I3: PROBABILITǍŢI - notiţe de curs

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I3: PROBABILITǍŢI - notiţe de curs"

Transcript

1 I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile. Evenimente incompatibile 4 5 Eveniment implicat de alt eveniment 5 6 Operaţii cu evenimente 5 7 Spaţiul de selecţie al unei experienţe 7 8 Frecvenţa 7 9 Evenimente egal posibile 8 0 Probabilitatea unui eveniment 8 Spaţiu de selecţie finit. Eveniment elementar. Eveniment. 0 2 Definiţia axiomaticǎ a probabilitǎţii 0 3 Evenimente independente şi evenimente dependente 4 4 Probabilitate condiţionatǎ 6 5 Variabile aleatoare discrete unidimensionale 20

2 6 Funcţia de repartiţie a unei variabile aleatoare discrete unidimensioanle 24 7 Variabile aleatoare discrete bidimensionale (vectori aleatori) 8 Funcţia de repartiţie a vectorului aleator (X, Y ) 30 9 Valoare medie. Dispersie. Momente. (pentru variabile aleatoare discrete unidimensionale) 3 20 Covarianţǎ. Coeficient de corelaţie 35 2 Convergenţa şirurilor de variabile aleatoare Legi ale numerelor mari Repartiţia binomialǎ 4 24 Repartiţia Poisson ca aproximaţie a repartiţiei binomiale Repartiţia multinominalǎ Repartiţia geometricǎ. Repartiţia binominalǎ negativǎ 48 Variabile aleatoare continue Funcţia de repartiţie pentru variabile aleatoare continue. Densitatea de probabilitate Valorile medii şi dispersia unei variabile aleatoare continue Repartiţia normalǎ 53 2

3 Experienţǎ şi evenimente aleatoare Definiţia.. În teoria probabilitǎţilor prin experienţǎ se înţelege un act care, în condiţii date, poate fi repetat nelimitat. Definiţia.2. Acele experimente care în condiţii date au un singur rezultat se numesc deterministe, iar cele care în condiţii date pot avea mai multe rezultate se numesc experienţe aleatoare. Exemplul.. Aruncarea unei monede, aruncarea unui zar, extragerea unei bile dintr-o urnǎ, tragerea cu arma într-o ţintǎ sunt exemple de experienţe aleatoare. În urma aruncǎrii unei monede se obţine unul din urmǎtoarele rezultate elementare: (stemǎ), (valoare). Dacǎ notǎm cu () apariţia feţei cu un singur punct, cu (2) apariţia feţei cu douǎ puncte, etc., atunci în urma experienţei care constǎ în aruncarea unui zar se obţine unul din urmǎtoarele rezultate elementare: (), (2), (3), (4), (5), (6). Definiţia.3. Orice rezultat legat de o experienţǎ aleatoare, despre care, dupǎ efectuarea experienţei, putem spune cǎ s-a produs sau nu, poartǎ numele de eveniment aleator asociat experienţei. Evenimentul (stemǎ), în cazul aruncǎrii unei monede, poate sǎ se realizeze sau sǎ nu se realizeze, motiv pentru care acest eveniment este numit eveniment aleator spre deosebire de evenimentul (moneda cade pe pǎmânt) care se realizeazǎ sigur datoritǎ gravitaţiei. Un eveniment aleator depinde de acţiunea unor factori care nu au fost luaţi în consideraţie la fixarea condiţiilor în care se efectueazǎ experienţa. În experienţa aruncǎrii monedei, asemenea factori sunt: felul în care mişcǎm mâna, particularitǎţile monedei, poziţia în care se gǎseşte moneda în momentul aruncǎrii. Referitor la realizarea unui eveniment aleator la efectuarea unei singure experienţe aleatoare nu putem spune nimic, înainte de efectuarea experienţei. Nu putem prevedea dacǎ la o singurǎ aruncare a monedei va apǎrea faţa cu stema. În teoria probabilitǎţilor ne vom ocupa de asemenea experienţe şi evenimente, de evaluarea şansei de realizare a unui eveniment aleator asociat experienţei. 2 Eveniment sigur. Eveniment imposibil Fiecǎrei experienţe aleatoare i se pot ataşa douǎ evenimente cu caracter special: evenimentul sigur şi evenimentul imposibil. Definiţia 2.. Evenimentul sigur (notat cu S) este un eveniment care se realizeazǎ cu certitudine la fiecare efectuare a experienţei aleatoare. 3

4 Exemplul 2.. (Apariţia unei feţe) în cazul aruncǎrii monedei este un eveniment sigur al experienţei. (Apariţia uneia din feţe) în cazul aruncǎrii zarului este un eveniment sigur al experienţei. Definiţia 2.2. Evenimentul imposibil (notat cu ) este un eveniment care nu se realizeazǎ niciodatǎ la efectuarea experienţei aleatoare. Exemplul 2.2. Apariţia unei bile roşii în cazul experienţei care constǎ în extragerea unei bile dintr-o urnǎ care conţine doar bile albe este un eveniment imposibil. 3 Evenimente contrare Notǎm cu A evenimentul apariţiei uneia din feţele 2, 5 şi cu B apariţia uneia din feţele, 3, 4, 6 la aruncarea unui zar. Se observǎ cǎ dacǎ nu se realizeazǎ evenimentul A (nu apare una din feţele 2 sau 5) atunci se realizeazǎ evenimentul B (obţinem una din feţele, 3, 4, 6) şi viceversa: dacǎ nu se realizeazǎ B atunci se realizeazǎ A. Definiţia 3.. Contrarul unui eveniment A asociat experienţei este un eveniment B asociat aceleaşi experienţe care are proprietatea cǎ, la orice repetare a experienţei aleatoare, dacǎ se realizeazǎ A atunci nu se realizeazǎ B şi dacǎ nu se realizeazǎ A atunci se realizeazǎ B. Dacǎ B este contrariul lui A atunci A este contrariul lui B. Evenimentul contrar unui eveniment A (asociat experienţei) îl vom nota cu Ā sau A. 4 Evenimente compatibile. Evenimente incompatibile Fie A şi B douǎ evenimente asociate unei experienţe aleatoare. Definiţia 4.. Evenimentele A şi B sunt compatibile dacǎ se pot realiza simultan în cazul efectuǎrii experienţei aleatoare. Exemplul 4.. În experienţa aleatoare de aruncare a zarului, evenimentul A, care constǎ în apariţia uneia din feţele cu un numǎr par şi evenimentul B, care constǎ în apariţia uneia din feţele 2 sau 6 sunt compatibile, deoarece dacǎ rezultatul experienţei este apariţia feţei 2 atunci se realizeazǎ atât evenimentul A cât şi evenimentul B. Definiţia 4.2. Evenimentele A şi C asociate unei experienţe aleatoare sunt incompatibile dacǎ aceste evenimente nu se pot realiza simultan în cazul efectuǎrii experienţe. Exemplul 4.2. În experienţa aleatoare de aruncare a zarului, evenimentul A, care constǎ în apariţia uneia din feţele cu un numǎr par şi evenimentul C, care constǎ în apariţia uneia din feţele cu un numǎr impar sunt incompatibile. Aceste evenimente nu se pot realiza simultan. Se remarcǎ în plus cǎ evenimentele A şi C sunt contrare. 4

5 Exemplul 4.3. În experienţa aleatoare de aruncare a zarului, evenimentul A, care constǎ în apariţia uneia din feţele cu un numǎr par şi evenimentul D, care constǎ în apariţia feţei 5 sunt incompatibile. Aceste evenimente nu sunt însǎ contrare, deoarece nerealizarea evenimentului A într-o experienţǎ nu înseamnǎ realizarea evenimentului D. Definiţia 4.3. Vom spune cǎ evenimentele A, A 2,..., A n asociate unei experienţe aleatoare sunt compatibile dacǎ aceste evenimente se pot realiza simultan în cazul efectuǎrii experienţei. Exemplul 4.4. În experienţa aleatoare de aruncare a zarului, evenimentele: A care constǎ în apariţia uneia din feţele 2, 4 A 2 care constǎ în apariţia uneia din feţele 2, 6 A 3 care constǎ în apariţia uneia din feţele 2, 4, 6 sunt compatibile: realizarea feţei 2 înseamnǎ realizarea tuturor acestor evenimente. 5 Eveniment implicat de alt eveniment Fie A şi B douǎ evenimente asociate unei experienţe aleatoare. Definiţia 5.. Vom spune cǎ evenimentul A implicǎ evenimentul B (sau evenimentul B este implicat de evenimentul A) dacǎ o datǎ cu realizarea evenimentului A se realizeazǎ şi evenimentul B. Exemplul 5.. În experienţa aleatoare de aruncare a zarului, evenimentul A, care constǎ în apariţia uneia din feţele sau 3 implicǎ evenimentul B, care constǎ în apariţia uneia din feţele, 2, 3 sau 5. Orice eveniment asociat unei experienţe aleatoare implicǎ evenimentul sigur asociat experienţei. 6 Operaţii cu evenimente Atunci când în cadrul unei experienţe urmǎrim realizarea unui eveniment, urmǎrim de fapt realizarea unei pǎrţi a mulţimii rezultatelor elementare ale experienţei. Exemplul 6.. La aruncarea zarului, dacǎ urmǎrim realizarea evenimentului A, constând în apariţia uneia din feţele sau 3, urmǎrim de fapt dacǎ obţinem sau nu rezultatul () sau (3) din mulţimea de rezultate elementare (), (2), (3), (4), (5), (6). Evenimentul A este perfect determinat de mulţimea formatǎ din aceste douǎ rezultate elementare şi îl putem identifica cu aceasta: A = {, 3}. Exemplul 6.2. La aruncarea a douǎ zaruri, dacǎ ne intereseazǎ obţinerea sumei 7, urmǎrim dacǎ apare sau nu unul din rezultatele: (, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, ) 5

