(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0"

Transcript

1 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8) ) Αν τα διανύσµατα α+ και κα+ είναι κάθετα να ρείτε την τιµή του κ. (Μονάδες 0) γ) Να ρείτε το µέτρο του διανύσµατος α + (Μονάδες 7) α = α συν α ɵ,, α) Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: ( ) εοµένως έχουµε: α = συν = = α+ κα+ α+ κα+ = 0 κα + α + κα + = 0 κ α + κ+ α + = 0 κ + κ+ + = 0 4κ+ κ = 0 κ = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άρα για κ = είναι κάθετα τα αραάνω διανύσµατα. α+ = α+ = 4α + 4α + = 4 α + 4α + = = = 4 α+ = 4 α+ = γ) ( ) ( ) 858 B (Αναρτήθηκε 08 4 ) Έστω τα διανύσµατα ακαι για τα οοία : α = = και ( α, ) = 0 ο α) Να αοδείξετε ότι α = (Μονάδες 0) ) Να υολογίσετε τα µέτρα των διανυσµάτων α + και α (Μονάδες 5) α) Έχουµε ότι: α = α = εοµένως έχουµε: α = συν 0 = = ( ) α+ = α+ = α + α + = α + α + = + + ( ) = = 4 α+ = 4 α = α = α α + = α α + = + = 4+ 8 = α = ( ) ( )

2 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ΑΒ = ( κ κ+ 9, κ ) και ΑΓ = (,), όου κ R α) Να ρείτε το εσωτερικό γινόµενο ΑΒ ΑΓ (Μονάδες 8) ) Να ρείτε τις τιµές του κ, ώστε τα διανύσµατα ΑΒ και ΑΓ να είναι κάθετα. (Μονάδες 9) γ) Για κ = να ρείτε το διάνυσµα ΒΓ. (Μονάδες 8) α) ΑΒ ΑΓ = ( κ κ+ 9) + ( κ ) = ( κ ) + ( κ ) = ( κ ) ( ( κ ) + ) = ( κ ) ( κ+ ) ) ΑΒ ΑΓ ΑΒ ΑΓ = 0 ( κ ) ( κ+ ) = 0 κ = ή κ = γ) Για κ= έχουµε: ΑΒ = ( 4, ), ΑΓ = (,) εοµένως : ΒΓ = ΑΓ ΑΒ =, 4, = 4, =,8 ( ) ( ) ( ( )) ( ) 005 B (Αναρτήθηκε 5 4 ) ίνονται τα διανύσµατα α, µε = α = 4 και α = 8 α) Να υολογίσετε τη γωνία( α, ) ) Να αοδείξετε ότι + α = 0 (Μονάδες 0) (Μονάδες 5) ɵ, λύνουµε τη σχέση α) Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: α = α συν( α, ) ως ρος συν( α, ɵ ) και έχουµε: ( ) α 8 8, (, ) ( ɵ ɵ ɵ, ) ) Έχουµε αό το α) ερώτηµα ότι : α α εοµένως έχουµε: = α + α = 0 = α συν α = = = = συν α = συν α = α 4 8 και = α 005 B (Αναρτήθηκε 5 4 ) Έστωα, 5 δυο διανύσµατα µε α =, =,( α, ) = και u = α+ α) Να υολογίσετε τα εσωτερικά γινόµενα α και u. (Μονάδες ) ) Να ρείτε το µέτρο του διανύσµατος u (Μονάδες 9) α = α συν α ɵ,, α) Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: ( ) 5 εοµένως έχουµε: α = συν = συν = συν = =

3 04 05 u = ( α+ ) = α + = α + = + = 4 u u 4 4 = = α+ = α + α + = α + 4α + 4 = = ) ( ) ( ) ( ) u = 4 u = 0057 B(Αναρτήθηκε 5 4 ) ίνονται τα διανύσµαταα, µε α =, =, ( α, ) =.Να υολογίσετε τα εξής: α) το εσωτερικό γινόµενο των διανυσµάτωνα, και κατόιν την τιµή της αράστασης ( ) ) το συνηµίτονο της γωνίας των διανυσµάτωνα και+ α α = α συν α ɵ,, α) Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: ( ) α +α (Μονάδες 0) (Μονάδες 5) εοµένως έχουµε: α = συν = =. α +α ( ) = α + α = + = α + α, α, + α ( α ) ( + α ) = α + α 4α = α α = = 9 ( ) α = α = α 4α + 4 = α 4α + 4 = = α = ) Αρχικά θα ρέει να υολογίσουµε τα: ( ) ( ) ( ) α+ = α+ = 4α + 4α + = 4 α + 4α + = = = α+ = α+ = ( ) ( α + α) 9 9 συν ( α ), ( + α ) = = συν ( α ), ( + α ) = α + α 0058 B (Αναρτήθηκε 5 4 ) ίνονται τα διανύσµατα α = (, ) και = (,). Να υολογίσετε: α) τη γωνία α, ( ) u = α α α ) το διάνυσµα ( ) (Μονάδες 0) (Μονάδες 5)

