ΣΕΙΡΕΣ FOURIER Θεωρία (σειρές Fourier) Εάν μιά συνάρτηση f ορίζεται σε όλο το και υάρχει αριθμός λ> τέτοιος ώστε να ισχύει: f(x)f(x+λ), x Τότε η συνάρτηση καλείται εριοδική, ο δε ελάχιστος αριθμός λ για

Διαβάστε περισσότερα

Σημειώσεις Τριγωνομετρίας Β Λυκείου

Σημειώσεις Τριγωνομετρίας Β Λυκείου Χατζημανώλης Νίκος Μαθηματικός, M. Ed. Διδακτικής και Μεθοδολογίας των Μαθηματικών Σημειώσεις Τριγωνομετρίας Β Λυκείου ΘΕΣΣΑΛΟΝΙΚΗ 014 (B ΕΚΔΟΣΗ) ΠΡΟΛΟΓΟΣ Με τις σημειώσεις αυτές ροσαθώ να αοτυώσω τη δική

Διαβάστε περισσότερα

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ ΜΡΟΣ Β 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ 81 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ Μονάδες μέτρησης όγκου Ως µονάδα µέτρησης όγκου θεωρούµε έναν κύο µε ακµή µήκους 1 µέτρο(m). Ο όγκος του ισούται µε 1 κυικό µέτρο

Διαβάστε περισσότερα

Κεφάλαιο Σειρές και μετασχηματισμός Fourier

Κεφάλαιο Σειρές και μετασχηματισμός Fourier Σειρές και μετασχηματισμός Fourier Κεφάλαιο Σειρές και μετασχηματισμός Fourier Ορισμοί Μία συνάρτηση f(x) είναι εριοδική με ερίοδο όταν ισχύει f(x+)f(x). Η ελάχιστη δυνατή ερίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Ιωάννης Χαρ. Κατσαβουνίδης Τμήμα Μηχ. Η/Υ, Τηλε. Δικτύων Πανειστήμιο Θεσσαλίας ΦΘινοωρινό Εξάμηνο 00/ Άσκηση Να βρείτε αν τα αρακάτω συστήματα είναι γραμμικά,

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

ανάλυση, σχόλια και προεκτάσεις με αφορμή απαντήσεις μαθητών σε ερωτήματα μαθηματικών που διατυπώθηκαν για εργασία στη σχολική τάξη

ανάλυση, σχόλια και προεκτάσεις με αφορμή απαντήσεις μαθητών σε ερωτήματα μαθηματικών που διατυπώθηκαν για εργασία στη σχολική τάξη ανάλυση, σχόλια και ροεκτάσεις με αφορμή ααντήσεις μαθητών σε ερωτήματα μαθηματικών ου διατυώθηκαν για εργασία στη σχολική τάξη (αραδείγματα αό τα μαθηματικά του λυκείου) του Δημητρίου Ντρίζου σχολικού

Διαβάστε περισσότερα

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ = 17 ο Γενικό Λύκειο Αθηνών Σχολικό έτος 01-015 ΤΑΞΗ:B' Λυκείου ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ :Αθήνα 8-6-015 ΘΕΜΑ 1ο Α. Nα αοδείξετε ότι αν ένα ολυώνυμο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αοστολής στους Φοιτητές: 7 Αριλίου 9 Ημερομηνία αράδοσης της Εργασίας: 9 Μαΐου 9 Πριν αό την λύση

Διαβάστε περισσότερα

Έργο του καλλιτέχνη Άγγελου Γεωργίου

Έργο του καλλιτέχνη Άγγελου Γεωργίου ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Έργο του καλλιτένη Άγγελου Γεωργίου ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ο ΚΕΦΑΛΑΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Π Ρ Ο Λ Ο Γ Ο Σ Η ΤΡΙΓΩΝΟΜΕΤΡΙΑ γράφτηκε σαν ένα ξεωριστό εγειρίδιο γιατί αφ ενός η τριγωνοµετρία

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Παρουσίαση 1 ΣΥΣΤΗΜΑΤΑ

Παρουσίαση 1 ΣΥΣΤΗΜΑΤΑ Παρουσίαση ΣΥΣΤΗΜΑΤΑ Παρουσίαση δ Θεωρητικά θέµατα Ας δούµε την είλυση ενός αραµετρικού γραµµικού συστήµατος. Θέµα Θα λύσουµε το σύστηµα D = D D y λ λ λ = λ = λ λ = λ + λ (Σ) : λ y = λ λ y = λ = λ(λ )

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Α=5 m ω=314 rad/sec=100π rad/sec

Α=5 m ω=314 rad/sec=100π rad/sec ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών

Διαβάστε περισσότερα

X(s + j 2π T k)esit ds, C 1 = a + j(0,2π/t) ( ln(z) + j2πk. z i 1 dz, C = e at+j(0,2π). j2π C T

