Capitolul 2. Integrala stochastică

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Capitolul 2. Integrala stochastică"

Transcript

1 Capitolul 2 Integrala stochastică 5

2 CAPITOLUL 2. INTEGRALA STOCHASTICĂ Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală cel mai adesea mişcare Browniană) iar H s este un proces stochastic adaptat filtraţiei corespunzătoare lui M s, cu proprietatea că E H2 s d M s <. Începem prin a considera cazul în care integratorul M s este mişcarea Browniană 1- dimensională. Deoarece conform Propoziţiei traiectoriile mişcării Browniane B t au variaţie infinită, nu putem defini integrala H sdb s ca o integrală de tip Lebesgue- Stieltjes. Cheia construcţiei este izometria în L 2 2.3) de mai jos, care ne va permite să definim integrala stochastică H sdb s ca fiind limita în L 2 P ) a unui şir de variabile aleatoare convenabil alese. Pe un spaţiu de probabilitate Ω, F, P ) fixat, considerăm o mişcare Browniană 1- dimensională B t începută la B =, şi presupunem că filtraţia corespunzătoare F t ) t verifică condiţiile uzuale σ-algebra F t este continuă la dreapta şi completă pentru orice t ). Ideea construcţiei este următoarea: 1. dacă fs, ω) = ϕω)1 [a,b) s) este un proces elementar, definim fs, ω)db s = ϕω) B b t B a t ), şi extindem prin linearitate definiţia la cazul în care fs, ω) este un proces simplu o combinaţie liniară finită de procese elementare); 2. dacă E f 2 s, ω)ds <, aproximăm procesul fs, ω) prin procese simple f n s, ω), şi definim fs, ω)db s = lim f n s, ω)db s în L 2 P )). În această construcţie, sunt câteva elemente care trebuiesc demonstrate: existenţa şirului de aproximare f n s, ω), convergenţa şirului f ns, ω)db s în L 2 P )), şi independenţa limitei în raport cu alegerea şirului de aproximare f n s, ω). 2.2 Integrala stochastică Itô Definim clasa I a integranzilor ca fiind clasa funcţiilor ce verifică următoarele condiţii: ft, ω) : [, ) Ω R i) ft, ω) este un proces stochastic, adică funcţia t, ω) [, ) Ω ft, ω) este măsurabilă în raport cu σ-algebra produs B F; ii) ft, ) este o variabilă aleatoare măsurabilă în raport cu σ-algebra F t pentru orice t ;

3 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 52 iii) E f 2 s, ω)ds <. Numim proces elementar un proces stochastic ft, ω) I de forma ft, ω) = ϕω)1 [a,b) t). Observăm că proprietăţile ii) şi iii) mai sus revin în acest caz la faptul că variabila aleatoare ϕ = ϕω) este o variabilă aleatoare măsurabilă în raport cu σ-algebra F a, respectiv că variabila aleatoare ϕ 2 este integrabilă. Definim în acest caz integrala stochastică prin ϕω)1 [a,b) s)db s ω) = ϕω) B b t ω) B a t ω)). 2.1) Numim proces simplu un proces stochastic ft, ω) I ce poate fi scris ca o combinaţie liniară finită de procese elementare, adică ft, ω) = N ϕ i ω)1 [ai,b i )t), unde ϕ i = ϕ i ω) sunt variabile aleatoare F ai -măsurabile de pătrat integrabil, 1 i N, şi a 1 < b 1... a N < b N. Definim integrala stochastică în acest caz prin liniaritate, adică N N ϕ i ω)1 [ai,b i )s)db s ω) = ϕ i ω) B bi tω) B ai tω)). 2.2) Integrala stochastică a funcţiilor simple astfel definită are următoarele proprietăţi: Proposition Dacă f I este un proces simplu mărginit, atunci integrala stochastică N t ω) = fs, ω)db s ω) este o martingală continuă şi are loc egalitatea [ ) 2 ] E fs, ω)db s ω) = E f 2 s, ω)ds. 2.3) Proof. Pentru a demonstra prima afirmaţie, datorită linearităţii integralei stochastice, este suficient să considerăm cazul în care f I este un proces elementar mărginit ft, ω) = ϕω)1 [a,b) t), unde ϕω) este o variabilă aleatoare F a -măsurabilă mărginită de pătrat integrabil şi a < b. Dacă procesul ϕ este mărginit de constanta K, obţinem N t N s = ϕω) B b t ω) B a t ω)) ϕω) B b s ω) B a s ω)) K B b t ω) B b s ω) + K B a t ω) B a s ω),