4 α) Υολογίζουµε αρχικά τα : α,, α, α = + α = ( ) = + = = ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ α = + α = Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: α = α συν( α ɵ, ), λύνουµε τη σχέση ως ρος συν( α, ɵ ) και έχουµε: ( ) α, (, ) (, ) συν αɵ = = = συν αɵ = συν αɵ = α u = α α α = α α = 4,, = + 4, ) Έχουµε: ( ) ( ) ( ) ( ) ( ) 0059 B (Αναρτήθηκε 5 4 ) ίνονται τα α = (,) και =, α) Να ρείτε τις συντεταγµένες του u = α ) Να ρείτε τον θετικό αριθµό x για τον οοίο τα διανύσµατα u και v = ( x, x ) u v u v = 0 x + 4 x = 0 x + 4 x 4 = 0. είναι κάθετα. α) Έχουµε: u = α u = (,), = (,) ( 4, ) = ( ( 4 ), ( ) ) = (, 4) ) Έχουµε: ( ) Υολογίζουµε τη διακρίνουσα του τριωνύµου. ( ) x, 4 8 x = =, αορρίτεται 4± 4 4± 8 ր = = = ց 4+ 8 x = = δεκτή (Μονάδες 0) (Μονάδες 5) = = 4 > 0, εοµένως έχουµε δυο ρίζες: 0070 B (Αναρτήθηκε 5 4 ) Έστωα, δυο διανύσµατα του ειέδου για τα οοία ισχύουν α + = 9, α = και ( α, ) = α) Να ρείτε τα µέτρα των διανυσµάτωνα, και το εσωτερικό γινόµενο α ) Να υολογίσετε το µέτρο του διανύσµατος u = α (Μονάδες ) (Μονάδες ) 4

5 04 05 α) Λύνουµε το σύστηµα των δυο εξισώσεων ου µας δίνονται για να ρούµε τα µέτρα των δυο διανυσµάτων. α + = 9 ( + ) 5 α = 0 α = και α = = =. α = α = α συν α ɵ,, εοµένως έχουµε: Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: ( ) α = συν = =. ) ( ) α = α = 4α α + 9 = 4 α α + 9 = = α = 0050B (Αναρτήθηκε 5 4 ) α =,7 και =, 4 ίνονται τα διανύσµατα: ( ) ( ) α) Να ρεθεί η ροολή του α άνω στο (Μονάδες 0) ) Να αναλύσετε το α σε δύο κάθετες µεταξύ τους συνιστώσες, αό τις οοίες, η µία να είναι αράλληλη στο. (Μονάδες 5) α) Έστωα = ρο α. Θα έχουµε λοιόν: α / / α = λ α α = α α = λ α = λ λ = αό όου υολογίζουµε το λ λ = = λ = εοµένως έχουµε: α = (, 4 ) α = (, ) ) Έστωα, α οι δυο κάθετες συνιστώσες του α ώστε να ισχύουν οι σχέσεις: α +α = α µε : α / / α = λ α α = 0 Αό το α) ερώτηµα έχουµε υολογίσει το α και µε τη οήθεια του τύου α +α = α ρίσκουµε το α α = α α α =,7, =,7 α =, ( ) ( ) ( ) ( ) 5

6 005 B (Αναρτήθηκε 5 4 ) α =, α+ = 7 και α = ίνονται τα διανύσµατα α, µε ( ) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ α) Να υολογίσετε τα α και (Μονάδες ) ) Να υολογίσετε το µέτρο του διανύσµατος α+ (Μονάδες 9) γ) Να ρείτε την ροολή του α+ στο διάνυσµα (Μονάδες 0) α) α = α = = α+ = 7 α + = 7 + = 7 = 8 = 4 = Ξέρουµε ότι: ( ) ) ( ) ( ) α+ = α+ = α + 4α + 4 = α + 4α + 4 = = γ) Έστω u = α+ ψάχνουµε u / / u = λ u u = u u = λ u = λ λ = αό όου υολογίζουµε το λ. ( α+ ) λ = = = λ = εοµένως έχουµε: u = α+ = 009 B (Αναρτήθηκε 5 4 ) ίνονται τα διανύσµατα α = (, ) και =, α) Να ρείτε την ροολή του α άνω στο (Μονάδες 0) ) Να αναλύσετε α το σε δύο κάθετες συνιστώσες αό τις οοίες η µία να είναι αράλληλη µε το α) Έστωα = ρο α. Θα έχουµε λοιόν: α / / α = λ α α = α α = λ α = λ λ = αό όου υολογίζουµε το λ. + ( ) λ = = = λ = εοµένως έχουµε:, α = 5 α =, (Μονάδες 5)