6 şi evenimentul A îl vom considera ca fiind mulţimea ale cǎrei elemente sunt perechile de numere: A = {(, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, )}. Evenimentul imposibil, care nu se realieazǎ niciodatǎ la efectuarea experienţei, este mulţimea vidǎ,. Evenimentul sigur este reprezentat de mulţimea tuturor evenimentelor elementare. Într-o asemenea viziune dacǎ A este mulţimea rezultatelor elementare care reprezintǎ un eveniment atunci mulţimea A (complementara lui A) este mulţimea rezultatelor elementare care reprezintǎ evenimentul contrar. Am vǎzut cǎ evenimentul A implicǎ evenimentul B, înseamnǎ cǎ ori de câte ori se realizeazǎ A se realizeazǎ şi B ; rezultǎ cǎ mulţimea A a rezultatelor elementare care reprezintǎ evenimentul A este inclusǎ în mulţimea B a rezultatelor elementare care reprezintǎ evenimentul B, adicǎ A B. Mulţimile care reprezintǎ douǎ evenimente incompatibile sunt disjuncte. Definiţia 6.. Fiind date douǎ evenimente A şi B asociate unei experienţe aleatoare, numim reuniunea lor şi o notǎm cu A B, evenimentul care se realizeazǎ dacǎ cel puţin unul din evenimentele A sau B se realizeazǎ. Rezultǎ cǎ dacǎ A este mulţimea rezultatelor elementare care reprezintǎ evenimentul A şi B este mulţimea rezultatelor elementare care reprezintǎ evenimentul B atunci mulţimea A B reprezintǎ evenimentul A B. Exemplul 6.3. În cazul experienţei de aruncare a zarului, sǎ considerǎm evenimentele reprezentate prin urmǎtoarele mulţimi: A = {, 2, 5}, B = {3, 4, 5}. Evenimentul A se realizeazǎ dacǎ se obţine unul din rezultatele {}, {2} sau {5}, iar B se realizeazǎ dacǎ se obţine unul din rezultatele {3} sau {4} sau {5}. Pentru a realiza cel puţin unul din evenimentele A sau B trebuie sǎ obţinem unul din rezultatele {}, {2}, {3}, {4}, {5} şi deci evenimentele A B este reprezentat de mulţimea: A B = {, 2, 3, 4, 5}. Definiţia 6.2. Intersecţia evenimentelor A şi B asociate unei experienţe aleatoare, notatǎ cu A B, este evenimentul care se realizeazǎ dacǎ se realizeazǎ ambele evenimente. Rezultǎ cǎ dacǎ A, respectiv B sunt mulţimile care reprezintǎ evenimentele A, respectiv B, atunci mulţimea A B reprezintǎ evenimentul A B. Exemplul 6.4. În condiţiile din exemplul precedent A B = {5}. 6

7 7 Spaţiul de selecţie al unei experienţe Pentru a introduce noţiunea de spaţiu de selecţie al unei experienţe, sǎ considerǎm urmǎtorul exemplu: Exemplul 7.. Experienţa constǎ din aruncarea a douǎ monede. Modurile în care pot apǎrea cele douǎ feţe pe fiecare monedǎ, în urma acestei experienţe, constituie mulţimea: {(B, B), (B, S), (S, B), (S, S)} = A. Prima literǎ corespunde feţei care apare la prima monedǎ, iar a doua literǎ la cea de-a doua monedǎ; (S, S) înseamnǎ cǎ pe ambele monede a apǎrut stema. Dacǎ un rezultat elementar este un mod de apariţie a celor douǎ feţe pe fiecare monedǎ atunci orice rezultat elementar al experienţei este un element al mulţimii A. Dacǎ un rezultat elementar al experienţei înseamnǎ de câte ori a apǎrut banul şi de câte ori a apǎrut stema atunci mulţimea rezultatelor elementare ale experienţei este: {(2, 0), (, ), (0, 2)} = A 2. În acest caz prima cifrǎ aratǎ de câte ori apare banul iar a doua de câte ori apare stema. Şi în acest caz fiecare rezultat elementar al experienţei este un element al mulţimii A 2. Dacǎ un rezultat elementar al experienţei înseamnǎ cǎ cele douǎ simboluri (banul şi stema) sunt aceleaşi sau diferite pe cele douǎ monede, atunci mulţimea rezultatelor elementare ale experienţei este: {aceleaşi, diferite} = A 3. Şi aici fiecare rezultat elementar al experienţei este un element al mulţimii A 3. Fiecare din mulţimile A, A 2, A 3 este un set de rezultate elementare ale acestei experienţe. În fiecare caz în parte conceptul de rezultat elementar al experienţei este specific (înseamnǎ altceva) iar mulţimile A, A 2, A 3 se numesc spaţii de selecţie. Spaţiul de selecţie A oferǎ mai multe informaţii decât spaţiile A 2 şi A 3. Dacǎ cunoaştem ce rezultat al spaţiului A s-a realizat putem indica ce rezultat al spaţiului A 2 sau A 3 s-a realizat. Definiţia 7.. Un spaţiu de selecţie al unei experienţe este o mulţime de rezultate elementare cu proprietatea cǎ orice rezultat elementar al experienţei aparţine mulţimii. 8 Frecvenţa Considerǎm o experienţǎ aleatoare şi un eveniment A asociat acestei experienţe. Repetǎm experienţa de n ori (în condiţii date) şi notǎm cu α numǎrul de realizǎri ale evenimentului A. Numǎrul de realizǎri ale evenimentului Ā va fi n α. Definiţia 8.. Numǎrul f n (A) = α n se numeşte frecvenţa relativǎ a evenimentului A. 7

8 Numǎrul α, numit frecvenţa absolutǎ a evenimentului A, poate varia de la 0 la n; α = 0 dacǎ în n repetǎri ale experienţei evenimentul A nu se realizeazǎ niciodatǎ; α = n dacǎ evenimentul A se realizeazǎ în toate cele n repetǎri ale experienţei. Prin urmare 0 α n şi 0 f n (A), n N Propoziţia 8. (Poprietǎţile frecvenţei relative).. f n (S) =, unde S este evenimentul sigur; 2. Dacǎ A B = atunci f n (A B) = f n (A) + f n (B). 9 Evenimente egal posibile Exemplul 9.. Considerǎm experienţa care constǎ în aruncarea unei monede. Dupǎ efectuarea acestei experienţe poate sǎ aparǎ fie faţa cu banul, fie faţa cu stema şi nu se poate şti dinainte care va fi rezultatul. Dacǎ nu existǎ nici un motiv sǎ presupunem cǎ realizarea unuia din evenimente este favorizatǎ, spunem cǎ evenimentele sunt egal posibile. Exemplul 9.2. Când se aruncǎ un zar, poate sǎ aparǎ oricare din cele şase feţe ale zarului. Dacǎ nu existǎ nici un motiv sǎ presupunem cǎ apariţia unei feţe este favorizatǎ, spunem cǎ cele şase evenimente (), (2), (3), (4), (5), (6) sunt egal posibile. În cadrul acestei experienţe, evenimentele A = {, 2} şi B = {3, 4} sunt şi ele egal posibile, iar evenimentele C = {, 2, 3} şi D = {3} nu sunt egal posibile. Definiţia 9.. Fie A şi B douǎ evenimente asociate unei experienţe aleatoare. Dacǎ nu existǎ nici un motiv sǎ presupunem cǎ realizarea unuia este favorizatǎ prin raport cu celǎlalt atunci spunem cǎ cele douǎ evenimente sunt egal posibile. Dacǎ o experienţǎ aleatoare se repetǎ de multe ori evenimentele elementare egal posibile au aceeaşi frecvenţǎ. 0 Probabilitatea unui eveniment Exemplul 0.. Considerǎm experienţa care constǎ din aruncarea unei monede şi spaţiul de selecţie asociat A format din cele douǎ rezultate elementare posibile ale acestei experienţe: B= faţa cu banul S= faţa cu stema A = {B, S}. Pentru cǎ cele douǎ evenimente B şi S sunt egal posibile, este natural sǎ evaluǎm (sǎ mǎsurǎm) şansa producerii fiecǎruia cu frecvenţa relativǎ. Întrucât 2α = n rezultǎ α n = 2. Rezultǎ astfel cǎ şansa producerii fiecǎrui eveniment este = inversul numǎrului 2 de evenimente posibile din A. 8

9 Exemplul 0.2. Considerǎm experienţa care constǎ din aruncarea zarului şi spaţiul de selecţie asociat A = {(), (2), (3), (4), (5), (6)}. Pentru cǎ cele şase evenimente sunt egal posibile, este natural sǎ evaluǎm (mǎsurǎm) şansa fiecǎruia de a se produce cu frecvenţa relativǎ. Întrucât 6α = n rezultǎ α n = 6. Rezultǎ astfel cǎ şansa producerii fiecǎrui eveniment este 6 = inversul numǎrului de evenimente posibile din A. Exemplul 0.3. Considerǎm experienţa care constǎ din aruncarea a douǎ monede şi spaţiul de selecţie asociat A = {(B, B), (B, S), (S, B), (S, S)}. Pentru cǎ cele patru evenimente sunt egal posibile, evaluǎm (mǎsurǎm) şansa fiecǎruia de a se produce frecvenţa relativǎ. Întrucât 4α = n rezultǎ α n =. Rezultǎ astfel cǎ şansa producerii 4 fiecǎrui eveniment este 4 = inversul numǎrului de evenimente posibile din A. Exemplul 0.4. În cazul aruncǎrii a douǎ monede şi a spaţiului de selecţie asociat A = {(acelaşi simbol), (simboluri diferite)}, evenimentele fiind egal posibile, evaluǎm şansa fiecǎruia frecvenţa relativǎ. Întrucât 2α = n rezultǎ α n =. Rezultǎ astfel cǎ 2 şansa producerii fiecǎrui eveniment este 2 din A. = inversul numǎrului de evenimente posibile Definiţia 0.. Dacǎ evenimentele din spaţiul de selecţie A asociat unei experienţe sunt egal posibile, vom spune cǎ sunt egal probabile şi probabilitatea fiecǎruia este egalǎ cu inversul numǎrului de evenimente din spaţiul de selecţie. În continuare vom extinde definiţia probabilitǎţii unui eveniment din spaţiul de selecţie la evenimente care nu mai sunt elemente ale spaţiului de selecţie A asociat experienţei, ci sunt pǎrţi ale lui A, adicǎ aparţin la P(A) (mulţimea pǎrţilor lui A). Începem cu un exemplu. Exemplul 0.5. Considerǎm experienţa de aruncare a zarului şi spaţiul de selecţie asociat A = {(), (2), (3), (4), (5), (6)}. Evenimentul A = {apare o faţǎ având un numǎr par scris pe ea} este de fapt A = {(2), (4), (6)}. Realizarea oricǎruia dintre evenimentele (2), (4), (6), este favorabilǎ pentru realizarea evenimentului A. De aceea evaluǎm şansa de realizare a evenimentului A (probabilitatea evenimentului A) cu de 3 ori şansa de realizare a unui eveniment elementar favorabil pentru realizarea lui A. Raportul 3 6 = 2 reprezintǎ şansa (probabilitatea) de realizare a evenimentului A şi se obţine împǎrţind numǎrul evenimentelor din A favorabile realizǎrii lui A la numǎrul tuturor evenimentelor din A. Definiţia 0.2. Dacǎ spaţiul de selecţie A asociat unei experienţe are n evenimente egal probabile şi A este un eveniment din P(A), atunci probabilitatea evenimentului A este raportul dintre numǎrul de evenimente egal probabile ce definesc pe A şi numǎrul total de evenimente elementare egal probabile din A. Din aceastǎ definiţie rezultǎ cǎ dacǎ A = atunci P (A) = 0 şi dacǎ A = A atunci P (A) =. În general P (A) [0, ]. 9

10 Ţinând seama de definiţia evenimentului contrar (complementar), rezultǎ cǎ dacǎ A are n elemente şi A are m n elemente atunci Ā are n m elemente şi avem: P (Ā) = n m n = m n = P (A). Spaţiu de selecţie finit. Eveniment elementar. Eveniment. Definiţia.. Spaţiul de selecţie finit asociat unei experienţe aleatoare este o mulţime finitǎ S = {e, e 2,..., e n } de elemente abstracte. Definiţia.2. Pǎrţile mulţimii S se numesc evenimente aleatoare. Un eveniment se numeşte elementar dacǎ constǎ dintr-un singur punct al lui S. Partea vidǎ a lui S,, se numeşte eveniment imposibil, iar S se numeşte eveniment sigur. Exemplul.. Printre cadrele didactice se face o anchetǎ privind desfǎşurarea procesului de învǎţǎmânt. Fiecare persoanǎ trebuie sǎ rǎspundǎ la douǎ întrebǎri:. Este necesarǎ modernizarea şcolii la care lucreazǎ? 2. Este necesar ca şcoala la care lucreazǎ sǎ aibǎ o salǎ de sport? Rǎspunsul dat de o persoanǎ intervievatǎ poate fi: e = (DA, DA), e 2 = (DA, NU), e 3 = (NU, DA), e 4 = (NU, NU). Mulţimea S = {e, e 2, e 3, e 4 } constituie un spaţiu de selecţie posibil asociat acestei experienţe (anchetǎ) pentru o singurǎ persoanǎ. Submulţimile acestui spaţiu sunt: P(S) = {, {e }, {e 2 }, {e 3 }, {e 4 }, {e, e 2 }, {e, e 3 }, {e, e 4 }, {e 2, e 3 }, {e 2, e 4 }, {e 3, e 4 }, {e, e 2, e 3 }, {e, e 2, e 4 }, {e 2, e 3, e 4 }, {e, e 2, e 3, e 4 }}. Fiecare dintre aceste submulţimi este un eveniment. Submulţimile E = {e }, E 2 = {e 2 }, E 3 = {e 3 }, E 4 = {e 4 } conţin un singur punct şi sunt evenimente elementare. Orice eveniment diferit de evenimentul imposibil este o reuniune de evenimente elementare. 2 Definiţia axiomaticǎ a probabilitǎţii Definiţia 2.. Numim probabilitate pe spaţiul de selecţie S = {e, e 2,..., e n } o funcţie P care asociazǎ fiecǎrui eveniment A P(S) un numǎr P (A), numit probabilitatea lui A, astfel încât sǎ fie satisfǎcute urmǎtoarele condiţii (numite axiome): i) P (A) 0, A P(S); ii) P (S) = ; 0

11 iii) A B = P (A B) = P (A) + P (B), A, B P(S). Definiţia 2.2. Funcţia P : P(S) R + este numitǎ mǎsurǎ de probabilitate. Definiţia 2.3. Spaţiul de selecţie S înzestrat cu mǎsura probabilistǎ P (perechea (S, P )) este numit spaţiu de probabilitate. Propoziţia 2.. Fie A P(S). Dacǎ A= atunci P (A)=0, iar dacǎ A={e, e 2,..., e k } k atunci P (A) = P ({e i }). Demonstraţie. Deoarece P ( S) = P ( ) + P (S) şi P ( S) = P (S), rezultǎ cǎ P ( ) + P (S) = P (S) şi deci P ( ) = 0. A = {e, e 2,..., e k } deci A = {e, e 2,..., e k } {e k }, iar P (A) = P ({e, e 2,..., e k }) + P ({e k }). Prin urmare avem: De aici se obţine egalitatea P ({e, e 2,..., e k }) = P ({e, e 2,..., e k }) + P ({e k }) P ({e, e 2,..., e k }) = P ({e, e 2,..., e k 2 }) + P ({e k }) P ({e, e 2 }) = P ({e }) + P ({e 2 }) P ({e, e 2,..., e k }) = k P ({e i }). Consecinţa 2.. Dacǎ cele n evenimente elementare e, e 2,..., e n din spaţiul de selecţie S au aceeaşi probabilitate (sunt egal probabile), P ({e i }) = P ({e j }), i, j =, n, atunci P ({e i }) =, i =, n. n Remarca 2.. În multe aplicaţii, evenimentele elementare din spaţiul de selecţie S au probabilitǎţi diferite. Astfel, în Exemplul., este foarte posibil ca numǎrul acelor intervievaţi care dau rǎspunsul e i sǎ fie diferit de numǎrul celor care dau rǎspunsul e j. Sǎ presupunem cǎ 60% din cei intervievaţi dau rǎspunsul e, 20% din cei intervievaţi dau rǎspunsul e 2, 5% din cei intervievaţi dau rǎspunsul e 3 şi 5% din cei intervievaţi dau rǎspunsul e 4. Este firesc ca în asemenea condiţii sǎ atribuim urmǎtoarele probabilitǎţi evenimentelor elementare: P ({e }) = 0.6 P ({e 2 }) = 0.2 P ({e 3 }) = 0.5 P ({e 4 }) = Propoziţia 2.2. Pentru orice A P(S) are loc P ( A) = P (A). Demonstraţie. Deoarece A A = şi A A = S, avem P (A) + P ( A) = P (S) =, adicǎ P ( A) = P (A).

12 Propoziţia 2.3. Dacǎ A, B P(S) şi A B atunci P (A) P (B). Demonstraţie. A B, deci B = A (B A). Întrucât A (B A) =, rezultǎ cǎ P (B) = P (A) + P (B A) şi deoarece P (B A) 0, rezultǎ mai departe P (B) P (A). Propoziţia 2.4. Dacǎ A, A 2,..., A n P(S) şi A i A j =, i j, atunci ( n ) P A i = n P (A i ). Demonstraţie. Pentru n = 2 egalitatea P (A A 2 ) = P (A ) + P (A 2 ) este adevǎratǎ datoritǎ axiomei iii). Pentru n = 3 avem (A A 2 ) A 3 =, deci P ((A A 2 ) A 3 ) = P (A A 2 ) + P (A 3 ) = P (A ) + P (A 2 ) + P (A 3 ). Se ( presupune acum cǎ pentru A, A 2,.., A n cu A i A j =, i j are loc n ) n P A i = P (A i ) şi se considerǎ A, A 2,.., A n, A n+ cu A i A j =, i j, i, j =, n +. Atunci ( n+ ) P A i ( n ) ( n ) = P A i A n+ = P A i + P (A n+ ) = = n n+ P (A i ) + P (A n+ ) = P (A i ) Propoziţia 2.5. Oricare ar fi A, B P(S) are loc egalitatea: P (A B) = P (A) + P (B) P (A B). Demonstraţie. Se considerǎ C = A B, D = B A şi se remarcǎ faptul cǎ avem A B = C (A B) D de unde P (A B) = P (C) + P (A B) + P (D). Ţinem seama acum de egalitǎţile P (A) = P (A B) + P (A B) = P (A B) + P (C) şi P (B) = P (A B) + P (B A) = P (A B) + P (D) 2

13 şi obţinem: P (A B) = P (A) P (A B) + P (A B) + P (B) P (A B) = = P (A) + P (B) P (A B). Propoziţia 2.6. Oricare ar fi A, A 2,.., A n P(S) avem: ( n ) P A i n P (A i ), n N. Demonstraţie. Pentru n = 2 avem P (A A 2 ) = P (A ) + P (A 2 ) P (A A 2 ) P (A ) + P (A 2 ) întrucât P (A A 2 ) 0. Presupunem cǎ pentru A, A 2,.., A n avem ( n ) P A i n P (A i ) şi vrem sǎ aratǎm cǎ: Avem: P ( n+ P ( n+ ) ( n ) A i P A i + P (A n+ ) ) n+ A i P (A i ) n n+ P (A i ) + P (A n+ ) = P (A i ). Propoziţia 2.7. Oricare ar fi A, A 2,.., A n P(S) avem: ( n ) P A i n P ( A i ), n N. Demonstraţie. ( n ) ( ) ( n n ) P A i = P A i = P A i n P ( A i ). Exemplul 2.. Dacǎ probabilitǎţile asociate evenimentelor elementare sunt cele din Remarca 2., sǎ se calculeze probabilitatea ca alegând la întâmplare un cadru didactic acesta sǎ fie pentru: 3

14 i) modernizarea şcolii; ii) necesitatea unei sǎli de sport; iii) modernizarea şcolii sau necesitatea unei sǎli de sport. Soluţie: i) Alegerea unui cadru didactic care este pentru modernizarea şcolii înseamnǎ realizarea evenimentului {e, e 2 } şi are probabilitatea P ({e, e 2 }) = = 0.8. ii) Alegerea unui cadru didactic care este pentru necesitatea unei sǎli de sport înseamnǎ realizarea evenimentului {e, e 3 } şi are probabilitatea P ({e, e 3 }) = = iii) Alegerea unui cadru didactic care este pentru modernizarea şcolii sau pentru necesitatea unei sǎli de sport înseamnǎ realizarea evenimentului {e, e 2, e 3 } şi are probabilitatea P ({e, e 2, e 3 }) = = Evenimente independente şi evenimente dependente Definiţia 3.. Evenimentele A şi B din P(S) sunt independente dacǎ P (A B) = P (A) P (B). Teorema 3.. Dacǎ A, B P(S) sunt evenimente independente având probabilitǎţi nenule, atunci A B este o mulţime care conţine cel puţin un punct e i din spaţiul de selecţie S. Adicǎ evenimentele A şi B sunt compatibile. Demonstraţie. Arǎtǎm cǎ A B. Dacǎ prin absurd A B = atunci P (A B) = 0 şi din P (A B) = P (A) P (B) rezultǎ P (A) P (B) = 0. Rezultǎ de aici P (A) = 0 sau P (B) = 0. Aceasta contravine ipotezei din teoremǎ. Urmeazǎ cǎ A B. Definiţia 3.2. Vom spune cǎ evenimentele A, A 2,..., A n sunt independente în totalitatea lor, sau independente, dacǎ pentru orice i < i 2 <... < i s n, avem: P (A i A i2... A is ) = P (A i ) P (A i2 )... P (A is ). Definiţia 3.3. Vom spune cǎ evenimentele A, A 2,..., A n P(S) sunt independente câte k, k n, dacǎ evenimentele din orice familie de k evenimente sunt independente în sensul Definiţiei 3.2. Remarca 3.. Pentru ca evenimentele A, A 2,..., A n sǎ fie independente, trebuie satisfǎcute C 2 n + C 3 n C n n = 2 n n relaţii. Pentru ca evenimentele A, A 2, A 3 sǎ fie independente, trebuie sǎ avem: P (A A 2 ) = P (A ) P (A 2 ) P (A A 3 ) = P (A ) P (A 3 ) P (A 2 A 3 ) = P (A 2 ) P (A 3 ) P (A A 2 A 3 ) = P (A ) P (A 2 ) P (A 3 ) 4

15 Teorema 3.2. Dacǎ A şi B sunt douǎ evenimente independente, atunci evenimentele A şi B; A şi B; A şi B sunt de asemenea independente. Demonstraţie. Prin ipotezǎ P (A B) = P (A) P (B). Vrem sǎ deducem de aici urmǎtoarele egalitǎţi: P (A B) = P (A) P ( B); P ( A B) = P ( A) P (B); P ( A B) = P ( A) P ( B). Pentru a obţine egalitatea P (A B) = P (A) P ( B) scriem A = (A B) (A B). De aici rezultǎ: sau: P (A) = P (A B) + P (A B) = P (A) P (B) + P (A B) P (A) [ P (B)] = P (A B). Întrucât P (B) = P ( B), se obţine cǎ P (A) P ( B) = P (A B). Celelalte egalitǎţi rezultǎ analog. Definiţia 3.4. Spunem cǎ evenimentele B, B 2,..., B k P(S) realizeazǎ o partiţie a spaţiului de selecţie S dacǎ sunt îndeplinite urmǎtoarele condiţii: i) B i B j = pentru i j; ii) k B i = S; iii) P (B i ) > 0, i =, 2,..., k. Definiţia 3.5. Fie A, A 2,..., A n, B, B 2,..., B k douǎ partiţii ale spaţiului de selecţie S. Spunem cǎ aceste partiţii sunt independente dacǎ P (A i B j ) = P (A i ) P (B j ) pentru orice i, j, i =, 2,..., n, j =, 2,..., k. Exemplul 3.. Dacǎ A este un eveniment al spaţiului de selecţie S, atunci A şi S sunt independente. Soluţie: A = A S, de unde rezultǎ P (A) = P (A S) = P (A) P (S), deoarece P (S) =. Exemplul 3.2. Se aruncǎ douǎ monede. Evenimentele A = stema pe prima monedǎ şi B = valoarea pe a doua monedǎ sunt independente. Soluţie: Un spaţiu de selecţie S al acestei experienţe este Evenimentele A şi B sunt S ={e =(s, s), e 2 =(s, v), e 3 =(v, s), e 4 =(v, v)}. A = {e, e 2 }, B = {e 2, e 4 }. Evenimentele e, e 2, e 3, e 4 sunt egal probabile şi P (e i ) =, i =, 2, 3, 4. Rezultǎ 4 P (A) = 2, P (B) = 2. Evenimentul A B este A B = {e 2} şi are probabilitatea P (A B) =. Rezultǎ P (A B) = P (A) P (B). 4 5

16 Exemplul 3.3. În cazul aruncǎrii a douǎ monede se considerǎ evenimentele: A = stema pe prima monedǎ, A 2 = valoarea pe a doua monedǎ, A 3 = apare şi stema şi valoarea. Evenimentele A, A 2, A 3 nu sunt independente câte 3. Soluţie: Un spaţiu de selecţie asociat acestei experienţe este S ={e =(s, s), e 2 =(s, v), e 3 =(v, s), e 4 =(v, v)}. Evenimentele A, A 2, A 3 sunt A = {e, e 2 }, A 2 = {e 2, e 4 }, A 3 = {e 2, e 3 }. Avem: A A 2 = {e 2 } P (A A 2 ) = 4 = P (A ) P (A 2 ) A A 3 = {e 2 } P (A A 3 ) = 4 = P (A ) P (A 3 ) A 2 A 3 = {e 2 } P (A 2 A 3 ) = 4 = P (A 2) P (A 3 ) A A 2 A 3 = {e 2 } P (A A 2 A 3 ) = 4 8 = P (A ) P (A 2 ) P (A 3 ). Exemplul 3.4. În cazul aruncǎrii a douǎ monede se considerǎ evenimentele: A = stema pe prima monedǎ ; A 2 = valoare pe prima monedǎ ; A 3 = stema pe a doua monedǎ ; A 4 = valoare pe a doua monedǎ. Evenimentele A, A 2, A 3, A 4 nu sunt independente în totalitate. Exemplul 3.5. Dacǎ S = {e, e 2, e 3, e 4 } este spaţiul de selecţie asociat experienţei din Exemplul 3.2, atunci evenimentele {e }, {e 2 }, {e 3 }, {e 4 } realizeazǎ o partiţie a spaţiului de selecţie S. Exemplul 3.6. Douǎ partiţii independente sunt urmǎtoarele partiţii: {{e }, {e 2 }} şi {{e 3 }, {e 4 }}. 4 Probabilitate condiţionatǎ Vom introduce noţiunea de probabilitate condiţionatǎ pornind de la exemplul urmǎtor. Exemplul 4.. Considerǎm experienţa care constǎ în aruncarea a douǎ zaruri. Notǎm cu a numǎrul care apare pe primul zar şi cu b numǎrul care apare pe al doilea zar. Ne întrebǎm care este probabilitatea ca b = 3, ştiind cǎ a + b > 8? 6

17 Soluţie: Spaţiul de selecţie asociat acestei experienţe este mulţimea S de perechi din urmǎtorul tabel: (, ) (, 2) (, 3) (, 4) (, 5) (, 6) (2, ) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, ) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, ) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (5, ) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (6, ) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) Toate aceste evenimente sunt egal probabile şi prin urmare P ((i, j)) =, pentru orice 36 i =, 6, j =, 6. Dintre cele 36 evenimente elementare din spaţiul de selecţie S, doar în cazul evenimentelor (6, 3), (5, 4), (4, 5), (3, 6), (6, 4), (5, 5), (4, 6), (6, 5), (5, 6), (6, 6) se realizeazǎ condiţia a+b > 8. Considerǎm mulţimea S formatǎ doar din aceste evenimente: S = {(6, 3), (5, 4), (4, 5), (3, 6), (6, 4), (5, 5), (4, 6), (6, 5), (5, 6), (6, 6)}. Mulţimea S este un spaţiu de selecţie mai restrâns asociat aceleiaşi experienţe. Aici au fost luate în considerare doar acele evenimente elementare pentru care a + b > 8. Cele 0 elemente din S sunt egal probabile şi de aceea probabilitatea fiecǎrui eveniment din S este 0. Existǎ un singur eveniment în S pentru care b = 3: (6, 3). De aceea în spaţiul de selecţie redus, probabilitatea evenimentului b = 3 este. Acest rezultat va fi numit 0 probabilitatea evenimentului b = 3 condiţionat de a + b > 8. Putem judeca însǎ şi în felul urmǎtor: determinǎm la început în spaţiul de selecţie S probabilitatea ca evenimentul A = a + b > 8 sǎ se producǎ. Aceasta este P (A) = Apoi determinǎm tot în S probabilitatea ca evenimentul B = b = 3 sǎ se producǎ. Aceasta este P (B) = 6. Probabilitatea în S de producere a ambelor evenimente A şi B 36 este P (A B) = P ((6, 3)) = 36. Dacǎ notǎm cu P (B A) probabilitatea evenimentului B în condiţia în care A s-a produs, atunci avem: P (B A) = 0, P (A) = 0 36, P (A B) = 36, de unde P (B A) = P (B A) P (A) = P (A B). P (A) Definiţia 4.. Probabilitatea evenimentului A condiţionatǎ de B se noteazǎ P (A B) sau P B (A) şi este definitǎ prin P (A B) = P (A B) P (B) dacǎ P (B) 0. Spaţiul de selecţie micşorat este B (evenimentul de condiţionare). 7

18 Remarca 4.. Probabilitatea introdusǎ axiomatic prin Definiţia 2. este şi ea una condiţionatǎ de evenimentul sigur, care este un spaţiu de selecţie S, cu P (S) =. Propoziţia 4.. Pentru B P(S) fixat, cu P (B) 0, oricare ar fi A, A 2 din P(S), avem: A) 0 P (A B) ; A2) P (S B) = ; A3) A, A 2 - incompatibile P ((A A 2 ) B) = P (A B) + P (A 2 B). Demonstraţie. Din P (A B) = P (A B) rezultǎ P (A B) 0 şi din P (A B) P (B) P (B) rezultǎ P (A B). P (S B) = P (S B) P (B) = P (B) P (B) =. P ((A A 2 ) B)= P ((A A 2 ) B) P (B) = P (A B) + P (A 2 B) =P (A B)+P (A 2 B). P (B) P (B) Teorema 4.. Dacǎ A şi B sunt evenimente independente având probabilitǎţile nenule, atunci: P (A B) = P (A) şi P (B A) = P (B). Demonstraţie. Deoarece A şi B sunt independente şi A B = B A, avem Rezultǎ: P (A B) = P (B A) = P (A) P (B). P (A B) P (A) P (B) P (A B) = = = P (A) P (B) P (B) P (B A) P (B) P (A) P (B A) = = = P (B). P (A) P (A) Teorema 4.2. Dacǎ A, A 2,..., A n sunt evenimente astfel încât P (A A 2... A n ) 0 (ele se pot realiza simultan), atunci P (A A 2... A n ) = P (A ) P (A 2 A ) P (A 3 (A A 2 ))... P (A n (A... A n )). Demonstraţie. P (A ) P (A 2 A ) P (A 3 (A A 2 ))... P (A n (A... A n )) = = P (A ) P (A A 2 ) P (A ) = P (A A 2 ) P (A A 2 A 3 ) P (A A 2 ) P (A 3 (A A 2 ))... P (A n (A... A n )) = = P (A... A n ) P (A... A n A n ) P (A... A n )... P (A n (A... A n )) = = P (A... A n ). 8

19 Consecinţa 4.. Dacǎ A, A 2,..., A n sunt evenimente independente, atunci P (A A 2... A n ) = P (A ) P (A 2 )... P (A n ). Exemplul 4.2. O urnǎ conţine 3 bile albe şi 5 bile negre. Din urnǎ se extrag douǎ bile, una dupǎ alta (fǎrǎ întoarcere). Sǎ se scrie un spaţiu de selecţie pentru aceastǎ experienţǎ şi probabilitǎţile asociate evenimentelor din acest spaţiu. Soluţie: Dacǎ a este evenimentul extragerii unei bile albe şi n este evenimentul extragerii unei bile negre, atunci un spaţiu de selecţie asociat experienţei este: S = {(a, a), (a, n), (n, a), (n, n)}. (n, a) aratǎ cǎ prima bilǎ extrasǎ este neagrǎ iar a doua bilǎ extrasǎ este albǎ. Deoarece bilele sunt extrase la întâmplare, toate bilele din urnǎ, la orice extracţie, au aceeaşi probabilitate de extracţie: P (a, a) = = 6 56, P (a, n) = = 5 56, P (n, a) = = 5 56, P (n, n) = = Teorema 4.3 (formula probabilitǎţii totale). Dacǎ evenimentele A, A 2,..., A n constituie o partiţie a spaţiului de selecţie S şi X P(S), atunci: P (X) = n P (A i ) P (X A i ). Demonstraţie. Scriem X sub forma: n X = (X A i ). Deoarece (X A i ) (X A j ) = pentru i j, obţinem: P (X) = n P (X A i ). Dar P (X A i ) = P (A i ) P (X A i ), şi înlocuind se obţine egalitata din enunţ. Exemplul 4.3. Trei urne au urmǎtoarea structurǎ: urna i conţine a i bile albe şi b i bile negre, i =, 2, 3. Evenimentul A i constǎ în alegerea urnei i. Se ştie cǎ P (A i ) = p i şi p + p 2 + p 3 =. Se alege la întâmplare o urnǎ şi se extrage o bilǎ. Sǎ se gǎseascǎ probabilitatea ca bila extrasǎ sǎ fie neagrǎ. Soluţie: Fie X evenimentul bila extrasǎ este neagrǎ. Probabilitatea de a extrage o bilǎ neagrǎ condiţionatǎ de faptul cǎ s-a ales urna i este: P (X A i ) = Probabilitatea de a extrage o bilǎ neagrǎ este: b i a i + b i. P (X) = P (A ) P (X A ) + P (A 2 ) P (X A 2 ) + P (A 3 ) P (X A 3 ) = = p b a + b + p 2 b 2 a 2 + b 2 + p 3 b 3 a 3 + b 3. 9

20 Teorema 4.4 (formula lui Bayes). Dacǎ evenimentele A, A 2,..., A n constituie o partiţie a spaţiului de selecţie S şi sunt cauza producerii unui eveniment X, atunci: P (A k X) = P (A k) P (X A k ). n P (A i ) P (X A i ) Demonstraţie. Se ţine seama de egalitǎţile şi de formula probabilitǎţii totale. P (A i ) P (X A i ) = P (X) P (A i X) Definiţia 4.2. Probabilitǎţile P (A i ), P (X A i ), i =, n se numesc probabilitǎţi apriori şi P (A i X) se numesc probabilitǎţi aposteriori. Formula lui Bayes modificǎ probabilitǎţile apriorice prin incorporarea informaţiei furnizate de realizarea evenimentului X. Exemplul 4.4. Se considerǎ douǎ urne. Prima conţine 2 bile albe şi 3 bile negre, iar cea de-a doua conţine 7 bile albe şi 5 bile negre. Evenimentul A constǎ în faptul cǎ se alege la întâmplare prima urnǎ, iar evenimentul A 2 constǎ în faptul cǎ se alege la întâmplare a doua urnǎ. Probabilitatea evenimentului A este P (A ) = 0.4, iar probabilitatea evenimentului A 2 este P (A 2 ) = 0.6. Se alege la întâmplare o urnǎ şi se extrage o bilǎ neagrǎ. Care este probabilitatea ca aceasta sǎ fie din cea de-a doua urnǎ? Soluţie: Fie X evenimentul a fost extrasǎ o bilǎ neagrǎ. Din formula lui Bayes avem: P (A X) = P (A 2 X) = P (A ) P (X A ) P (A ) P (X A ) + P (A 2 ) P (X A 2 ) = ; 5 2 P (A 2 ) P (X A 2 ) P (A ) P (X A ) + P (A 2 ) P (X A 2 ) = Variabile aleatoare discrete unidimensionale Pentru a introduce noţiunile de variabilǎ aleatoare discretǎ şi repartiţia ei considerǎm urmǎtorul exemplu: Exemplul 5.. Dintr-o urnǎ care conţine acelaşi numǎr de bile albe şi negre, se extrag 3 bile, dupǎ fiecare extragere bila punându-se înapoi în urnǎ. Câte bile albe pot sǎ aparǎ? Soluţie: Rǎspunsul la aceastǎ întrebare îl vom da indicând posibilitǎţile şi probabilitǎţile asociate. 20

21 Spaţiul de selecţie Nr. bile albe Probabilitatea AAA 3 = AAN 2 = ANA 2 = NAA 2 = ANN = NAN = NNA = NNN 0 = Informaţia relativǎ la numǎrul de bile albe şi la probabilitǎţile lor este datǎ în tabelul urmǎtor: Nr. bile albe Probabilitatea Dacǎ variabila X reprezintǎ numǎrul de bile albe care pot sǎ aparǎ, aunci tabelul aratǎ valorile pe care poate sǎ le ia X şi probabilitǎţile cu care ia aceste valori. Mulţimea de perechi ordonate, fiecare de forma (numǎrul de bile albe, probabilitatea acestui numǎr de bile albe) defineşte repartiţia variabilei X. Deoarece valorile lui X sunt determinate de evenimentele rezultate în urma unui experiment aleator, X este numitǎ variabilǎ aleatoare. Funcţia f definitǎ de f(x) = P (X = x) se numeşte funcţie de frecvenţe sau funcţie de probabilitate. În cazul de faţǎ f(0)=f(x =0)= 8 ; f()=f(x =)= 3 8 ; f(2)=f(x =2)= 3 8 ; f(3)=f(x =3)= 8. Observǎm cǎ f(x) 0 f(x) = P (X = x) = C x 3 şi 3 f(x) = i=0 ( ) 3, x = 0,, 2, 3; 2 3 C3 x i=0 ( ) 3 = ( ) 3 =. 2 Definiţia 5.. O variabilǎ a cǎrei valoare este un numǎr determinat de evenimentul rezultat în urma unei experienţe este numitǎ variabilǎ aleatoare. Definiţia 5.2. Dacǎ X este o variabilǎ aleatoare care poate lua valorile x, x 2,..., x n cu probabilitǎţile f(x ), f(x 2 ),..., f(x n ) atunci mulţimea de perechi ordonate (x i, f(x i )), i =, n se numeşte repartiţia variabilei aleatoare X. În cazul exemplului considerat anterior, repartiţia este: sau: X : ( 0, ) (,, 3 ) (, 2, 3 ) (, 3, )

22 Exemplul 5.2. Trei bile, a, b, c, se repartizeazǎ în trei urne la întâmplare. determine repartiţia variabilei aleatoare X = numǎrul urnelor ocupate. Sǎ se Soluţie: X : Remarca 5.. In abordarea Kolmogorov, variabila aleatoare X este o funcţie definitǎ pe un spaţiu de selecţie asociat experienţei, adicǎ funcţie de punct. Astfel, dacǎ în exemplul precedent se considerǎ evenimentele: 6. e = {abc 0 0} e 0 = {c ab 0} e 9 = {0 b ac} e 2 = {0 abc 0} e = {0 ab c} e 20 = {a 0 bc} e 3 = {0 0 abc} e 2 = {b ac 0} e 2 = {0 a bc} e 4 = {ab c 0} e 3 = {0 ac b} e 22 = {a b c} e 5 = {ab 0 c} e 4 = {a bc 0} e 23 = {a c b} e 6 = {ac b 0} e 5 = {0 bc a} e 24 = {b c a} e 7 = {ac 0 b} e 6 = {c 0 ab} e 25 = {b a c} e 8 = {bc a 0} e 7 = {0 c ab} e 26 = {c a b} e 9 = {bc 0 a} e 8 = {b 0 ac} e = {c b a} şi spaţiul de selecţie S = {e,..., e }, putem considera funcţia X : S {, 2, 3}, definitǎ astfel: X(e k ) = numǎrul de urne ocupate în cazul realizǎrii evenimentului e k. Este clar cǎ X(e k ) = dacǎ k =, 2, 3; X(e k ) = 2 dacǎ k = 4, 5,...2; şi X(e k ) = 3 dacǎ k = 22, 23, 24, 25, 26,. Dacǎ variabila aleatoare este datǎ în acest fel, atunci se cunosc valorile variabilei în cazul fiecǎrui eveniment e k S şi P (e k ). De aici se determinǎ valorile posibile ale variabilei şi probabilitǎţile asociate acestor valori. În acest fel se obţine repartiţia variabilei aleatoare X. Exemplul 5.3. În cazul experienţei din Exemplul 5.2, sǎ notǎm cu Y variabila aleatoare ale cǎrei valori sunt numǎrul de bile din prima urnǎ. Deoarece în prima urnǎ putem avea 0,,2 sau 3 bile urmeazǎ cǎ variabila aleatoare Y poate lua valorile 0,,2 sau 3. Y ia valoarea 0 atunci când se realizeazǎ unul din urmǎtoarele evenimente din spaţiul de selecţie S: e 2, e 3, e, e 3, e 5, e 7, e 9, e 2, adicǎ Rezultǎ (Y = 0) = (e 2 sau e 3 sau e sau e 3 sau e 5 sau e 7 sau e 9 sau e 2 ). P (Y = 0) =P ({e 2 }) + P ({e 3 }) + P ({e }) + P ({e 3 }) + P ({e 5 }) + P ({e 7 })+ + P ({e 9 }) + P ({e 2 }) = 8. 22

23 Y ia valoarea dacǎ se realizeazǎ unul din evenimentele: e 0, e 2, e 4, e 6, e 8, e 20, e 22 e ; valoarea 2, dacǎ se realizeazǎ unul din evenimentele e 4 e 9 şi valoarea 3 dacǎ se realizeazǎ evenimentul e. Urmeazǎ cǎ repartiţia variabilei aleatoare Y este: Y : Remarca 5.2. Onicescu considera variabila aleatoare ca funcţie de eveniment. O valoare posibilǎ a variabilei aleatoare poate sǎ corespundǎ unui eveniment elementar din spaţiul de selecţie (valoarea 3 a variabilei aleatoare Y din Exemplul 5.3 corespunde evenimentului elementar e ) sau la o submulţime de evenimente elementare care determinǎ un eveniment (evenimentul Y = 2 este determinat de o mulţime de evenimente elementare, şi anume e 4 e 9 ). Remarca 5.3. O variabilǎ aleatoare care ia valorile distincte x, x 2,..., x n determinǎ o partiţie A, A 2,..., A n a spaţiului de selecţie S. Evenimentul A i este definit prin e k A i X(e k ) = x i. În Exemplul 5.3 variabila aleatoare Y realizeazǎ urmǎtoarea partiţie a spaţiului de selecţie S: 6. A : A 2 : A 3 : A 4 : În prima urnǎ nu este nici o bilǎ. În prima urnǎ este o bilǎ. În prima urnǎ sunt douǎ bile. În prima urnǎ sunt trei bile. Avem: A A 2 A 3 A 4 = S A i A j = pentru i j ceea ce dovedeşte afirmaţia fǎcutǎ. P (A ) = P (Y = 0) = 8, P (A 2) = P (Y = ) = 2, P (A 3 ) = P (Y = 2) = 6, P (A 4) = P (Y = 3) =, Definiţia 5.3. O variabilǎ aleatoare având o mulţime cel mult numǎrabilǎ de valori posibile se numeşte variabilǎ aleatoare discretǎ. Definiţia 5.4. Vom spune cǎ variabila aleatoare X este simetricǎ faţǎ de punctul c dacǎ sunt îndeplinite urmǎtoarele condiţii: i) dacǎ c + a este o valoare a variabilei aleatoare X, atunci şi c a este o valoare a variabilei X; ii) P (X = c + a) = P (X = c a). 23

24 Condiţia ii) se mai scrie uneori sub forma P (X c = a) = P (c X = a) care aratǎ cǎ X este simetricǎ faţǎ de punctul c. X c şi c X au aceeaşi repartiţie. În particular, simetria faţǎ de zero aratǎ ca X şi X au aceeaşi repartiţie. Exemplul 5.4. Dacǎ P (X = i) =, i =, 2,..., n atunci X este repartizatǎ simetric n faţǎ de n +, care este punctul de mijloc al celor douǎ valori extreme posibile: şi n. 2 Remarca 5.4. Dacǎ variabilele aleatoare X, Y sunt privite ca funcţii definite pe spaţiul de selecţie S, atunci putem defini suma X +Y, produsul X Y, şi înmulţirea cu o constantǎ k X a varibilelor aleatoare. Sensul acestor operaţii este cel al operaţiilor corespunzǎtoare cu funcţii. De asemenea dacǎ k este o funcţie realǎ definitǎ pe mulţimea valorilor variabilei X, k : X(S) R, atunci putem face compunerea k X şi obţinem tot o variabilǎ aleatoare, ale cǎrei valori constituie mulţimea k(s(x)). 6 Funcţia de repartiţie a unei variabile aleatoare discrete unidimensioanle Câteva întrebǎri: Dacǎ se aruncǎ douǎ zaruri, care este probabilitatea ca suma obţinutǎ sǎ fie un numǎr mai mic decât 7? Dacǎ trei bile se repartizeazǎ la întâmplare în trei urne, care este probabilitatea ca sǎ fie ocupate cel mult douǎ urne? Dacǎ trei bile se repartizeazǎ la întâmplare în trei urne, care este probabilitatea ca în prima urnǎ sǎ fie cel mult douǎ bile? În general: Care este probabilitatea ca o variabilǎ aleatoare X sǎ ia valori mai mici decât o valoare datǎ? Nevoia de a rǎspunde la asemenea întrebǎri a condus la urmǎtoarea definiţie: Definiţia 6.. Fie X o variabilǎ aleatoare şi x un numǎr real. Funcţia F definitǎ astfel: F (x) este probabilitatea ca X sǎ ia valori mai mici ca x, sau F (x) = P (X < x) se numeşte funcţia de repartiţie a variabilei aleatoare X. 24

25 Propoziţia 6.. Dacǎ X este o variabilǎ aleatoare discretǎ având repartiţia ( ) x x X : 2... x n f(x ) f(x 2 )... f(x n ) atunci F (x) = x i <x f(x i ) adicǎ valoarea funcţiei de repartiţie în x este datǎ de suma probabilitǎţilor valorilor din stânga lui x. Demonstraţie. Imediatǎ. Propoziţia 6.2. Au loc urmǎtoarele egalitǎţi: i) lim x xi x>x i F (x) = F (x i + 0) = ii) lim x xi x<x i F (x) = F (x i 0) = i f(x j ); j= i f(x j ) = F (x i ). j= Demonstraţie. i) Pentru x (x i, x i+ ) avem: F (x) = i f(x j ). j= Rezultǎ cǎ F (x i + 0) = i f(x j ). j= ii) Pentru x (x i, x i ) avem: i F (x) = f(x j ). Rezultǎ cǎ i F (x i 0) = f(x j ) = F (x i ). j= j= Propoziţia 6.3. Au loc urmǎtoarele inegalitǎţi: i) 0 F (x), x R ; ii) x < y F (x) F (y). 25

26 Demonstraţie. i) Deoarece F (x)=p (X <x) şi P (X <x) [0, ], rezultǎ cǎ F (x) [0, ]. ii) x < y. Dacǎ x i < x, atunci x i < y, şi deci f(x i ) + adicǎ F (x) F (y). x i <y f(x i ) = x i <x x x i <y f(x i ), Propoziţia 6.4. Dacǎ x < y, atunci F (y) F (x) = P (x X < y). Demonstraţie. Dacǎ x < y, avem: F (y) = x i <y f(x i ) = x i <x f(x i ) + x x i <y de unde rezultǎ cǎ F (y) F (x) = P (x X < y). f(x i ) = F (x) + P (x X < y) Remarca 6.. Dacǎ X este o variabilǎ aleatoare discretǎ, atunci funcţia de repartiţie a variabilei aleatoare X este o funcţie în trepte continuǎ la stânga. Avem o discontinuitate (un salt) în fieare punct x care este valoare pentru variabila aleatoare X(x = x i ), iar înǎlţimea saltului este f(x i ). Definiţia 6.2. Se numeşte cuantilǎ de ordinul α numǎrul x α cu proprietatea F (x α ) = P (X < x α ) = α. Dacǎ X este o variabilǎ aleatoare discretǎ, nu este sigur cǎ pentru orice α [0, ] existǎ cuantilǎ de ordinul α. Dacǎ însǎ existǎ o cuantilǎ de ordin α, atunci existǎ o infinitate (intervalul ce separǎ douǎ valori posibile). Cuantila de ordin /2 se numeşte medianǎ şi se noteazǎ cu Me; astfel F (Me) = /2. Cuantilele de ordin /4 respectiv 3/4 se numesc cuantila inferioarǎ Q, respectiv cuantila superioarǎ Q 2 ; astfel F (Q ) = /4 şi F (Q 2 ) = 3/4. Definiţia 6.3. Se numeşte modul valoarea x i cu proprietatea cǎ f(x i ) este maximǎ. O repartiţie poate avea mai multe module. La aruncarea unui zar, cele 6 feţe ale sale au aceeaşi probabilitate de apariţie; în acest caz, toate valorile sunt module. Exemplul 6.. Reluǎm exemplul de repartizare la întâmplare a trei bile a, b, c în trei urne, ţinând seamǎ de repartiţia variabilelor aleatoare X (Exemplul 5.2) şi Y (Exemplul 5.3) X : şi Y :

27 Avem: F (x) = 0, x 3 2, < x 2, 2 < x 3 =, 3 < x şi F (y) = 0, y , 0 < y, < y 2, 2 < y 3 =, 3 < y. Remarca 6.2. Variabilele aleatoare X şi Y nu au mediane şi cuantile. F (x) = 3 are ca soluţie < x 2. F (y) = 26 Modulul lui X este 2, iar modulul lui Y este. are ca soluţie < x 3. 7 Variabile aleatoare discrete bidimensionale (vectori aleatori) Adesea este necesar sǎ considerǎm simultan douǎ sau mai multe variabile aleatoare definite pe acelaşi spaţiu de selecţie. Vom prezenta cazul a douǎ variabile aleatoare, trecerea la trei sau mai multe variabile fǎcându-se fǎrǎ dificultate. Exemplul 7.. Considerǎm experienţa care constǎ în repartizarea la întâmplare a trei bile a, b, c în trei urne. Acestei experienţe îi corespunde urmǎtorul spaţiu de selecţie: S = {e, e 2,..., e }, unde e i sunt date de: e = {abc 0 0} e 0 = {c ab 0} e 9 = {0 b ac} e 2 = {0 abc 0} e = {0 ab c} e 20 = {a 0 bc} e 3 = {0 0 abc} e 2 = {b ac 0} e 2 = {0 a bc} e 4 = {ab c 0} e 3 = {0 ac b} e 22 = {a b c} e 5 = {ab 0 c} e 4 = {a bc 0} e 23 = {a c b} e 6 = {ac b 0} e 5 = {0 bc a} e 24 = {b c a} e 7 = {ac 0 b} e 6 = {c 0 ab} e 25 = {b a c} e 8 = {bc a 0} e 7 = {0 c ab} e 26 = {c a b} e 9 = {bc 0 a} e 8 = {b 0 ac} e = {c b a}. Cele evenimente sunt egal probabile şi de aceea evenimentele e i au aceeaşi probabilitate de realizare:. Fie X variabila aleatoare care asociazǎ evenimentului elementar e i S numǎrul urnelor ocupate. Avem X(e i ) = pentru i =, 2, 3, X(e i ) = 2 pentru i = 4, 2, X(e i ) = 3

28 pentru i = 22,. Prin urmare: P (X = ) = 3 8 6, P (X = 2) =, P (X = 3) = şi repartiţia variabilei aleatoare este: X : Fie acum Y variabila aleatoare care asociazǎ evcenimentului elementar e i S numǎrul de bile din prima urnǎ. Avem: Y (e ) = 3, Y (e i ) = 2, pentru i = 4 9, Y (e i ) = pentru i = 0, 2, 4, 6, 8, 20, 22, Y (e i ) = 0 pentru i = 2, 3,, 3, 5, 7, 9, 2. Rezultǎ cǎ P (Y = 0) = 8 2 6, P (Y = ) =, P (Y = 2) =, P (Y = 3) = şi deci repartiţia variabilei aleatoare Y este: Y : Considerǎm acum variabila aleatoare Z care asociazǎ evenimentului elementar e i S perechea de numere (numǎrul de urne ocupate, numǎrul de bile din prima urnǎ). Penrtu cǎ valorile lui Z sunt vectori bidimensionali (perechi de numere) variabila aleatoarte Z se numeşte variabilǎ aleatoare bidimensionalǎ. Avem: Z(e ) = (, 3); Z(e 2 ) = (, 0); Z(e 3 ) = (, 0); Z(e i ) = (2, 2), i = 4, 9; Z(e i ) = (2, ), i = 0, 2, 4, 6, 8, 20; Z(e i ) = (2, 0),, 3, 5, 7, 9, 2; Z(e i )=(3, ), i=22,. Prin urmare valorile acestei variabile aleatoare sunt vectorii (, 3); (, 0); (2, 2); (2, ); (2, 0); (3, ). Probabilitǎţile corespunzǎtoare sunt: P (X =, Y = 3) = 2 6 ; P (X =, Y = 0) = ; P (X = 2, Y = 2) = ; P (X = 2, Y = ) = ; P (X = 2, Y = 0) = ; P (X = 3, Y = ) =. Repartiţia variabilei aleatoare bidimensionale Z este Z : 6. (, 3) (, 0) (2, 2) (2, ) (2, 0) (3, ) 2 6 Fie acum în general douǎ variabile aleatoare X, Y definite pe acelaşi spaţiu de selecţie S = {e, e 2,..., e n }. Fie x, x 2,..., x k valorile variabilei X şi y, y 2,..., y l valorile variabilei Y. Definiţia 7.. Cu variabilele X, Y putem construi variabila aleatoare vectorialǎ bidimensionalǎ Z = (X, Y ), a cǎrei valori sunt perechile ordonate de numere (x i, y j ) (vectori bidimensionali), pe care le ia cu probabilitatea r ij = P (X = x i şi Y = y j ), i k, j l. 28

29 Repartiţia variabilei Z este deci: X Y y y 2 y 3... y j... y l P (X = x i ) x r r 2 r 3... r j... r l p x 2 r 2 r 22 r r 2j... r 2l p 2 x 3 r 3 r 32 r r 3j... r 3l p x i r i r i2 r i3... r ij... r il p i x k r k r k2 r k3... r kj... r kl p k P (Y = y j ) q q 2 q 3... q j... q k Întrucât evenimentele (X = x i ; Y = y j ) realizeazǎ o partiţie a spaţiului de selecţie, suma probabilitǎţilor din tabel este unu: k l r ij =. j= Dacǎ se cunoaşte repartiţia vectorului aleator discret Z = (X, Y ), se poate determina repartiţia fiecǎrei componente. Într-adevǎr, deoarece evenimentele (X = x i, Y = y ), (X = x i, Y = y 2 ),..., (X = x i, Y = y l ), i k sunt incompatibile douǎ câte douǎ şi deoarece (X = x i ) = (X = x i, Y = y ) (X = x i, Y = y 2 )... (X = x i, Y = y l ), avem: p i = P (X = x i ) = r i + r i r ik = Analog obţinem: q j = P (Y = y j ) = r j + r 2j r kj = l r ij, i k. j= k r ij, j l. Urmeazǎ cǎ pentru a obţine probabilitatea ca X (Y ) sǎ ia valoarea x i (y j ), vom face suma probabilitǎţilor din linia (coloana) lui x i (y j ). Deci variabila aleatoare X (Y ) are ca tablou al probabilitǎţilor coloana (linia) marginalǎ a tabloului. Din acest motiv, prima coloanǎ (linie) împreunǎ cu ultima coloanǎ (linie) a tabloului constituie repartiţia marginalǎ a variabilei X (Y ). Definiţia 7.2. Variabila X condiţionatǎ de Y = y j are repartiţia: ( x x 2... x i... x k ) P (x y j ) P (x 2 y j )... P (x i y j )... P (x k y j ) unde P (x i y j ) = P (X = x i Y = y j ) = P (X = x i, Y = y j ) P (Y = y j ) 29 = r ij q j, j l.

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Câmp de probabilitate II

Câmp de probabilitate II 1 Sistem complet de evenimente 2 Schema lui Poisson Schema lui Bernoulli (a bilei revenite) Schema hipergeometrică (a bilei neîntoarsă) 3 4 Sistem complet de evenimente Definiţia 1.1 O familie de evenimente

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Elemente de Teoria. Chapter Spaţiu de probabilitate

Elemente de Teoria. Chapter Spaţiu de probabilitate Chapter 1 Elemente de Teoria Probabilităţilor 1.1 Spaţiu de probabilitate Pentru a defini conceptul de spaţiu de probabilitate, vom considera un experiment, al carui rezultat nu se poate preciza cu siguranţă

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI,

TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, Ariadna Lucia Pletea Liliana Popa TEORIA PROBABILITĂŢILOR UNIVERSITATEA TEHNICĂ GH. ASACHI, IAŞI 999 Cuprins Introducere 5 Câmp de probabilitate 7. Câmp finit de evenimente...........................

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Elemente de teoria probabilităţilor

Elemente de teoria probabilităţilor Part I Elemente de teoria probabilităţilor 1 Spaţiu de probabilitate 1.1 Spaţiu de evenimente Scopul Teoriei probabilităţilor este de a construi modele matematice în situaţii guvernate de factori aleatori,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

3 Distribuţii discrete clasice

3 Distribuţii discrete clasice 3 Distribuţii discrete clasice 3.1 Distribuţia Bernoulli Probabil cel mai simplu tip de variabilă aleatoare discretă, variabila aleatoare Bernoulli modelează efectuareaunui experiment în care poate apare

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7 Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

9 Testarea ipotezelor statistice

9 Testarea ipotezelor statistice 9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

1 Câmp finit de probabilitate Formule de calcul într-un câmp de probabilitate... 10

1 Câmp finit de probabilitate Formule de calcul într-un câmp de probabilitate... 10 Cuprins Câmp finit de probabilitate 5. Formule de calcul într-un câmp de probabilitate.......... 5. Formule de calcul într-un câmp de probabilitate...........3 Scheme clasice de probabilitate...................

Διαβάστε περισσότερα

MATEMATICI SPECIALE Culegere de probleme TANIA-LUMINIŢA COSTACHE

MATEMATICI SPECIALE Culegere de probleme TANIA-LUMINIŢA COSTACHE MATEMATICI SPECIALE Culegere de probleme TANIA-LUMINIŢA COSTACHE * Prefaţă Lucrarea este rezultatul seminariilor de Probabilităţi şi statistică matematică şi Matematici avansate ţinute de autoare studenţilor

Διαβάστε περισσότερα

Modelarea şi Simularea Sistemelor de Calcul Distribuţii ( lab. 4)

Modelarea şi Simularea Sistemelor de Calcul Distribuţii ( lab. 4) Modelarea şi Simularea Sistemelor de Calcul Distribuţii ( lab. 4) În practică eistă nenumărate eperienţe aleatoare care au un câmp de evenimente nenumărabil şi implicit sistemul complet de evenimente aleatoare

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

PRELUCRAREA STATISTICĂ A SEMNALELOR

PRELUCRAREA STATISTICĂ A SEMNALELOR Mihai Ciuc Constantin Vertan PRELUCRAREA STATISTICĂ A SEMNALELOR 4 3 3 4 6 8 4 6 8 4 3 3 4 6 8 4 6 8 3 4 6 8 4 6 8 Editura MatrixRom 5 Cuvânt înainte Această lucrare reprezintă baza cursului de Teoria

Διαβάστε περισσότερα

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică. Lect dr Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr Lucian MATICIUC CURS VII-IX Capitolul IV: Funcţii derivabile Derivate şi diferenţiale 1

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

1.7 Mişcarea Browniană

1.7 Mişcarea Browniană CAPITOLUL 1. ELEMENTE DE TEORIA PROCESELOR STOCHASTICE 43 1.7 Mişcarea Browniană Mişcarea Browniană a fost pentru prima dată observată de către botanistul scoţian Robert Brown în 1828, când a observat

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Bazele teoriei riscului

Bazele teoriei riscului Bazele teoriei riscului Mircea Crâşmăreanu ii Contents Mulţimi şi funcţii 3 2 Probabilităţi: abordare clasică 5 3 Probabilităţi: abordare modernă 4 Funcţia de repartiţie a unei variabile aleatoare 9 5

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα