ΟΙ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
|
|
- Ἄρτεμις Δημαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΟΙ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ιστορικό των µιγαδικών αριθµών Φαίνεται ότι, οι µιγαδικοί αριθµοί εισήχθησαν στα Μαθηµατικά, από τον Jo Wallis (673) Όµως, πολύ πριν απ αυτόν, το πρόβληµα του υπολογισµού τετραγωνικής ρίζας αρνητικού αριθµού είχε τεθεί σε µιά σειρά µαθηµατικών (πχ Ήρων (50 µχ), ιόφαντος (75 µχ), Maavira (850 µχ), Basara (50 µχ) κλπ) Ο Wallis στο Algebra, (cap LXVI, Vol II, p 86, έκδοση στα Λατινικά), ισχυρίζεται ότι, η τετραγωνική ρίζα ενός αρνητικού αριθµού αν και αδύνατος, δεν είναι ωστόσο πιο ακατανόητη από έναν αρνητικό αριθµό Ονοµάζει τις ποσότητες αυτές φανταστικές ποσότητες και φθάνει µέχρι το σηµείο να θεωρήσει έναν άξονα κάθετο προς τον άξονα των πραγµατικών αριθµών και να πει ότι αυτός θα έπρεπε να λέγεται άξων των φανταστικών ποσοτήτων Πέραν του σηµείου αυτού όµως, δεν προχωρά Την συνέχεια της µελέτης των φανταστικών ποσοτήτων, την ανέλαβε ο Leibit (676) και ο Jea Beroulli (70) Για περισσότερες λεπτοµέρειες, παραπέµπουµε στο History of Matematics Vol II, σελ 6, του DE Smit, έκδοση Dover, απ όπου έχουµε πάρει τις παραπάνω πληροφορίες Ορισµός των µιγαδικών αριθµών Έστω R το σώµα των πραγµατικών αριθµών Θεωρούµε το R R = {( x, y), µε x R και y R} και µέσα σ αυτό ορίζουµε την ισότητα ( x, y) = (x, y ) αν και µόνον αν x = x, y = y και τις εσωτερικές πράξεις, : R R R R (που θα καλούµε πρόσθεση) και o, o : R R R R, (που θα καλούµε πολλαπλασιασµό και θα παραλείπουµε το σύµβολο o ), ως εξής: Την πρόσθεση, από την σχέση, ( x,y) (x,y) = (x x,y y) Τον πολλαπλασιασµό από την σχέση, ( x,y) o (x,y) = (xx yy,xy xy) Η δοµή που έτσι ορίστηκε, παρίσταται µε το C και τα στοιχεία της µε τα γράµµατα, (συνήθως), w, κλπ Με παριστάνουµε το στοιχείο (,0), µε i παριστάνουµε το στοιχείο ( 0,), και µε 0 το στοιχείο ( 0,0) της δοµής C Το C, µε τις πράξεις αυτές, αποκτά την δοµή αντιµεταθετικού σώµατος Φανερά, ( 0,) o (0,) = (,0), ή i = Γράφουµε, C = (x, y) = x iy Εισάγουµε και έναν µονόµετρο πολλαπλασιασµό : R C C, θέτοντας, λ = λ(x, y) = (λx, λy) Η δοµή ( C,, ) είναι δοµή διανυσµατικού χώρου Τα στοιχεία (,0) και ( 0,) αποτελούν µιά βάση του χώρου αυτού Τον υπόχωρο Re =< (,0 ) > τον ταυτίζουµε µε το R, και γράφουµε απλά, αντί του (,0), ως επίσης x αντί του ( x,0) = x(,0 ) Η ταύτιση αυτή γίνεται µέσω του προφανούς ισοµορφισµού R x a (x,0) Re των δοµών ( Re,,o) και ( R,, ) Θεώρηµα Η δοµή C των µιγαδικών αριθµών, είναι ένα αντιµεταθετικό σώµα, που περιέχει ένα υπόσωµα, ισόµορφο του σώµατος R των πραγµατικών αριθµών, και µέσα στο οποίο, ισχύει η ισότητα i = 0 Η ισότητα αυτή, απαγορεύει την εισαγωγή