4 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 53 şi continuitatea procesului N t rezultă din continuitatea mişcării Browniene B t. Pentru a arăta că N t este o martingală în raport cu filtraţia F t ) t, trebuie să arătăm că oricare ar fi s < t avem E N t F s ) = N s. În funcţie de poziţiile relative ale lui a, b, s şi t, distingem următoarele cazuri: 1. a < s < t < b Avem E N t F s ) = E ϕω) B t ω) B a ω)) F s ) = ϕω) E B t ω) B s ω) F s ) + E B s ω) B a ω) F s )) = ϕω) E B t ω) B s ω)) + B s ω) B a ω)) = ϕω) + B s ω) B a ω)) = ϕω) B s ω) B a ω)) = N s, deoarece în acest caz B t B s este o variabilă aleatoare independentă de σ-algebra F s iar B s B a este o variabilă aleatoare F s -măsurabilă. 2. a < s < b < t Avem E N t F s ) = E ϕω) B b ω) B a ω)) F s ) = ϕω) E B b ω) B s ω) F s ) + E B s ω) B a ω) F s )) = ϕω) E B b ω) B s ω)) + B s ω) B a ω)) = ϕω) + B s ω) B a ω)) = ϕω) B s ω) B a ω)) = N s, deoarece în acest caz B b B s este o variabilă aleatoare independentă de σ-algebra F s iar B s B a este o variabilă aleatoare F s -măsurabilă. 3. Pentru cele patru cazuri rămase de considerat demonstraţia fiind similară, o omitem. Pentru a demonstra ultima afirmaţie, considerăm un proces simplu f I, dat de ft, ω) = N ϕ i ω)1 [ai,b i )t), unde ϕ i ω) sunt variabile aleatoare F ai -măsurabile mărginite de pătrat integrabil, 1 i N, şi a 1 < b 1... a N < b N.

5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 54 Folosind independenţa incremenţilor mişcării Browniene şi faptul că variabilele aleatoare ϕ i, ϕ j sunt F ai, respectiv F aj -măsurabile, obţinem: de unde rezultă [ E + E E [ ϕ i ω)ϕ j ω) B bi t B ai t) )] B bj t B aj t { E ϕ 2 = i ω) ) b i t a i t), i = j, i j ) 2 ] [ N fs, ω)db s ω) = E 1 i<j N [ N ] = E ϕ 2 i ω) b i t a i t) = E f 2 s, ω)ds, ϕ 2 i ω) B bi t B ai t) 2 ] + ϕ i ω)ϕ j ω) B bi t B ai t) B bj t B aj t ) 2.4) încheiând astfel demonstraţia. Pentru de a extinde definiţia integralei stochastice la cazul general al unui proces fs, ω) I avem nevoie de următoarea lemă, care arată că un proces fs, ω) I poate fi aproximat prin procese simple mărginite, în următorul sens: Lemma Dacă ft, ω) I, există un şir de procese simple mărginite f n t, ω) I astfel încât E fs, ω) f n s, ω)) 2 ds. 2.5) Folosind acest rezultat, putem acum demonstra următoarea: Theorem Oricare ar fi procesul ft, ω) I şi şirul de procese simple f n t, ω)) n N I cu E fs, ω) f n s, ω)) 2 ds, procesul N n t ω) = f ns, ω)db s ω) converge în L 2 P ), uniform în raport cu t [, ), către o martingală continuă N t ω). Mai mult, limita este independentă de alegerea şirului f n t, ω)) n N folosit în aproximarea funcţiei ft, ω). Înainte de a prezenta demonstraţia, să observăm că dat fiind un proces f I, din Lema rezultă că există un şir de funcţii simple f n I ce verifică condiţia 2.3) mai sus. Putem aşadar enunţa următoarea:

6 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 55 Definition Integrala stochastică Itô ) Definim integrala stochastică Itô a unui proces stochastic ft, ω) I în raport cu mişcarea Browniană B t prin fs, ω)db s = lim f n s, ω)db s, unde f n t, ω) este un şir de procese simple mărginite ce verifică relaţia 2.5) de mai sus. Proof. Să observăm mai întâi că dacă g I este un proces simplu mărginit, din Propoziţia rezultă că M t = gs, ω)db sw) este o martingală continuă şi are loc egalitatea 2 EMt 2 = E gs, ω)db s ω)) = E g 2 s, ω)ds <, şi deci sup EMt 2 E t g 2 s, ω)ds <. Conform teoremei de convergenţă a martingalelor Teorema 1.6.7) rezultă că limita M = lim t M t există aproape sigur şi avem EM 2 = lim E t E t = lim = E ) 2 gs, ω)db s ω) g 2 s, ω)ds g 2 s, ω)ds <. Cum diferenţa a două procese simple este de asemenea un proces simplu, aplicând rezultatul anterior procesului gs, ω) = f n s, ω) f m s, ω) şi folosind inegalitatea Doob Teorema iv)), obţinem ) E sup Nt n Nt m ) 2 ce f n s, ω) f m s, ω)) 2 ds t 2cE f n s, ω) fs, ω)) 2 ds + f m s, ω) fs, ω)) 2 ds pentru n, m, conform ipotezei. Rezultă că N t ω) este un şir Cauchy în L 2 P ), uniform în raport cu t. Cum L 2 P ) este un spaţiu metric complet, rezultă că Nt n converge în L 2 P ) către un proces pe care îl notăm N t = N t ω). Deoarece Nt n converge la N t în L 2 P ) uniform în raport cu t ), există un subşir N n k t care converge aproape sigur către N t, uniform în raport cu t. Din Propoziţia rezultă că procesele Nt n sunt continue, şi deci procesul limită N t este de asemenea un proces continuu în variabila t.

7 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 56 Conform aceleiaşi propoziţii, N n t este o martingală, şi deci oricare ar fi s < t avem E N n t F s ) = N n s, de unde prin trecere la limită cu n rezultă că N t este de asemenea o martingală faptul că E Nt n F s ) E N t F s ) pentru n rezultă din E E Nt n F s ) E N t F s )) 2) = E E Nt n N t F s )) 2) )) E E Nt n N t ) 2 F s = E Nt n N t ) 2), pentru n ). Pentru a demonstra independenţa limitei de şirul de aproximare f n I considerat, să considerăm un alt şir de procese simple f n I cu E şi să notăm Ñ t n = f n s, ω)db s ω). Conform demonstraţiei anterioare, avem ) ) 2 E Nt n Ñ t n ce sup t fs, ω) f n s, ω)) 2 ds, f n s, ω) f ) ) 2 n s, ω) ds pentru n, şi deci limita N t este independentă de alegerea şirului de aproximare N n t considerat. Example Ca un exemplu, să calculăm integrala stochastică B sdb s folosind definiţia integralei stochastice. Considerăm ft, w) = B t şi definim şirul f n t, ω) = 2 n 1 n= B t j 1 [tj,t j+1 )t), unde t j = t n j = t j 2. n Din independenţa incremenţilor mişcării Browniene obţinem: ) E f n s, ω) fs, ω) 2 ds = E = = 2 n 1 j= 2 n 1 j= 2 n 1 j+1 j= t j j+1 t j = t2 2 2 n Btj B s ) 2 ds s t j )ds 1 2 t j+1 t j ) 2

8 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 57 pentru n, şi deci f n t, ω) este de fapt un şir de aproximare al procesului ft, ω) în sensul relaţiei 2.5). Conform definiţiei integralei stochastice avem deci B s db s = lim = lim 1 = lim 2 2 n 1 f n s, ω)db s ω) B tj B tj+1 B tj ) j= 2 n 1 j= = 1 2 B2 t B 2 ) 1 2 t. B 2 tj+1 B 2 tj B tj+1 B tj ) 2) Încheiem această secţiune cu două observaţii. Remark În exemplul anterior am obţinut B t db t = 1 2 formulă ce diferă de formula obişnuită de integrare B 2 t B 2 ) 1 2 t, B s db s = 1 2 B2 s=t s s= = 1 2 B2 t B), 2 în cazul integralei Lebesgue-Stieltjes dacă aceasta integrală s-ar fi putut aplica procesului B t ). Aceasta se datorează faptului că mişcare Browniană nu este un proces cu variaţie mărginită şi deci integrala B sdb s nu este definită în sensul Lebesgue-Stieltjes), dar este un proces cu variaţie pătratică local mărginită, fapt ce conduce, conform definiţiei integralei stochastice, la apariţia termenului suplimentar 1 2t din formula anterioară. În Secţiunea 2.4 vom obţine formula generală de integrare prin părţi pentru integrala stochastică, numită formula Itô. Remark Spre deosebire de integrala Lebesgue-Stieltjes, alegerea punctului intermediar s i produce valori diferite ale integralei stochastice. În această secţiune am construit integrala stochastică Itô, integrală ce corespunde alegerii punctului intermediar ca limita inferioară a intervalului considerat, adică este s i = s i. Există şi alte construcţii ale integralei stochastice, spre exemplu alegerea s i = s i+s i+1 2 conduce la integrala stochastică Stratonovich. 2.3 Extensii ale integralei stochastice Există câteva extensii ale integralei stochastice construite în secţiunea anterioară, obţinute în principal prin înlocuirea integratorului mişcare Browniană B t o martingală continuă),