X(s + j 2π T k)esit ds, C 1 = a + j(0,2π/t) ( ln(z) + j2πk. z i 1 dz, C = e at+j(0,2π). j2π C T Πανειστήμιο Θεσσαλίας ΗΥ24: Θεωρία Σημάτων και Συστημάτων Φθινόωρο 25 Λύσεις Εαναλητικών Εξετάσεων Θέμα 1 (α) Αό το μετασχηματισμό Laplace δ(t t ) e st, ροκύτει y[i ]δ(t i T) y[i ]e si T = Y (e st ), με

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα σελ. σχολ. βιβλ. 6 Α. Θεωρία σελ. σχολ. βιβλ. 4 Α. Θεωρία σελ. σχολ. βιβλ. 46-47 Α4. Λ, Σ, Λ, Σ, Σ ΘΕΜΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ

ΑΝΑΠΤΥΓΜA ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΑΝΑΠΤΥΓΜA ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΑΝΑΠΤΥΓΜΑ - ΣΕΙRA FOURIER Τα εριοδικά σήματα διακριτού χρόνου αριστάνονται με εερασμένα αθροίσματα. ( j a εξίσωση σύνθεσης a j ( εξίσωση ανάλυσης ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΓΙΑ ΜΗΧΑΝΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ- Α ΕΞΑΜΗΝΟ (Μ. ΦΙΛΙΠΠΑΚΗΣ) x 2t+1. 4t dt

ΓΕΝΙΚΟ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΓΙΑ ΜΗΧΑΝΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ- Α ΕΞΑΜΗΝΟ (Μ. ΦΙΛΙΠΠΑΚΗΣ) x 2t+1. 4t dt ΓΕΝΙΚΟ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΓΙΑ ΜΗΧΑΝΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ- Α ΕΞΑΜΗΝΟ - (Μ ΦΙΛΙΠΠΑΚΗΣ) ΑΣΚΗΣΗ Να ευρεθεί η αράγωγος της συνάρτησης G με ++7 ( ) G = dt/, + t ( cos ++5) β) ( ) G = dt/ t ΑΣΚΗΣΗ Έστω f/ [,+ ) συνεχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 4

Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 4 Ε. ΛΙΑΤΣΟΣ Μθηµτικός ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ Μορφές: Α. ηµ x, συνx, εφx, σφx. Β. ηµ x συνx, εφx σφx. Ν λυθούν οι εξισώσεις: ηµ x ( συνx + ) (συν x 3)εφx ηµ 3 x ηµ x συν x 3 3 3 x σφ x εφx óõí çì x 3 3 3εφ x

Διαβάστε περισσότερα

A1. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι:

A1. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι: ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΕΠΑΛ (ΟΜΑΔΑ Β ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A. Έστω f μια συνεχής συνάρτηση σε ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ 7.5 ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ. Θεώρηµα Rlle Αν µια συνάρτηση f είναι : Θεωρία Σχόλια Μέθοδοι Ασκήσεις (Αναζητώ ρίζα) συνεχής σε κλειστό διάστηµα [α, β] αραγωγίσιµη στο ανοικτό (α, β) f (α) f

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Α. Ανασκόπηση Βασικών Εννοιών

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Α. Ανασκόπηση Βασικών Εννοιών Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Α. Ανασκόπηση Βασικών Εννοιών Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Ενότητα Α: Ανασκόπηση Βασικών Εννοιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Γκύζη -Αθήνα Τηλ :.6.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 MAΪΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ A. Θεωρία σχολικού βιβλίου σελίδα 6-6

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 16 Ε_.ΜλΘΟ(α) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Πέµτη 7 Ιανουαρίου 16 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ . Ι ΤΡΙΓΩΝΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ασκήσεις σχολικού βιβλίου σελίδας 8 8 A Oµάδας.i) Να σχεδιάσετε τις γραφικές αραστάσεις των συναρτήσεων, στο ίδιο σύστηµα αξόνων: f() = ηµ, g() = 0,5.ηµ, h() = ηµ, 0 0 ηµ

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ (κωδικός μαθήματος: 37) Ημερομηνία και ώρα εξέτασης: Πέμτη, 3

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται

Διαβάστε περισσότερα

Παρουσίαση 1 ΘΕΩΡΙΑ Κατεύθυνση Γ Λυκείου

Παρουσίαση 1 ΘΕΩΡΙΑ Κατεύθυνση Γ Λυκείου Παρουσίαση ΘΕΩΡΙΑ Παρουσίαση Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Ισότητα µιγαδικών. Να αναφέρετε ότε δύο µιγαδικοί α + βi και γ + δi, λέµε ότι είναι ίσοι. Αάντηση ύο µιγαδικοί α + βi και γ + δi, είναι ίσοι,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές

Διαβάστε περισσότερα

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi 8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 4 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στο e-course στις «Περιλητικές Σημειώσεις» σελ7 και σελ5 β) Το ραγματικό και το φανταστικό μέρος της f( ) γράφονται uxy (, ) = si( x) και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Α. Η ΣΥΝΑΡΤΗΣΗ : y = α.x ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Δίνεται η ευθεία y = 3x. α) Να υπολογίσετε την κλίση της ευθείας. β) Να κάνετε την γραφική της παράσταση. 2. Μια ευθεία διέρχεται από την αρχή των

Διαβάστε περισσότερα