2 διατάξεως εν αυτώ, συµβατής µε τις πράξεις του C (Θεώρηµα των E Arti και Otto Screier, βλέπε ΣΠ Ζερβού, Π Κρικέλη, «Πως Μεταβαίνουµε από τα Κλασικά Μαθηµατικά στα Νεώτερα» Το x καλείται πραγµατικό µέρος του = x iy, και το y φανταστικό µέρος του Γράφουµε και x = Re, y = Im Θέτουµε, Re = { x x R} και Im = { y y R} Με κάθε µιγαδικό = x iy, θεωρούµε και τον συζυγή του = x iy Είναι, = x y, δηλαδή, = R τιµή του Η απεικόνιση C a x y = = καλείται απόλυτος Τους µιγαδικούς αριθµούς, θα µπορούσαµε να τους εισάγουµε, χρησιµοποιώντας τον x y ισοµορφισµό που δίδεται από την σχέση C = x iy a R y x Ο ισοµορφισµός αυτός είναι χρήσιµος στον λογισµό των µιγαδικών αριθµών Πχ, αν θέλουµε να βρούµε τον, απλά, λαβαίνουµε τον αντίστροφο πίνακα x y x y x y x y του πίνακα που αντιστοιχεί µέσω του ισοµορφισµού y x y x x y x y µας, στον Στην συνέχεια, γράφουµε, x y = i x y x y Απ ότι είπαµε παραπάνω, συµπεραίνουµε ότι, αν = x iy και = x iy έχουµε, τότε, και ότι α) = (x x ) i(y y ) και = (xx yy ) i(xy xy) β) = και = γ) = δ) = ε) = δ) και Επαγωγικά, i i ε) = στ) Η διαίρεση του πολυωνύµου µε το, δίδει την ταυτότητα K = Το µιγαδικό επίπεδο Το µιγαδικό επίπεδο λαβαίνετε, αν σε κάθε σηµείο ( x,y) R, αντιστοιχίσουµε τον µιγαδικό αριθµό = x iy Ο άξων Ox ταυτίζεται, τότε, µε το σύνολο Re και ο Oy µε το Im Στον µιγαδικό αριθµό αντιστοιχεί το ακτινικό διάνυσµα OZ, όπου Z = (x,y) Το µέτρο ή η απόλυτος τιµή του συµπίπτει µε την απόσταση R i= i=
3 3 του σηµείου Ζ από την αρχή Ο του συστήµατος αναφοράς του Οxy επιπέδου, και ισούται µε x y Χρήσιµη είναι και η παράσταση του µέσω των πολικών συντεταγµένων του Επειδή είναι x = r cosθ, y = rsiθ όπου r =, είναι και = r(cosθ isiθ), 0 θ < π, r,θ R Παρατηρούµε ότι, γωνίες θ, που είναι πολλαπλάσια του π, παριστούν στο µιγαδικό επίπεδο, το ίδιο σηµείο Η γωνία θ καλείται και Argumet (Arg) του, όταν είναι 0 θ < π, και argumet του (arg), όταν θ = π, Z Μετράται πάντα µε φορά αντίθετη της φοράς των δεικτών του ωρολογίου Το άθροισµα των µιγαδικών αριθµών, αναπαρίσταται από το άθροισµα των ακτινικών διανυσµάτων τους Για να βρούµε σε τι αντιστοιχεί το γινόµενο δύο µιγαδικών = x iy και = x iy, χρησιµοποιούµε τις πολικές τους συντεταγµένες ( r,θ) και ( r,θ), οπότε είναι, = r r (cos(θ π) isi(θ π))(cos(θ π) isi(θ π)) = rr [(cos(θ θ π) isi(θ θ π)] Η ισότητα αυτή δείχνει ότι, το γινόµενο του επί τον, αντιστοιχεί σε εκείνο το σηµείο του µιγαδικού επιπέδου, που απέχει από την αρχή απόσταση r ίση προς =, και έχει πολική γωνία arg = θ θ Ο πολλαπλασιασµός ενός µιγαδικού αριθµού επί τον i, αντιστοιχεί σε περιστροφή του σηµείου Ζ δεξιόστροφα, κατά γωνία π/ Τούτο είναι βέβαια σύµφωνο µε την δράση του πίνακα, που αντιστοιχεί στον i, πάνω στο διάνυσµα OZ x y 0 y x Πράγµατι, είναι, =, και το σηµείο = y xi έχει ακτινικό y x 0 x y διάνυσµα OZ κάθετο στο OZ, µιά και OZ ΟΖ = (x,y) ( y,x) = xy xy = 0 Αν = x iy = r (cosθ isiθ) και = x iy = r (cosθ isiθ) τότε έχουµε και τις σχέσεις: α) arg( ) = arg arg β) = (r(cosθ isiθ)) = r (cos θ isi θ) όπου το ρητός αριθµός (κανόνας του de Moivre) Η ισότητα αυτή, µας επιτρέπει να υπολογίζουµε δυνάµεις και ρίζες µιγαδικών αριθµών Πχ αν θέλουµε να βρούµε την, γράφουµε, / θ π θ π = = r cos isi, =, γ) Από την ταυτότητα στ) της προηγούµενης παραγράφου, λαβαίνουµε και τις σχέσεις si[( / )θ] cosθ cosθ K cos θ = και si(θ / ) cos[( / )θ] si θ si θ K si θ = cot(θ / ), όπου 0 < θ < π si(θ / )
4 4 Βιβλιογραφία ) Complex variables ad applicatios, Ruel V Curcill, McGraw-Hill ) Complex Variables, George Polya Gordo Latta, Wiley Ασκήσεις Έστω α,β R Να βρεθούν x, y R, έτσι ώστε (x iy) = α iβ Να δείξετε ότι i = i, αν και µόνον αν R 3 Έστω p (t) πολυώνυµο µε πραγµατικούς συντελεστές Να δείξετε ότι, για w C, p (w) = p(w) Άρα, αν w ρίζα του p (t), και ο w ρίζα του 4 Για ποιά σηµεία του επιπέδου Re = Im; Να δείξετε ότι, r cos θ = x x y x y K r si θ = x y x y K 3 όπου x iy = r(cos θ isi θ) r 6 Να δείξετε ότι, = ( cos(θ θ ) isi(θ θ )), όπου r = r (cosθ isi θ ) και = r (cosθ isi θ ) 3 Αρχικές ρίζες της µονάδος Αν θέλουµε να βρούµε τις ρίζες τις µονάδος, π π γράφουµε = cos0 isi0, οπότε και, = / = cos isi, =,,,, Τα σηµεία του µιγαδικού επιπέδου, που αντιστοιχούν στις ρίζες της µονάδος, για τις διαφορετικές τιµές του, βρίσκονται όλα επί περιφερείας κύκλου κέντρου την αρχή Ο και ακτίνας r = (ο µοναδιαίος κύκλος) και αυτά, P 3 αποτελούν τις κορυφές κανονικού -γώνου, µε πρώτη κορυφή το σηµείο P 0 = (,0 ), το οποίο το λαβαίνουµε για =, ή = 0 Ας καλέσουµε αυτή την κορυφή P, 0 µηδενική κορυφή Γράφουµε και ω = ω, όπου π π ω = cos isi P 5 Παρατηρούµε ότι, όλες οι διαφορετικές ρίζες της µονάδος δίδονται από τις δυνάµεις ω, ω, K, ω, µιά και ισχύει, από τον κανόνα de Moivre, ότι ω ωm = ω m (γενικότερα, έχουµε, ω ωm = ω m) Το γινόµενο δύο ριζών της µονάδος, είναι, λοιπόν, ρίζα της µονάδος Το σύνολο συνεπώς Ω = {ω, ω, K,ω} µε πράξη τον πολλαπλασιασµό του C, αποτελεί κυκλική οµάδα, τάξεως, παραγόµενη από την ω Η γεωµετρική ερµηνεία του πολλαπλασιασµού της ω επί ω, είναι η περιστροφή
5 5 της κορυφής κατά γωνία ότι ω 0 i= i = π / και η µεταφορά της στην κορυφή Ισχύει, λοιπόν, Ορισµός Ένας µιγαδικός αριθµός ω που είναι ρίζα της µονάδος, καλείται -αρχική m ρίζα της µονάδος, αν και µόνον αν, ω = ω, αλλά ω ω m µε m Ο είναι λοιπόν, ο ελάχιστος εκθέτης, για τον οποίο ω = ω Μία αρχική ρίζα της µονάδος, πολλαπλασιαζοµένη επί τον εαυτό της όσες φορές χρειάζεται, θα µας δώσει και τις ρίζες της µονάδος Κάτι, που δεν ισχύει για τις µη αρχικές ρίζες Πράγµατι, αν οι ρίζες µου είναι πχ στις κορυφές κανονικού οκταγώνου, για την κορυφή, που αντιστοιχεί στην ρίζα ω, είναι, ω ω = ω4, ω4ω = ω6, ω6ω = ω0, κοκ Αν τυχόν φυσικός, µε φ() συµβολίσαµε το πλήθος των φυσικών, οι οποίοι είναι πρώτοι προς τον (συνάρτηση φ του Euler) Θα δείξουµε ότι, για κάθε, έχουµε ακριβώς φ() -αρχικές ρίζες της µονάδος Θα δείξουµε δηλαδή ότι, αν, τότε οι παρακάτω προτάσεις είναι ισοδύναµες: ) ( ω ) = ω ) Το ω παράγει την οµάδα Ω 3) για κάποιον εκθέτη, ( ω ) = ω και, τέλος, 4) Οι και είναι πρώτοι µεταξύ τους, δηλαδή, ότι (,) = [ή ισοδύναµα, ότι υπάρχουν ακέραιοι α και β, τέτοιοι ώστε, η λ = (Ταυτότητα του Beout)] Ότι το ) ) και ότι ) 3) το δείξαµε πιο πάνω για την 3) 4), παρατηρούµε ότι, για τον φυσικό η =, ω = ω Άρα και (η)π (η)π π π (η)π π cos isi = cos isi, δηλαδή, λπ =, ή λη = (η)π π για την 4) ), έχουµε την λη =, απ όπου την λπ =, δηλαδή την ω = ω Άρα ( ω ) = ω = ω = ω ή ( ω ) = ω π π Παράδειγµα για κάθε, η ω = cos isi είναι -αρχική ρίζα της µονάδος Έχουµε, λοιπόν, τον παρακάτω πίνακα:
6 6 -αρχικές ρίζες της µονάδος φ() ω = ω = ω = i, ω = ω = i 4 ω = i, ω 3 = i 5 π π 4 ω = cos isi, =,, 3, ω = i, ω5 = ω = i Έστω, τώρα, ότι έχουµε να υπολογίσουµε την -στη ρίζα ενός αριθµού C Αν, µε κάποιο τρόπο, έχουµε υπολογίσει µία ρίζα, και έστω αυτή η u, τότε, και οι uω, K,uω, 0 είναι ρίζες του Όλες, λοιπόν, οι διαφορετικές ρίζες του είναι οι uω,uω, K,uω Κυκλοτοµικό πολυώνυµο Q () λέγεται εκείνο το πολυώνυµο φ () βαθµού, του οποίου οι ρίζες είναι οι -αρχικές ρίζες της µονάδος Έχοντας υπ όψη τον παραπάνω πίνακα, υπολογίζουµε τα κυκλοτοµικά πολυώνυµα: Q = 3 3 Q3 = i i = Q = ( i)( i) = Q6 = i i = p p για p πρώτο αριθµό, είναι, Q = K p Θεώρηµα Αν το f (x) = a x a x a 0, µε ακεραίους συντελεστές είναι τέτοιο ώστε ο πρώτος p δεν διαιρεί τον a, τότε η ισοδυναµία f (x) 0(mod p) έχει το πολύ ακέραιες διαφορετικές (mod p) λύσεις Απόδειξη Με επαγωγή επί του Γιά = 0 δεν έχουµε καµία λύση µιά και f (x) = a 0 0(mod p) Υποθέτουµε ότι το θεώρηµα ισχύει γιά κάθε πολυώνυµο βαθµού Θα δείξουµε ότι ισχύει και γιά πολυώνυµο βαθµού Εάν η ισοδυναµία f (x) 0(mod p) δεν έχει καµία λύση, δεν έχουµε τίποτα να δείξουµε Σε περίπτωση όµως που έχουµε κάποια λύση r, τότε έχουµε και f (x) f (r) = a (x r ) = (x r) a (x x r r ) = (x r)g(x) = = όπου deg g(x) = Εξ άλλου, επειδή ο r ρίζα της f (x) 0(mod p), είναι και 0 f (x) (x r)g(x)(mod p) Αν x r 0(mod p), είναι, και, g(x) 0(mod p), που σύµφωνα µε την υπόθεση έχει διαφορετικές (mod p) ρίζες Άρα το f (x) έχει το πολύ ακέραιες διαφορετικές
7 7 (mod p) λύσεις Πόρισµα Αν p πρώτος, τότε υπάρχουν ακριβώς φ ( p ) διαφορετικές αρχικές ρίζες της µονάδος (mod p) Παράδειγµα Αν p =, θα πρέπει να έχουµε φ ( 0) = 4 διαφορετικές αρχικές ρίζες της p p i x = (x )(x ) = 0 Πράγµατι, αν ω είναι µία ρίζα της µονάδας, για να βρούµε τις αρχικές ρίζες, θα πρέπει να βρούµε ποιός εκθέτης δίδει µε πράξη την i j ij ( ) ω ω = (mod ) όλους τους εκθέτες από τον µέχρι τον 0 Καταρτίζουµε, λοιπόν, τον παρακάτω πίνακα, όπου έχουµε υπολογίσει τους εκθέτες mod : Σύµφωνα µε τον πίνακα αυτόν, αρχικές ρίζες είναι οι ω, ω, ω, ω Βιβλιογραφία ) Το τελευταίο θεώρηµα του Fermat Ιωάννα Φερεντίνου Νικολακοπούλου ΟΕ Β, 984 ) Polyomials EJ Barbeau, Spriger-Verlag, 989
L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε
ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη
Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x
ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Κεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας
Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Οι Μιγαδικοί Αριθμοί
Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml
(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier
Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε
ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών
54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε
Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x
Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται
Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.
.. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός
Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο
Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.
ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos
Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
v a v av a, τότε να αποδείξετε ότι ν <4.
ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.
http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n
236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις
Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά. Nικόλαος Aτρέας
Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ Περιεχόµενα Eισαγωγή στους µιγαδικούς αριθµούς Στοιχειώδεις µιγαδικές συναρτήσεις 3 Οριο-Συνέχεια-Παράγωγος Αναλυτικές Συναρτήσεις 4 Μιγαδική
Κανόνες παραγώγισης ( )
66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών
ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,
Οι πραγµατικοί αριθµοί
Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου
Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010
Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο
Θωμάς Ραϊκόφτσαλης 01
0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική
Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση
2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.
.3 Ασκήσεις σχολικού βιβλίου σελίδας 00-0 A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : +,, 3 +, 3, 5,, ( ) ( + ), ( ) ( + ), και +, 3+ 3 + + + ( ) 3+ 3 3 + 5 5 3 + ( ) 5 5 5 5 5. 5 + + (οι +, είναι συζυγείς,
Παραδείγµατα και Ασκήσεις Γραµµικής Άλγεβρας
Περιεχόµενα και Πρόλογος Σελίδα από 4 Εναλλακτικό ιδακτικό Υλικό Θεµατική Ενότητα ΠΛΗ Παραδείγµατα και Ασκήσεις Γραµµικής Άλγεβρας Μιχάλης Μαλιάκας Μαρία Αδάµ Περιεχόµενα Κεφάλαιο Προαπαιτούµενες Έννοιες
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
-6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή
KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι
Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε
Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).
Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας
Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ
= s 2m 1 + s 1 m 2 s 1 s 2
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.
ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t
ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.
Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.
Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )
ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους
Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως
Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017