9 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 58 printr-o martingală continuă generală M t cu variaţie pătratică local) finită. Aplicaţiile din partea a doua a cărţii au în vedere mişcarea Browniană, pentru care construcţia prezentată este suficientă; din acest motiv, nu vom prezenta construcţia integralei stochastice în cazul general. Pentru construcţia generală a integralei stochastice Itô se poate consulta spre exemplu [?], [?] sau [?]. Prezentăm în continuare câteva definiţii necesare prezentării rezultatelor din secţiunea următoare. Un proces M t se numeşte martingală locală dacă există un şir S n ) n N de timpi de oprire cu proprietatea că S n a.s. şi M t Sn ) t este o martingală de pătrat integrabil pentru orice n N. În mod similar, un proces A t ) t se numeşte proces cu variaţie locală mărginită dacă există un şir S n ) n N de timpi de oprire cu proprietatea că S n a.s. şi A t Sn ) t este un proces cu variaţie mărginită pentru orice n N. Numim semimartingală un proces X t = M t + A t, unde M t este o martingală locală iar A t este un proces cu variaţie locală mărginită. Dacă X t este o martingală de pătrat integrabil cu traiectorii continue, din inegalităţii Jensen pentru aşteptarea condiţionată rezultă căxt 2 este o submartingală cu traiectorii continue. Conform teoremei de descompunere Doob-Meyer rezultă că Xt 2 poate fi scris în mod unic sub forma Xt 2 = M t + A t, unde M t este o martingală cu traiectorii continue, A t este un proces crescător cu traiectorii continue cu A =, şi M t, A t sunt adaptate filtraţiei lui X t. Procesul crescător A t astfel construit se numeşte variaţia pătratică a procesului X t, şi se notează X t. Din discuţia de mai sus, rezultă că acest proces poate fi caracterizat ca fiind unicul proces crescător început la X =, adaptat filtraţiei lui X t, pentru care procesul X 2 t X t este o martingală în raport cu filtraţia lui X t. Extindem noţiunea de variaţie pătratică în cazul a două procese, după cum urmează: dacă X t şi Y t sunt martingale de pătrat integrabil cu traiectorii continue, definim variatia pătratică a lui X t şi Y t prin X, Y t = 1 2 X + Y t X t Y t ), şi observăm că această definiţie o generalizează pe cea precedentă, în sensul că variaţia pătratică a lui X t este dată de X t = X, X t. Dacă X t = M t + A t este o semimartingală unde M t este o martingală locală iar A t este un proces de variaţie locală mărginită), definim variaţia pătratică a procesului X t ca fiind variaţia pătratică a părţii sale martingale, adică X t = M t.

10 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 59 Exerciţii Exercise Fie B t o mişcare Browniană 1-dimensională începută la B =. Să se arate că sdb s = tb t B sds. Exercise Fie B t o mişcare Browniană 1-dimensională începută la B =. Să se arate că B2 s db s = 1 3 B3 t B sds. Exercise Să se arate că dacă B t este o mişcare Browniană 1-dimensională începută la B =, atunci M t = B 2 t t este o martingală. Care este variaţia pătratică a lui B t? Exercise Să se arate că dacă M t este o martingală continuă de pătrat integrabil, atunci n 1 ) 2 Mti+1 M ti i= converge în probabilitate la variaţia pătratică M t atunci când norma partiţiei = t < t 1 <... < t n = t tinde către.

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

2 Variabile aleatoare

2 Variabile aleatoare Variabile aleatoare În practică, variabilele aleatoare apar ca funcţii ce depind de rezultatul efectuării unui anumit experiment. Spre exemplu, la aruncarea a două zaruri, suma numerelor obţinute este

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Verificarea ipotezelor statistice 1 de I.Văduva

Verificarea ipotezelor statistice 1 de I.Văduva Verificarea ipotezelor statistice 1 de I.Văduva Notaţii si noţiuni preliminare Variabila aleatoare: X,Y,U,V,etc., descrisă de funcţie de repartiţie. Variabila aleatoare este asaociată unei populaţii statistice;

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Calculul funcţiilor de matrice Exponenţiala matriceală

Calculul funcţiilor de matrice Exponenţiala matriceală Laborator 3 Calculul funcţiilor de matrice Exponenţiala matriceală 3.1 Tema Înţelegerea conceptului de funcţie de matrice şi însuşirea principalelor metode şi algoritmi de calcul al funcţilor de matrice.

Διαβάστε περισσότερα

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB MATEMATICI SPECIALE Viorel PETREHUŞ, Narcisa TEODORESCU Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB Mai există erori care vor fi corectate în versiunea finală) Capitolul Introducere

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ Radu Gologan, Tania-Luminiţa Costache 2 * Prefaţă Textul de faţă este construit pe scheletul subiectelor date la examenul de Analiză Matematică în perioada

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

Statisticǎ - notiţe de curs

Statisticǎ - notiţe de curs Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Structura matematicii

Structura matematicii Structura matematicii Oana Constantinescu March 21, 2014 Contents 1 Teorie deductiva. Generalitati 1 2 Geometria plana bazata pe notiunea de distanta 4 2.1 Motivatie............................... 4 2.2

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

1. Elemente de bază ale conducţiei termice

1. Elemente de bază ale conducţiei termice 1. 1.1 Ecuaţiile diferenţiale ale conducţiei termice Calculul proceselor de schimb de căldură necesită cunoaşterea distribuţiei temperaturii în spaţiu şi timp. Distribuţia temperaturii se obţine prin rezolvarea

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU Cuprins CAPITOLUL 4 AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU...38 4. Introducere...38 4.2 Modelul la foarte joasă frecvenţă al amplficatorului operaţional...38 4.3 Amplificatorul neinversor.