7 04 05 ) Έστωα, α οι δυο κάθετες συνιστώσες του α ώστε να ισχύουν οι σχέσεις: α +α = α µε : α / / α = λ α α = 0 Αό το α) ερώτηµα έχουµε υολογίσει το α και µε τη οήθεια του τύου α +α = α ρίσκουµε το α 8 8 α = α α α = (, ), =, =, α =, (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα α, και γ για τα οοία ισχύουν: α =, =, ( α, ) = 0 ο και κ γ = α, όου κ R, α) Να υολογίσετε το εσωτερικό γινόµενο α (Μονάδες ) ) Αν ισχύει γ = κ, τότε: i) να αοδείξετε ότι: κ = (Μονάδες ) ii) να υολογίσετε το µέτρο του διανύσµατος γ (Μονάδες 8) iii) να αοδείξετε ότι τα διανύσµατα α + γ και γ είναι κάθετα. (Μονάδες 8) α = α συν α ɵ,, α) Αό τον ορισµό του εσωτερικού γινοµένου ξέρουµε ότι: ( ) εοµένως έχουµε: α = συν 0 = =. κ κ κ κ ) i) Έχουµε: γ = κ α = κ α = κ α = κ = κ κ = κ κ = ii) Για κ = το γ γίνεται: γ = α εοµένως έχουµε: γ = α+ = α+ = α + α + = α + α + = + + = 4+ + = 7 γ = ( ) ( ) 7 α+ γ γ = 0. Θεωρούµε τα διανύσµατα: u = α+ γ = α+ α = α α u = α και v v = α+ Υολογίζουµε τώρα το εσωτερικό γινόµενο των u, v και έχουµε: u v = α α+ = α = α 4 = 4 = 4 4 = 0 iii) Αρκεί να δείξω ότι ( ) ( ) ( ) = γ = ( α ) =+α+ ( ) ( ) ( ), άρα ( α+ γ) ( γ) 7

8 (Αναρτήθηκε 08 4 ) α) Να εξετάσετε ότε ισχύει καθεµιά αό τις ισότητες : u + v = u + v και u+ v = u v α γ ) ίνονται τα διανύσµατα α,, γ για τα οοία ισχύουν: α++ γ = 0 και = = 4 7 i) Να αοδείξετε ότι: α και γ ii) Να αοδείξετε ότι: 7α+ γ = 0. (Μονάδες 0) (Μονάδες 8) (Μονάδες 7) α) Υψώνουµε τη σχέση ου µας δίνεται στο τετράγωνο και έχουµε: u + v = ( u + v ) ( u + v) = ( u + v ) u + v + u v = u + v + u v u + v + u v = u + v + u v u v = u v u v. Οµοίως: u + v = u v ( u + v ) = ( u v ) u + v + u v = u + v u v u + v + u v = u + v u v u v = u v u v α γ ) Έστω ότι = = = κ ( κ 0µε αφού εκφράζει αόσταση). 4 7 Τότε θα έχουµε: α = κ, = 4κ και γ = 7κ. Για να δείξουµε ότι α, αό α ερώτηµα αρκεί να δείξουµε ότι α + = α +. Αό τη σχέση α++ γ = 0 λύνουµε ως ρος α+ και έχουµε: α + = γ α+ = γ = γ. α + = γ = 7κ Έχουµε: α + = α + ά ρα α α ό α ) ερ ώ τηµα. α + = κ+ 4κ = 7κ Για να δείξουµε ότι γ, αό α ερώτηµα αρκεί να δείξουµε ότι + γ = γ. Αό τη σχέση α++ γ = 0 λύνουµε ως ρος + γ και έχουµε + γ = α + γ = α = α + γ = α = κ Έχουµε: + γ = γ ά ρα γ α ό α ) ερ ώ τηµα. γ = 4κ 7κ = κ 8

9 ii) Έχουµε αό το i) ερώτηµα δείξει ότι: α α = γ 7 α = γ 7 α = γ 7 α+ γ = 0 7 α γ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ και γ άρα και α γ, εοµένως έχουµε: 9

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ 1 Δίνεται το ευθύγραμμο τμήμα ΑΒ Αν ισχύει η ισότητα AB + BK- ΒΛ = AM- AK, να αοδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ Αν είναι ΒΔ = κ ΑΒ+ ΑΓ και ΓΕ ( 1+ κ ) = AB+ ΑΓ, να

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ ΤΡΙΤΗ, 30 ΜΑΪΟΥ 000 ΜΑΘΗΜΑΤΙΚΑ Α. (α) Πότε ένας γεωµετρικός µετασχηµατισµός ονοµάζεται γραµµικός; (,5 µονάδες) r (β) Αν Μ(x, y) σηµείο

Διαβάστε περισσότερα

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3) ΘΕΜΑΤΑ Έστω f µια ραγµατική συνάρτηση µε τύο f() α) Αν η f είναι συνεχής, να αοδείξετε ότι α - 9 α,, > β) Να βρείτε την εξίσωση της εφατοµένης της γραφικής αράστασης C f της συνάρτησης f στο σηµείο Α(4,

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Α. α) Να δώσετε τον ορισµό της ισότητας δύο συναρτήσεων. β) Να δώσετε τον ορισµό της γνησίως αύξουσας συνάρτησης σ ένα διάστηµα.

ΘΕΜΑ 1 ο Α. α) Να δώσετε τον ορισµό της ισότητας δύο συναρτήσεων. β) Να δώσετε τον ορισµό της γνησίως αύξουσας συνάρτησης σ ένα διάστηµα. ΘΕΜΑ ο Α α) Να δώσετε τον ορισµό της ισότητας δύο συναρτήσεων β) Να δώσετε τον ορισµό της γνησίως αύξουσας συνάρτησης σ ένα διάστηµα γ) Να δώσετε τον ορισµό της - συνάρτησης Β Σε καθεµιά αό τις αρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( )

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( ) .5 Ασκήσεις σχολικού ιλίου σελίδας 47 50 A Oµάδας. Αν α (, 3) και (, 5), τότε Να ρείτε τα εσωτερικά γινόµενα α, (α ).(-3 ) και (α ). (3α + ) Να ρείτε τη σχέση που συνδέει τους κ, λ R, ώστε το εσωτερικό

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 1 1. Σε τρίγωνο ΑΒΓ το ύψος του Α είναι ίσο µε το µισό της λευράς ΒΓ. να αοδείξετε ότι ισχύει εφβ + εφγ εφβ εφγ και σφβ +

Διαβάστε περισσότερα

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β»

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» Άσκηση GI_V_GEO 899 [Παράγραφος 8.] Στο αρακάτω σχήµα τα τµήµατα ΑΕ και Β τέµνονται στο Γ. Να αοδείξετε ότι τα τρίγωνα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ ΜΡΟΣ Β 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ 81 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ Μονάδες μέτρησης όγκου Ως µονάδα µέτρησης όγκου θεωρούµε έναν κύο µε ακµή µήκους 1 µέτρο(m). Ο όγκος του ισούται µε 1 κυικό µέτρο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Αριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orion.edu.gr

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9 . Ασκήσεις σχ. βιβλίου σελίδας 5 8 A ΟΜΑ ΑΣ (Να βρείτε τις αραγώγους των συναρτήσεων στις ασκήσεις 8). f() 5 f() 4 i f() 9 f () ( 5) 0 f () ( 4 ) 4 i f () ( 9 ) 9 8.. f() f() i f() 5 f () f () ( ) 4 i

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας

Διαβάστε περισσότερα

1.2 Βασικές Τριγωνομετρικές Εξισώσεις

1.2 Βασικές Τριγωνομετρικές Εξισώσεις 1. Βασικές Τριγωνομετρικές Εξισώσεις 1 η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = α, α 0 = α, α 0 εφx = α, α 0 σφx = α, α 0 1. Να λυθούν οι εξ ισώσεις: i. ημ x =, ii. ημ x= 0, iii.

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας . Ασκήσεις σχοικού βιβίου σείδας 69 7 A Oµάδας. Να αποδείξτε ότι, για κάθε πραγµατική τιµή του µ η εξίσωση (µ ) + µ + µ παριστάνει ευθεία γραµµή. Πότε η ευθεία αυτή είναι παράηη προς τον άξονα, πότε προς

Διαβάστε περισσότερα

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΗΝ ΡΙΓΩΝΟΜΕΡΙΑ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΒΕΡΟΙΑ e-mail: iossifid@yahoo.gr Η εργασία αυτή γράφτηκε για τους µαθητές της Β Λυκείου όταν (δεκαετία 98-990) η ριγωνοµετρία δεν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.

Διαβάστε περισσότερα

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση .5 Ασκήσεις σχολικού βιβλίου σελίδας 49 5 A Οµάδας.i Να εξετάσετε αν η συνάρτηση f() + ικανοοιεί τις υοθέσεις του θεωρήµατος Rolle στο διάστηµα [, ], και αν ναι στη συνέχεια να βρείτε όλα τα ξ (α, β) για

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ .5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε εσωτερικό γινόµενο των διανυσµάτων α, και συµολίζουµε µε α τον πραγµατικό αριθµό : α = ( α συν α ) αν α και α = αν α = ή =. Ιδιότητες α = α Αν α τότε Αν

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ

Διαβάστε περισσότερα

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα) ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΕΩΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ Α1 Θεωρία ( Σχολικό Βιβλίο, Σελίδα

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο ΣΥΝΘΕΣΗ ΛΝΩΣΕΩΝ.5. Υλικό σηµείο εκτελεί... η χρονική στιγµή t = 0 το υλικό σηµείο βρίσκεται στη θέση µε αοµάκρυνση x = +, ενώ ο ρυθµός µεταβο- λής της κινητικής του ενέργειας τη στιγµή αυτή είναι θετικός.

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 16 Ε_.ΜλΘΟ(α) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Πέµτη 7 Ιανουαρίου 16 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

3.1 Τριγωνομετρικοί αριθμοί γωνίας

3.1 Τριγωνομετρικοί αριθμοί γωνίας . Τριγωνομετρικοί αριθμοί γωνίας Τριγωνομετρικοί αριθμοί οξείας γωνίας αέναντι κάθετη λευρά ημβ υοτείνουσα ημγ ΑB ροσκε ίμενη κάθετη λευρά συνβ υοτείνουσα συνγ αέναντι κάθετη λευρά εφβ ροσκε ίμενη κάθετη

Διαβάστε περισσότερα

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΕΥΤΕΡΑ, ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της

Διαβάστε περισσότερα

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0. 99 ΘΕΜΑΤΑ. Αν J ν ν εφ d, ν *, τότε α να αοδείξετε ότι για κάθε ν >, ισχύει J ν β να υολογίσετε το J 5. α Έχουµε J ν-, ν J ν ν εφ d εφ εφ d εφ ( d συν εφ d συν εφ d εφ (εφ d J ν- β Έχουµε ν εφ ν J ν- ν

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

Αφορμή: Το ερώτημα Γ2 από το ΘΕΜΑ Γ των Πανελλαδικών Εξετάσεων 2018 στα Μαθηματικά Προσανατολισμού των ΓΕΛ.

Αφορμή: Το ερώτημα Γ2 από το ΘΕΜΑ Γ των Πανελλαδικών Εξετάσεων 2018 στα Μαθηματικά Προσανατολισμού των ΓΕΛ. . Μαθηματική μοντελοοίηση Αοκλίνουσα σκέψη Αρόσμενες ααντήσεις Δημιουργικές διαδρομές Αφορμή: Το ερώτημα Γ αό το ΘΕΜΑ Γ των Πανελλαδικών Εξετάσεων 018 στα Μαθηματικά Προσανατολισμού των ΓΕΛ. ΘΕΜΑ Γ Έχουμε

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Σχολικό βιβλίο: Ααντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΟΜΑΔΑΣ Έχουμε: y i 6 + y + y y Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου Σελίδα αό ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φροντιστήρια Ρούλα Μακρή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ 7.5 ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ. Θεώρηµα Rlle Αν µια συνάρτηση f είναι : Θεωρία Σχόλια Μέθοδοι Ασκήσεις (Αναζητώ ρίζα) συνεχής σε κλειστό διάστηµα [α, β] αραγωγίσιµη στο ανοικτό (α, β) f (α) f

Διαβάστε περισσότερα

Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0.

Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0. ΜΑΘΗΜΑ 8.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ Κριτήριο παρεµβολής Βοηθητική συνάρτηση R ΑΣΚΗΣΕΙΣ Κριτήριο παρεµβολής. 4 f () Να βρείτε το i) i) ( 4 ) ( 4 ) R R τέτοια, ώστε να ισχύει f () 0 4 0 0 4 για κάθε κοντά στο

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. ίνεται ο κύκλος x + y = 5 και οι εφαπτόµενες σ αυτόν από το σηµείο Μ(0, 0). Αν Α και Β είναι τα σηµεία επαφής, να βρείτε Τις εξισώσεις των εφαπτόµενων Τις συντεταγµένες των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της

Διαβάστε περισσότερα

= συν. Μάθηµα 9. Κεφάλαιο: Τριγωνοµετρία. Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών. Εισαγωγή

= συν. Μάθηµα 9. Κεφάλαιο: Τριγωνοµετρία. Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών. Εισαγωγή Μάθηµα 9 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1 Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών Εισαγωγή Γνωρίζουµε τους τριγωνοµετρικούς αριθµούς των 30 0, όως και των 45 0 Είναι δυνατόν, µέσω αυτών,

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 0 Μαΐου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Αόδειξη (βλέε σχολικό σελ 35) Α Σχολικό σελίδα 97 x Α3 Για την f (x) =

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ ΘΕΜΑ o Α.. Α.. Α.3. Β.. B.. Β.3. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ - 000 Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0, y 0 ) και ακτίνα ρ. Μονάδες Πότε η εξίσωση x + y + Ax + By

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx 1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε

Διαβάστε περισσότερα

Εργασία 1 ΑΝ ΙΙΙ 07_08

Εργασία 1 ΑΝ ΙΙΙ 07_08 Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ Το σηµείο Ο γραµµικού ελαστικού µέσου το οοίο ταυτίζεται µε τον άξονα χ Οχ, εκτελεί ταυτόχρονα δύο Α.Α.Τ ου γίνονται στην ίδια διεύθυνση, κάθετα στον άξονα χ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ 1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Ααντήσεις Ειμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Παρασκευή, 9 Ιουνίου 7 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ) 3. Η ΠΑΡΑΒΟΛΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ). Εξίσωση παραβολής p, όπου

Διαβάστε περισσότερα

Ασκήσεις Πράξεις ιανυσµάτων

Ασκήσεις Πράξεις ιανυσµάτων Ασκήσεις Πράξεις ιανυσµάτων 1 ίνονται τα διανύσµατα α,, x, y για τα οποία ισχύουν: x+ y= α+ 4 και 4x y= α+ Nδο τα διανύσµατα x, y είναι οµόρροπα Αν ισχύει η ισότητα MA+ 5ΡΑ = 3ΡΜ+ ΡΒ 4ΓΜ νδο τα σηµεία

Διαβάστε περισσότερα

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (/1/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων 1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων 7 Μαΐου 3 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ααντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων ΘΕΜΑ Α Α. Αόδειξη σχολικού βιβλίου σελ.33 Α. Ορισμός σχολικού βιβλίου σελ.6 Α3. Ορισμός σχολικού βιβλίου

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η υπερβολή x y. Να βρείτε Tις ασύµπτωτες και την εκκεντρότητα της υπερβολής. i Tις εφαπτόµενες της υπερβολής που είναι παράλληλες στην ευθεία (ε) : x + y + 0 ii Tο εµβαδόν

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Εαναλητικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Α. α. Βλέε Πόρισµα σελίδα 5 σχολικού βιβλίου. β. Βλέε σελίδα 4 σχολικού βιβλίου. Β. α. (Σ), β. (Σ), γ. (Σ), δ. (Σ).

Διαβάστε περισσότερα

( f ) ( T) ( g) ( H)

( f ) ( T) ( g) ( H) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Αόδειξη (iii), σελ.44 σχολικού βιβλίου Α. Ορισµός,

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

β και για τις οποίες το σύστημα (Σ) έχει λύση.

β και για τις οποίες το σύστημα (Σ) έχει λύση. ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι (Συαρτήσεις μιας μεταβλητής-γραμμική Άλγεβρα) -- Θέμα ο Δίοται οι ευθείες 4 : z +, : 4 y ε = y = ε = = z 4 (α) Να αοδείξετε ότι οι ευθείες ε και ε είαι συείεδες (β)

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΠΑΝΕΛΛΗΝΙΕΣ 7 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 9/6/7 ΕΠΙΜΕΛΕΙΑ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Ε_3Μλ2Θ(ε) ΤΑΞΗ: Β ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 ίνονται τα διανύσµατα a= ( x1, y1)

Διαβάστε περισσότερα