Διαβάστε περισσότερα

Exercitii : Lecţia 1,2,3

Exercitii : Lecţia 1,2,3 Exercitii : Lecţia 1,2,3 1.Notarea câmpurilor Tabla de şah are 64 de pătrăţele numite câmpuri. Fiecare câmp poate fi identificat de coloana şi linia pe care se află, orice câmp se află la intersecţia dintre

Διαβάστε περισσότερα

AMPLIFICATOARE DE MĂSURARE. APLICAŢII

AMPLIFICATOARE DE MĂSURARE. APLICAŢII CAPITOLL 4 AMPLIFICATOAE DE MĂSAE. APLICAŢII 4.. Noţiuni fundamentale n amplificator este privit ca un cuadripol. Dacă mărimea de ieşire este de A ori mărimea de intrare, unde A este o constantă numită

Διαβάστε περισσότερα

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI 61 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOVEHICULULUI FRÂNAT Se consideră un autovehicul care se deplasează cu viteză variabilă pe un drum cu

Διαβάστε περισσότερα

COPYRIGHT c 1997, Editura Tehnică Toate drepturile asupra ediţiei tipărite sunt rezervate editurii.

COPYRIGHT c 1997, Editura Tehnică Toate drepturile asupra ediţiei tipărite sunt rezervate editurii. FitVisible Aceasta este versiunea electronică a cărţii Metode Numerice publicată de Editura Tehnică. Cartea a fost culeasă folosind sistemul L A TEX a lui Leslie Lamport, o extindere a programului TEX

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Electronică Analogică. Redresoare -2-

Electronică Analogică. Redresoare -2- Electronică Analogică Redresoare -2- 1.2.4. Redresor monoalternanţă comandat. În loc de diodă, se foloseşte un tiristor sau un triac pentru a conduce, tirisorul are nevoie de tensiune anodică pozitivă

Διαβάστε περισσότερα

DETERMINAREA CONSTANTEI RYDBERG

DETERMINAREA CONSTANTEI RYDBERG UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03A DETERMINAREA CONSTANTEI RYDBERG DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

Elemente de mecanică şi aplicaţii în biologie

Elemente de mecanică şi aplicaţii în biologie Biofizică Elemente de mecanică şi aplicaţii în biologie Capitolul II. Elemente de mecanică şi aplicaţii în biologie Acest capitol are drept scop familiarizarea cititorului cu cele mai importante noţiuni

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme Capitolul Diode semiconductoare 3. În fig. 3 este preentat un filtru utiliat după un redresor bialternanţă. La bornele condensatorului

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

4. POLARIZAREA TRANZISTOARELOR BIPOLARE

4. POLARIZAREA TRANZISTOARELOR BIPOLARE 4 POLAZAA ANZSOALO POLA ircuitul de polarizare are rolul de a poziţiona într-un punct de pe caracteristica statică, numit Punct Static de uncţionare (PS) ezultă că circuitul de polarizare trebuie să asigure

Διαβάστε περισσότερα

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE Cuprins CAPITOLL 8 STABILIZATOARE DE TENSINE REALIZATE C CIRCITE INTEGRATE ANALOGICE...220 8.1 Introducere...220 8.2 Stabilizatoare de tensiune realizate cu amplificatoare operaţionale...221 8.3 Stabilizatoare

Διαβάστε περισσότερα

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru

PROIECT ECONOMETRIE. Profesori coordinatori: Liviu-Stelian Begu și Smaranda Cimpoeru PROIECT ECONOMETRIE Profesori coordinatori: LiviuStelian Begu și Smaranda Cimpoeru Proiect realizat de?, grupa?, seria? FACULTATEA DE RELAȚII ECONOMICE INTERNAȚIONALE, ASE, BUCUREȘTI 2015 CUPRINS Înregistrați

Διαβάστε περισσότερα

De la problemă la algoritm

De la problemă la algoritm De la problemă la algoritm Procesul dezvoltării unui algoritm, pornind de la specificaţia unei probleme, impune atât verificarea corectitudinii şi analiza detaliată a complexităţii algoritmului, cât şi

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg

CURSUL AL IV-LEA. Tabelul 1 Greutatea corporală a 1014 pacienţi cu diferite afecţiuni, pe clase din 5kg în 5kg CURSUL AL IV-LEA 1 Reprezentarea grafică a datelor statistice - Consideraţii generale Sunt două metode de bază în statistică: numerică şi grafică. Folosind metoda numerică putem calcula statistici ca media

Διαβάστε περισσότερα

Seminar electricitate. Seminar electricitate (AP)

Seminar electricitate. Seminar electricitate (AP) Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =

Διαβάστε περισσότερα

ANUL al V-lea Nr. 2/2015. Prezenţa elementelor de teoria probabilităţilor în programa de liceu

ANUL al V-lea Nr. 2/2015. Prezenţa elementelor de teoria probabilităţilor în programa de liceu DIDACTICA MATEMATICĂ SUPLIMENT AL GAZETEI MATEMATICE ANUL al V-lea Nr. 2/2015 Modele de lecţii Prezenţa elementelor de teoria probabilităţilor în programa de liceu de Eugen Păltănea Propunem o tematică

Διαβάστε περισσότερα

CIRCUITE BASCULANTE BISTABILE

CIRCUITE BASCULANTE BISTABILE 6 CICUITE BACULANTE BITABILE 6. Introducere Circuitele basculante bistabile sau, mai scurt, circuitele bistabile sunt circuite care pot avea la ieşire două stări stabile: logic şi logic. Circuitul poate

Διαβάστε περισσότερα

PVC. D oor Panels. + accessories. &aluminium

PVC. D oor Panels. + accessories. &aluminium PVC &aluminium D oor Panels + accessories 1 index panels dimensions accessories page page page page 4-11 12-46 48-50 51 2 Η εταιρία Dorland με έδρα τη Ρουμανία, από το 2002 ειδικεύεται στην έρευνα - εξέλιξη

Διαβάστε περισσότερα

Proiectarea unui amplificator

Proiectarea unui amplificator Proiectarea unui amplificator sl. dr. Radu Damian Notă importantă. În acest document nu există "informaţia magică" ascunsă în două rânduri de la mijlocul documentului. Trebuie parcurs pas cu pas fără a

Διαβάστε περισσότερα

Coduri grup - coduri Hamming

Coduri grup - coduri Hamming Capitolul 5 Coduri grup - coduri Hamming 5. Breviar teoretic Dacăîn capitolul precedent s-a pus problema codării surselor pentru eficientiezarea unei transmisiuni ce se presupunea a nu fi perturbată de

Διαβάστε περισσότερα

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM IAŞI 27 2 Cuprins 1 Integrle improprii 9 1.1 Introducere............................ 9 1.2 Definiţi integrlei improprii................... 1 1.3

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Inițiere în simularea circuitelor electronice pasive

Inițiere în simularea circuitelor electronice pasive Inițiere în simularea circuitelor electronice pasive 1. Scopul lucrării: Iniţierea studenţilor cu proiectarea asistată de calculator (CAD) a unei scheme electrice în vederea simulării funcţionării acesteia;

Διαβάστε περισσότερα

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE 1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN

Διαβάστε περισσότερα

Statisticǎ - exerciţii

Statisticǎ - exerciţii Statisticǎ - exerciţii Ştefan Balint, Tǎnasie Loredana 1 Noţiuni de bazǎ Exerciţiu 1.1. Presupuneţi cǎ lucraţi pentru o firmǎ de sondare a opiniei publice şi doriţi sǎ estimaţi proporţia cetǎţenilor care,

Διαβάστε περισσότερα

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes Lucrarea Nr. 7 Tranzistorul bipolar aracteristici statice Determinarea unor parametri de interes A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real

Διαβάστε περισσότερα

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element.

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element. 1.Multimi Definitie Multimea este o colectie de obiecte/simboluri. Fiecare obiect dintr-o multime este un element al multimii si este scris/specificat o singura data. Mutimile se noteaza, de obicei cu

Διαβάστε περισσότερα

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS) ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPIONS, BINARY OPIONS, COMPOUND OPIONS, CHOOSER OPIONS, LOOKBACK OPIONS, ASIAN OPIONS) ΣΑΝΣΟΤΛΟΤ ΔΛΔΝΖ ΔΠΗΒΛΔΠΩΝ ΚΑΘΖΓΖΣΖ: ΠΖΛΗΩΣΖ ΗΩΑΝΝΖ ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ

Διαβάστε περισσότερα

EDITURA ACADEMIEI FORŢELOR AERIENE HENRI COANDĂ BRAŞOV

EDITURA ACADEMIEI FORŢELOR AERIENE HENRI COANDĂ BRAŞOV Marian PEARSICĂ Mădălina PETRESCU Marian PEARSICĂ, Mădălina PETRESCU - MAŞINI ELECTRICE MAŞINI ELECTRICE ISBN 978 973 8415 EDITURA ACADEMIEI FORŢELOR AERIENE HENRI COANDĂ BRAŞOV 2007 Maşini electrice C

Διαβάστε περισσότερα

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe

Διαβάστε περισσότερα

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI Capitolul 5 DINAMICA TRACŢIUNII AUTOEHICULELOR CU ROŢI 5.1 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOEHICULELOR ŞI CONDIŢIA DE ÎNAINTARE A ACESTORA Se consideră cazul general al unui autovehicul care

Διαβάστε περισσότερα

AMPLIFICATORUL CU CIRCUIT ACORDAT DERIVATIE

AMPLIFICATORUL CU CIRCUIT ACORDAT DERIVATIE AMPLIFICATORL C CIRCIT ACORDAT DERIVATIE 4 M IN OT OT Analizor spectru IN Fiura 6 (). Comutatorul K este pe poziţia de R mare. Comutatorul K scurtcircuitează rezistenţa R a. Cunoscând valoarea L a bobinei

Διαβάστε περισσότερα

CAPITOLUL 5 ASPECTE PRIVIND NOŢIUNILE DE FIABILITATE, MENTENABILITATE ŞI DISPONIBILITATE ALE SISTEMELOR TEHNICE MILITARE

CAPITOLUL 5 ASPECTE PRIVIND NOŢIUNILE DE FIABILITATE, MENTENABILITATE ŞI DISPONIBILITATE ALE SISTEMELOR TEHNICE MILITARE CAPITOLUL 5 ASPECTE PRIVIND NOŢIUNILE DE FIABILITATE, MENTENABILITATE ŞI DISPONIBILITATE ALE SISTEMELOR TEHNICE MILITARE 5.1. Analiza conceptuală a termenilor de fiabilitate, mentenabilitate şi disponibilitate

Διαβάστε περισσότερα

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare -

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare - GENERATOR DE IMPULSURI DREPTUNGHIULARE - exemplu de proiectare - Presupunem ca se doreste obtinerea unui oscilator cu urmatoarele date de proiectare: Frecventa de oscilatie reglabila in intervalul 2 5

Διαβάστε περισσότερα

Supapa de siguranta cu ventil plat si actionare directa cu arc

Supapa de siguranta cu ventil plat si actionare directa cu arc Producator: BIANCHI F.LLI srl - Italia Supapa de siguranta cu ventil plat si actionare directa cu arc Model : Articol 447 / B de la ½ la 2 Cod Romstal: 40180447, 40184471, 40184472, 40184473, 40184474,

Διαβάστε περισσότερα

EPSICOM CIRCUIT DE AVERTIZARE DESCĂRCARE ACUMULATOR EP 0006... Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale

EPSICOM CIRCUIT DE AVERTIZARE DESCĂRCARE ACUMULATOR EP 0006... Ready Prototyping. Cuprins. Idei pentru afaceri. Hobby & Proiecte Educationale EPSICOM Ready Prototyping Coleccț ția Home Automation EP 0006... Cuprins Prezentare Proiect Fișa de Asamblare 1. Funcționare 2 2. Schema 2 3. PCB 2 4. Lista de componente 2 5. Tutorial Dioda Zenner 3-8

Διαβάστε περισσότερα

Lucrarea 5. Sursa de tensiune continuă cu diode

Lucrarea 5. Sursa de tensiune continuă cu diode Cuprins I. Noţiuni teoretice: sursa de tensiune continuă, redresoare de tensiune, stabilizatoare de tensiune II. Modul de lucru: Realizarea practică a unui redresor de tensiune monoalternanţă. Realizarea

Διαβάστε περισσότερα

STUDIUL SI VERIFICAREA UNUI MULTIMETRU NUMERIC

STUDIUL SI VERIFICAREA UNUI MULTIMETRU NUMERIC Lucrarea nr. 3 STDIL SI VERIFICAREA NI MLTIMETR NMERIC I. INTRODCERE Aparatele de măsurare de tip multimetru permit măsurarea mărimilor electrice cele mai uzuale: tensiune, curent, rezistenţă. Primele

Διαβάστε περισσότερα

4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului

4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului 4 Metode clasice de planificare şi control a activităţilor şi resurselor proiectului 4.1 Metoda Drumului Critic (C.P.M. Critical Path Metod) 4.1.1 Consideraţii generale Metodele şi tehnicile utilizate

Διαβάστε περισσότερα

SENZORI SI TRADUCTOARE Lab. 2 Măsurarea tensiunilor şi a curenţilor electrici

SENZORI SI TRADUCTOARE Lab. 2 Măsurarea tensiunilor şi a curenţilor electrici SENZORI SI TRADUCTOARE Lab. 2 Măsurarea tensiunilor şi a curenţilor electrici Măsurarea tensiunilor electrice la bornele circuitelor electronice se realizează cu ajutorul voltmetrelor, aparate ce se conectează

Διαβάστε περισσότερα

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3 Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

Termostat pentru acvarii

Termostat pentru acvarii Termostat pentru acvarii Pentru pastrarea in interiorul acvariilor a unei temperaturi de +26±1 C se poate realiza o schema electronica simpla, sigura in functionare si in acelasi timp ieftina. Alimentata

Διαβάστε περισσότερα

NORMATIV PRIVIND SECURITATEA LA INCENDIU A CONSTRUCŢIILOR. Partea a IV-a Instalaţii de detectare, semnalizare şi avertizare incendiu

NORMATIV PRIVIND SECURITATEA LA INCENDIU A CONSTRUCŢIILOR. Partea a IV-a Instalaţii de detectare, semnalizare şi avertizare incendiu NORMATIV PRIVIND SECURITATEA LA INCENDIU A CONSTRUCŢIILOR Partea a IV-a Instalaţii de detectare, semnalizare şi avertizare incendiu CUPRINS CAPITOLUL 1 - OBIECT ŞI DOMENIU DE APLICARE...2 CAPITOLUL 2 -

Διαβάστε περισσότερα

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1. Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,

Διαβάστε περισσότερα

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Subiectul I Pentru fiecare dintre cerinţele de mai jos scrieţi pe foaia de examen, litera corespunzătoare răspunsului corect. 1.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

[Iulian Stoleriu] Statistică Aplicată

[Iulian Stoleriu] Statistică Aplicată [Iulian Stoleriu] Statistică Aplicată Statistică Aplicată (C1) 1 Elemente de Statistic teoretic (C1) Populaµie statistic O populaµie (colectivitate) statistic este o mulµime de elemente ce posed o trasatur

Διαβάστε περισσότερα

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE CRAREA REDRESOARE ŞI MTIPICATOARE DE TENSINE 1 Prezentare teoretică 1.1 Redresoare Prin redresare înţelegem transformarea curentului alternativ în curent continuu. Prin alimentarea circuitelor electronice

Διαβάστε περισσότερα

PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI

PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI PROCESE TEHNOLOGICE ȘI PROTECȚIA MEDIULUI Tema 3. Distilarea și extracția. Obiectivele cursului: În cadrul acestei teme vor fi discutate următoarele subiecte: - operația unitară de concentrare a amestecurilor

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ «PRAXIS» PROIECTUL PRAXIS ΕΝΗΜΕΡΩΣΗ ΚΑΙ ΔΙΑΒΟΥΛΕΥΣΗ ΚΑΙ Η ΚΟΙΝΟΤΙΚΗ ΟΔΗΓΙΑ 2002/14 INFORMARE SI CONSULTARE

ΠΡΟΓΡΑΜΜΑ «PRAXIS» PROIECTUL PRAXIS ΕΝΗΜΕΡΩΣΗ ΚΑΙ ΔΙΑΒΟΥΛΕΥΣΗ ΚΑΙ Η ΚΟΙΝΟΤΙΚΗ ΟΔΗΓΙΑ 2002/14 INFORMARE SI CONSULTARE ΠΡΟΓΡΑΜΜΑ «PRAXIS» PROIECTUL PRAXIS ΕΝΗΜΕΡΩΣΗ ΚΑΙ ΔΙΑΒΟΥΛΕΥΣΗ ΚΑΙ Η ΚΟΙΝΟΤΙΚΗ ΟΔΗΓΙΑ 2002/14 INFORMARE SI CONSULTARE Παναγιώτης Κατσαμπάνης Μ- Η ΕΜΠ Επιστημονικός συνεργάτης της ΟΒΕΣ Panagiotis Katsampanis

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

CAP. 2 DIODE SEMICONDUCTOARE ŞI APLICAłII

CAP. 2 DIODE SEMICONDUCTOARE ŞI APLICAłII CAP. 2 DIODE SEMICONDUCTOAE ŞI APLICAłII 2.1 NOłIUNI FUNDAMENTALE DESPE DIODE Dioda semiconductoare (sau mai simplu, dioda) are la bază o joncńiune pn, joncńiune care se formează la contactul unei regiuni

Διαβάστε περισσότερα

Emil Budescu. BIOMECANICA GENERALã

Emil Budescu. BIOMECANICA GENERALã Emil Budescu BIOMECANICA GENERALã IASI 03 C U P R I N S pag. I. Introducere în biomecanica 3. Obiectul de studiu 3. Terminologie 7 3. Aspecte de baza ale biomecanicii 4. Aspecte de baza ale anatomiei si

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Lucrarea 20 FILTRE DE TIP K-constant

Lucrarea 20 FILTRE DE TIP K-constant Lucrarea 151 Lucrarea FILTRE DE TIP K-contant.A. OBIECTIVE 1. Proiectarea celulelor elementare filtre tip K-contant.. Studiul comportării în frecvenţă a acetor celule. 3. Studiul unui format din mai multe

Διαβάστε περισσότερα

INTRODUCTION TO PROFESSIONAL WHEEL ALIGNMENT FASEP SRL ITALY

INTRODUCTION TO PROFESSIONAL WHEEL ALIGNMENT FASEP SRL ITALY Titlul original: INTRODUCTION TO PROFESSIONAL WHEEL ALIGNMENT FASEP SRL ITALY Traducerea si adaptarea : Claudiu COLIBABA Toate drepturile pentru materialele publicate in aceasta lucrare apartin F.A.S.E.P

Διαβάστε περισσότερα

User s Manual Air Purifier with Ionizer. Εγχειρίδιο Χρήστη Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ. Ιονιστής/Καθαριστής αέρα SPRING

User s Manual Air Purifier with Ionizer. Εγχειρίδιο Χρήστη Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ. Ιονιστής/Καθαριστής αέρα SPRING Η Λ Ε Κ Τ Ρ Ι Κ Ε Σ Σ Υ Σ Κ Ε Υ Ε Σ SPRING User s Manual Air Purifier with Ionizer Εγχειρίδιο Χρήστη Ιονιστής/Καθαριστής αέρα Σας ευχαριστούµε για την επιλογή ηλεκτρικών συσκευών INVENTOR. Για την σωστή

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα