A Wave Equation including Leptons and Quarks for the Standard Model of Quantum Physics in Clifford Algebra
|
|
- Κρόνος Βούλγαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Jouna of Modn Physs, 4, 5, 49-7 Pushd Onn Dm 4 n SRs A Wav Equaton nudn Lptons and Quaks fo th Standad Mod of Quantum Physs n Cffod Aa Caud Davau, Jaqus Btand L Moun d a Land, Poué-s-Cotaux, Fan Ema: CaudDavau@nodntf, tandaqus-m@oanf Rvd Oto 4; vsd 7 Novm 4; aptd Dm 4 Copyht 4 y authos and Sntf Rsah Pushn In Ths wok s nsd und th Catv Commons Attuton Intnatona Lns (CC BY) Astat A wav quaton wth mass tm s studd fo a fmon pats and antpats of th fst naton: ton and ts nutno, poston and antnutno, quaks u and d wth th stats of oo and antquaks u and d Ths wav quaton s fom nvaant und th C oup nazn th atvst nvaan It s au nvaant und th U ( ) SU SU oup of th standad mod of quantum physs Th wav s a funton of spa and tm wth vau n th Cffod aa C,5 Thn many fatus of th standad mod, ha onuaton, oo, ft wavs, and Laanan fomasm, a otand n th fam of th fst quantzaton Kywods Invaan Goup, Da Equaton, Etomantsm, Wak Intatons, Ston Intatons, Cffod Aas Intoduton W us h a notatons of nw nshts n th standad mod of quantum physs n Cffod aa [] Th wav quaton fo a pats of th fst naton s a nazaton of th wav quaton otand n 67 fo th ton and ts nutno Ths wav quaton has otand a pop mass tm ompat wth th au nvaan n [] It s a nazaton of th homonous nonna Da quaton fo th ton aon []-[9] How to t ths pap: Davau, C and Btand, J (4) A Wav Equaton nudn Lptons and Quaks fo th Standad Mod of Quantum Physs n Cffod Aa Jouna of Modn Physs, 5,
2 C Davau, J Btand wth ˆ ˆ β m φ + qaφσ + m φσ, q, m ξ η φ ξ ση ξ η ( ) φ η ξ η σξ ˆ ( ) η ξ H ξ and η a sptvy th ht and ft Wy spnos of th ton Th β an s th Yvon- Takaayas an satsfyn ( φ) () () () β dt Ω+Ω ρ (4) Th nk wth th usua psntaton of th standad mod s mad y th ft and ht Wy spnos usd fo wavs of ah pat Ths ht and ft wavs a pats of th wav wth vau n C,5 W usd pvousy th sam aa C5, C,5 It s th sam aa, and ths xpans vy w why su-aas C, and C, hav n quay usd to ds atvst physs [] [] But th snatu of th saa podut annot f, ths saa podut n nkd to th avtaton n th na atvty It happns that vtos of C,5 a psudo-vtos of C 5, and mo nay that n -vtos of C,5 a ( 6 n) -vtos of C 5, Th nazaton of th wav quaton fo ton-nutno s smp f w us C,5 Ths s th fst ndaton that th snatu + s th tu on W xpan n Appndx A how th vs n C,5 s nkd to th vs n C,, a nssay ondton to t th wav quaton of a pats of th fst naton W hav notd, fo th ton aon fsty (s [8] 4), nxt fo ton + nutno [] th dou nk xstn twn th wav quaton and th Laanan dnsty: It s w known that th wav quaton may otand fom th Laanan dnsty y th vaatona auus Th nw nk s that th a pat of th nvaant wav quaton s smpy Th Laanan fomasm s thn nssay, n a onsqun of th wav quaton Nxt w hav xtndd th dou nk to to-wak ntatons n th pton as (ton + nutno) Now w a xtndn th dou nk to th au oup of th standad mod Th Laanan dnsty must thn th a pat of th nvaant wav quaton Moov w nazd th non-na homonous wav quaton of th ton, and w ot a wav quaton wth mass tm [], fom nvaant und th C GL(, ) oup and au nvaant und th U ( ) SU au oup of to-wak ntatons Ou am s to xpan how ths may xtndd to a wav quaton wth mass tm, oth fom nvaant und C and au nvaant und th U SU SU au oup of th standad mod, nudn oth to-wak and ston ntatons Fom th Lpton Cas to th Fu Wav Th standad mod adds to th ptons (ton and ts nutno n ) n th fst naton two quaks u and d wth th oou stats ah Wak ntatons atn ony on ft wavs of quaks (and ht wavs of antquaks) w wt th wav of a fmons of th fst naton as foows: φ φn φ φn, ˆ ˆ ˆ ˆ φn φ φσ n φσ φ φ φ φ φ φ φ φ,, d u d u d u d u ˆ ˆ ˆ ˆ φ ˆ ˆ ˆ ˆ u φ d φuσ φ σ d φu φ d φuσ φ σ d φd φu φd φu ˆ φ ˆ φ ˆ φ σ ˆ φ σ u d u d Th to-wak thoy [] nds th spnoa wavs n th ton-nutno as: th ht ξ and th ft η of th ton and th ft spno η of th ton nutno Th fom nvaan of th Da n () () 5
3 C Davau, J Btand thoy mposs to us φ fo th ton and φ n fo ts nutno satsfyn * ξ η η φ * ( ), n ξ ση φn ξ η η n ˆ φ η ξ η σξ φ η η ( ) ˆ n, n ( n ) η η n ξ Wavs φ and φ n a funtons of spa and tm wth vau nto th Cffod aa C of th physa spa Th standad mod uss ony a ft η n wav fo th nutno W aways us th matx psntaton (A) whh aows to s th Cffod aa C, as a su-aa of M 4 ( ) Und th daton R wth GL, w hav (fo mo dtas, s [6]): ato ndud y any M n () (4) x MxM, dt M θ, x x µ σ, x x µ σ (5) µ µ ξ Mξ, η Mˆ η, η Mˆ η, φ Mφ, φ Mφ (6) n n n n φ φ n M φ φn N ˆ φ ˆ ˆ ˆ ˆ n φ M φn φ Th fom () of th wav s ompat oth wth th fom nvaan of th Da thoy and wth th ha onuaton usd n th standad mod: th wav ψ of th poston satsfs (7) ψ γψ ˆ φ ˆ φσ (8) W an thn thnk th wav as ontann th ton wav φ, th nutno wav φ n and aso th poston wav φ and th antnutno wav φ : n φ φ n ξ η ξ,, n φ φn ˆ ˆ φσ ξ n n φσ ξ η And th antnutno has ony a ht wav Th mutvto ( x) spa-tm aa aus (s [] (65)) wth: w ot ( ) ( n n) ( n n) (9) s usuay an nvt mnt of th a dt φ φφ ξ η + ξ η () a ξη + ξ η ηη ηη () a ξη + ξη () n n ( ) aa aa dt + () Most of th pdn psntaton s asy xtndd to quaks Fo ah oo,, th towak thoy nds ony ft wavs: φd φu ˆ ηd ˆ ηu, φd, φu ˆ φ ˆ ηd ηu u φ d (4) Th wav s now a funton of spa and tm wth vau nto C,5 C5, whh s a su-aa (on C5, M8 :, (5) th a fd) of Th nk twn th vs n C,5 and th vs n C, s not tva and s dtad n Appndx A Th wav quaton fo a ots of th fst naton ads ( D ) L +M (6) 5
4 C Davau, J Btand Th mass tm ads wh w us th saa dnsts mρχ mρχ M (7) mρχ mρχ s and χ tms of Appndx B, wth 5 aa aa aa ρ ss ρ + +, (8) Th ovaant dvatv D uss th matx psntaton (A) and ads W us two potos satsfyn Γk (9) k D BP W P G µ, µ, µ µ µ µ µ µ µ () D LD L B LB µ W LWµ,,, () µ k µ k G LGµ, k,,, 8 () µ Th opatos at on quaks k on ptons: P ( ) ± ( L ), L ± () P P L (4) + 5 P P L (5) + 5 P P + (6) Th fouth opato ats dffnty on th pton and on th quak sto Usn potos: w an spaat th pton pat and w t (s [] (B4) wth a ) + I4 P ( I8 + L45 ), P ( I8 L45 ) I4 and th quak pat of th wav: + +, P P (7) (8) P ( ) L + L (9) P L () Ths ast aton oms fom th non-xstn of th ht pat of th Chomodynams W stat fom natos λ of th k SU au oup of homodynams wavs 5
5 C Davau, J Btand λ, λ, λ, λ4, λ5, λ6, λ7, λ8 To smpfy h notatons w us now,,, nstad Thn () vs W nam,,, λ, λ, λ, λ4, λ5, λ6, λ7, λ8 Γ k opatos ospondn to ( L L L L ) So w hav () () λ k atn on W t wth potos P + and P n (7): () Γ ( L L L L ) Γ P P P P Γ Γ4 ( ) L5 P, Γ5 ( ) L4 P Γ6 ( ) P L5, Γ7 ( ) P L4 ( P L L P ) Γ Evywh th ft up tm s, so a Γ k pot th wav on ts quak sto W an xtnd th ovaant dvatv of to-wak ntatons n th ton-nutno as: D + BP ( ) + W P ( ) (9) to t th ovaant dvatv of th standad mod (4) (5) (6) (7) (8) k D( ) ( ) + BP ( ) + W P ( ) + G Γk ( ) () k wh s anoth onstant and G a ht tms ad uons Sn I 4 ommut wth any mnt of C, and sn Pµ ( nd ) Pµ ( nd ) fo µ,,, and nd,,, ah opato Γk ommuts wth a opatos P k Now w us a nums a, a,,,,, k,,, 8, w t k 8 k,, Γ k, + + k () S ap S ap S S S S S 5
6 C Davau, J Btand and w t, usn xponntaton ( S) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) xp xp xp xp xp xp xp xp xp xp () n any od Th st of ths opatos xp( S ) s a U ( ) SU SU L oup Ony dffn wth th standad mod: th stutu of ths oup s not postuatd ut auatd Wth th au tansfomaton ads µ µ xp S, D LDµ, D LD µ () xp ( ) D µ S Dµ (4) B B a (5) µ µ µ W P xp S W P xp S xp S [ ] µ µ µ (6) k k G µ Γ k xp( S) Gµ Γk µ xp( S) xp ( S) (7) Th SU oup natd y opatos Γ k ats ony on th quak sto of th wav: k k + P xp Γ P P P (8) Th physa tansaton s: Lptons do not at y ston ntatons Ths oms fom th stutu of th wav tsf It s fuy satsfd n xpmnts W t thn a U ( ) SU SU au oup fo a wav nudn a fmons of th fst naton Ths oup ats on th pton sto ony y ts U ( ) SU pat Consqunty th wav quaton s omposd of a pton wav quaton and a quak wav quaton: ( D ) L + m ρ χ χ χ ( D ) L + mρχ, χ χ Th wav quaton (9) s quvant to th wav quaton studd n [] [], wh (9) () D γ + m ρχ, γ γγγ () aφ + aφnσ+ aφn aφlσ+ aφ R χ ρ ˆ ˆ ˆ ˆ ˆ aφlσ aφr aφ aφnσ aφ + + n () + σ σ φr φ, φl φ () Ths wav quaton s quvant to th nvaant quaton: φ ϕ n ( D ) γ + mρ χ, (4) φn ϕ Ths wav quaton s fom nvaant und th Lontz daton R ndud y any nvt matx M satsfyn (5), (6), (7) [] It s au nvaant und th U ( ) SU oup [] natd y opatos P µ whh a potons on th pton sto of th opatos dfnd n () to (9) Thfo w nd to study ony th quak sto and ts wav quaton () W n y th dou nk twn wav quaton and Laanan dnsty that w hav makd fsty n th Da quaton [8], nxt n th pton as ton + nutno [] 54
7 C Davau, J Btand 4 Dou Lnk twn Wav Equaton and Laanan Dnsty Th xstn of a Laanan mhansm n opts and mhans s known sn Fmat and Mauptus Ths pnp of mnmum s vywh n quantum mhans fom ts nnn, t s th man ason of th hypothss of a wav nkd to th mov of any mata pat mad y L d Bo [4] By th auus of vaatons t s aways poss to t th wav quaton fom th Laanan dnsty But anoth nk xsts: th Laanan dnsty s th a saa pat of th nvaant wav quaton Ths was otand fsty fo th ton aon [8], nxt fo th pa ton-nutno [] wh th Laanan dnsty ads mρ (4) µ µ µ ( ησ µ η ξσ µ ξ ησ n µ ηn) ˆ R + + (4) µ µ µ ˆ Bµ ησ η + ξσ ξ + ησ n ηn (4) W µ µ µ µ ( Wµ Wµ ) ησ η R + n + ( ησ η ησ n ηn) (44) W sha stash th dou nk now fo th wav quaton (6) It s suffnt to add th popty fo () Ths quaton s quvant to th nvaant quaton: D L + m ρ χ (45) χ χ, χ (46) χ W t fom th ovaant dvatv (9) wth th opatos P n (4), (5), (6) and () and Γ k n () to (8) and wth n (8) A A D (47) A A B γ + W γ + W γ W G G G + G + G + G A B γ + W γ+ W γ W 6 G G G G G A B γ + ( W γ+ W γ W ) 6 (4) G + G + G + G + G + G Nxt w t ( Aγ + mρχ ) + ( Aγ + mρχ ) ( A γ + mρχ ) (4) ( Aγ + mρχ ) ( Aγ + mρχ ) Th auaton of th Laanan dnsty n th na as s sma to th pton as W t + (4) D L + mρ χ,, (48) (49) 55
8 C Davau, J Btand m ρ (4),,,,,, Th auaton of,,, pas th pa -n y th pa d-u and suppss th ξ tms, thn (4) (4) (44) om µ µ ( η σ µ η η σ µ η ) R d d + u u (44) B µ µ µ d d + u u ( η σ η η σ η ) (45) 6 W µ µ µ µ ( Wµ Wµ ) ηdσ η R + u + ( ηdσ ηd ηuσ η u ) (46) Sn th SU oup a nudd n auaton of and w t SU th auaton of has smats wth th µ µ 4 5 µ µ ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) R + + R + + G R Gµ µ µ µ + ( ηdσ ηd ηuσ ηu + ηdσ ηd + η uσ µ ηu η µ µ dσ ηd η uσ ηu ) 6 7 µ µ µ µ µ µ µ ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) ( ηdσ ηd ηuσ ηu ηdσ ηd ηuσ ηu ) (47) Ths nw nk twn th wav quaton and th Laanan dnsty s muh ston than th od on, aus t oms fom a smp spaaton of th dffnt pats of a mutvto n Cffod aa Th od nk, on fom th Laanan dnsty to th wav quaton, supposs a ondton of anaton at nfnty whh s duous n th as of a popaatn wav On th physa pont of vw, th a no dffuts n th as of a statonay wav Dffuts n whn popaatn wavs a studd Ou wav quatons, sn thy a ompat wth an ontd tm and an ontd spa, appa as mo na, mo physa, than Laanans Ths a ony patua onsquns of th wav quatons On th mathmata pont of vw th od nk s aways avaa It s fom th Laanan dnsty (4) and usn Laan quatons that w hav otand th wav quaton (6) 5 Invaans 5 Fom Invaan of th Wav Equaton Und th Lontz daton R ndud y an nvt M matx satsfyn W thn t whh mps Thn w t x MxM, dt M θ, x x µ σ, x x µ σ (5) µ µ η Mˆ η, η Mˆ η, φ Mϕ, φ Mϕ (5) u u d d d d u u φ d φ u M φd φu N,,, ˆ φ ˆ ˆ ˆ ˆ u φ d M φu φ d N µ N, L µ N N N, N, N, D ND N N ( ) (5) (54) (55) D L ND N L D L (56) 56
9 C Davau, J Btand and w sha now study th fom nvaan of th mass tm A mps Ths vs ( φ ) ( φ) ( φ) s a dtmnants of a φ matx, ths s dt dt M dt M dt θ s (57) θ s s, ρ ρ (58) χ χ χ χ M Mˆ θ ρχ ρ χ ρ θ χ M Mˆ θ χ χ N χ θ (59) (5) (5) χ NN χ χ (5) Thn th fom nvaan of th wav quaton s quvant to th ondton on th mass tm nkd to th xstn of th Pank fato [] m ρ m ρ (5) m m (54) 5 Gau Invaan of th Wav Equaton Sn w hav pvousy povd th au nvaan of th pton pat of th wav quaton, t s ason nouh to pov th au nvaan of th quak pat of th wav quaton 5 Gau Goup Gnatd y P W hav h P L θ xp( θ P ) ( ) xp L µ µ µ To t th au nvaan of th wav quaton w must t (55) (56) B B B (57) θ θ χ χ xp L, χ χxp γ,,, Ths s satsfd aus θ θ σ σ d d, u u (58) φ φ φ φ (59) θ θ d d u u η η, η η, θ θ d d u u η η, η η (5) s s,,,,5 (5) θ 57
10 C Davau, J Btand A up tms n th matx χ ontan s φdσ and s φuσ tms W t θ θ σ d d d φ φ φ (5) And w fnay t θ θ θ σ σ s φ d σ φ d σ φ d σ φ d σ (5) θ χ χxp γ θ χ χ xp L θ D L + m D L + mρχ xp L ( ) ρχ Th wav quaton wth mass tm s au nvaant und th oup natd y P (54) (55) (56) 5 Gau Goup Gnatd y P W hav h Sn P W t L w t 5 Thn (5) s quvant to th systm o to th systm W thn t P L (57) 5 ( θp) xp( θl ) xp 5 (58) (59) Wµ Wµ µθ ( θp) xp( θl ) xp 5 (5) θγ,,, (5) ( θ) S ( θ) C os, sn (5) ˆ φ C ˆ φ S ˆ φ σ (5) d d u ˆ φ C ˆ φ S ˆ φ σ (54) u u d d d u d d u η Cη Sη, η Cη + Sη (55) η Cη Sη, η Cη + Sη (56) d d u d d u η Cη Sη, η Cη + Sη (57) u u d u u d η Cη Sη, η Cη + Sη (58) u u d u u d s C s S s + CS s s (59) 4 4 s C s S s + CS s s (54) s C s + S s + CS s (54)
11 C Davau, J Btand Ths mps Smay, pmutn oos, w t Ths mps and aso Ths mps Moov w t W thn t Nxt w hav and w t s C s + S s CS s (54) s s s s s s s s s s (54) s C s S s + CS s s (544) 5 5 s C s S s + CS s s (545) s C s + S s + CS s (546) 5 5 s C s + S s CS s (547) s s s s s s s s s s (548) s C s S s + CS s s (549) 6 s C s S s + CS s s (55) 6 6 s C s + S s + CS s (55) 6 s C s + S s CS s (55) 6 s s s s s s s s s s (55) s s, s s, s s (554) ρ ρ (555) A B A B χ, χ Bˆ Aˆ Bˆ Aˆ ( d d u u u ) ( ˆ ˆ ˆ ˆ ˆ u u d d d ) (556) A ˆ s ˆ φ ˆ φ ˆ φ ˆ φ ˆ φ σ (557) Bˆ sφ φ s φ s φ s φ σ (558) 7 Aˆ CAˆ SBσ ˆ (559) Bˆ CBˆ SAσ ˆ (56) C Sσ χ χ χ Sσ C Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, 5 θγ xp D L + m ρχ D θl L + m ρχ 5 ( D ) L mρχ ( θl5 ) + xp (56) (56) 59
12 C Davau, J Btand Th wav quaton wth mass tm s thn au nvaant und th oup natd y P 5 Gau Goup Gnatd y P W hav h Sn P W t L w t 5 Thn (567) s quvant to th systm o to th systm W thn t Ths mps Smay, pmutn oos, w t P L (56) 5 ( θp ) xp( θl ) xp 5 (564) (565) Wµ Wµ µθ ( θp ) xp( θl ) xp 5 (566) θγ,,, (567) ( θ) S ( θ) C os, sn (568) ˆ φ C ˆ φ + S ˆ φ (569) d d u ˆ φ C ˆ φ S ˆ φ (57) u u d η Cη + Sη, η Cη + Sη (57) d d u d d u η Cη + Sη, η Cη + Sη (57) d d u d d u η Cη Sη, η Cη Sη (57) u u d u u d η Cη Sη, η Cη Sη (574) u u d u u d s C s + S s CSs + CSs (575) 4 4 s C s + S s + CSs CSs (576) s C s + S s + CSs CSs (577) 4 4 s C s + S s CSs + CSs (578) s s s s s s s s s s (579) s C s + S s CSs + CSs (58) 5 5 s C s + S s + CSs CSs (58) s C s + S s + CSs CSs (58) 5 5 Ths mps s C s + S s CSs + CSs (58)
13 C Davau, J Btand and aso s s s s s s s s s s (584) s C s + S s CSs + CSs (585) 6 Ths mps Moov w t W thn t Nxt w t wth (556) s C s + S s + CSs CSs (586) 6 6 s C s + S s + CSs CSs (587) 6 s C s + S s CSs + CSs (588) 6 s s s s s s s s s s (589) s s, s s, s s (59) ρ ρ (59) Aˆ CAˆ SBσ ˆ (59) Bˆ CBˆ + SAσ ˆ (59) χ χ C Sσ χ θγ Sσ C Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, 5 xp ( D ) L + mρχ xp( θl5 ) D L + m ρχ D θl L + m ρχ 5 Th wav quaton wth mass tm s thn au nvaant und th oup natd y P (594) (595) 54 Gau Goup Gnatd y P W hav h P L (596) ( θp ) xp( θl ) xp (597) Sn P L w t (598) Wµ Wµ µθ ( θp ) xp( θl ) xp (599) Thn (597) s quvant to th systm o to th systm θγ,,, (5) ˆ θ φ ˆ φ (5) d d ˆ θ φ ˆ φ (5) u u 6
14 C Davau, J Btand W thn t Ths mps Nxt w t wth (556) η η, η η (5) θ θ d d d d η η, η η (54) θ θ d d d d η η, η η (55) θ θ u u u u η η, η η (56) θ θ u u u u s s, s s, s s (57) θ θ θ s s, s s, s s (58) θ θ θ s s, s s, s s (59) s s, s s, s s (5) s s, s s, s s (5) ρ ρ (5) ˆ θ ˆ θ A A, A A (5) ˆ θ ˆ θ B B, B B (54) θ θ χ χ χ θ Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, xp D L + m ρχ D θl L + m ρχ ( D ) L mρχ ( θl ) + xp Th wav quaton wth mass tm s thn au nvaant und th oup natd y P 55 Gau Goup Gnatd y Γ W us now th au tansfomaton W an thn fot h must quvant to th systm ( θ) ( θ) (55) (56) C + S, C os, S sn (57) C + S (58) (59) Th au nvaan snfs that th systm G + m ρχγ G + m ρχγ G + m ρχγ G + m ρχγ,, (5) (5) 6
15 C Davau, J Btand Usn atons (57) and (58) th systm (5) s quvant to (5) f and ony f W nam f th au tansfomaton f: whh mps wth C os( θ ) and S sn ( θ ) G G θ (5) Γ (5) C + S xp ( θ f ) ( ) C + S Th quaty (57) s quvant to th systm Th quaty (58) s quvant to th systm Ths vs fo th nvaant saas W thn t (54) C + S (55) C + S (56) (57) η Cη + Sη, η Cη + Sη (58) d d d u u u η Cη + Sη, η Cη + Sη (59) d d d u u u η Cη + Sη, η Cη + Sη (5) d d d u u u η Cη + Sη, η Cη + Sη (5) d d d u u u s s s, s s, s s (5) s Cs Ss, s Cs Ss (5) s Cs Ss, s Cs Ss (54) s Cs + Ss, s Cs + Ss (55) s Cs + Ss, s Cs + Ss (56) s C s S s + CSs + CSs (57) s C s S s + CSs + CSs (58) s C s S s + CSs + CSs (59) s C s S s + CSs + CSs (54) ss s ss s (54) ss s ss s (54) s s s s s s (54) s s s s s s (544) s s s s s s s s s s (545)
16 C Davau, J Btand Nxt w t and w t wth (B7) and (B8) Ths vs th awatd sut ρ ρ (546) A B A B χ, χ Bˆ ˆ ˆ ˆ A B A A B A B χ, ˆ ˆ χ B ˆ ˆ A B A (547) (548) A CA SA, B CB SB (549) A CA SA, B CB SB (55) ρ ρ (55) χ Cχ S χ (55) χ Cχ S χ (55) Th han of sn of th phas twn (57) and (55) oms fom th antommutaton twn and 56 Gau Goups Gnatd y Γ k, k > W us wth k th au tansfomaton ( θ) ( θ) C + S, C os, S sn (554) C S (555) Th au nvaan snfs that th systm must quvant to th systm (556) G + m ρχγ G + m ρχγ G + mρχγ, G + mρχγ Usn atons (554) and (555) th systm (558) s quvant to (557) f and ony f aus w t, (557) (558) G G θ (559) ρ ρ (56) χ Cχ + Sχ (56) χ Cχ Sχ (56) Th as k s dtad n C and th as k 8 s dtad n C Cass k 4 and k 6 a 64
17 C Davau, J Btand sma to k and ass k 5 and k 7 a sma to k y pmutaton of ndxs of oo 6 Conudn Rmaks Fom xpmnta suts otand n th aatos physsts hav ut what s now known as th standad mod Ths mod s nay thouht to a pat of quantum fd thoy, tsf a pat of axomat quantum mhans On of ths axoms s that ah stat dsn a physa stuaton foows a Shödn wav quaton Sn ths wav quaton s not atvst and dos not aount fo th spn / whh s nssay to any fmon, th standad mod has vdnty not foowd th axom and has usd nstad a Da quaton to ds fmons Ou wok aso stats wth th Da quaton Ths wav quaton s th na appoxmaton of ou nonna homonous quaton of th ton Th wav quaton psntd h s a wav quaton fo a assa wav, a funton of spa and tm wth vau nto a Cffod aa It s not a quantzd wav wth vau nto a Htan spa of opatos Nvthss and onsqunty w t most of th aspts of th standad mod, fo nstan th fat that ptons a nsnstv to ston ntatons Th standad mod s muh ston than nay thouht Fo nstan w fsty dd not us th nk twn th wav of th pat and th wav of th antpat, ut thn w ndd a at Cffod aa and w oud not t th nssay nk twn vsons that w usd n ou wav quaton W aso ndd th xstn of th nvs to ud th wav of a systm of pats fom th wavs of ts omponnts And w ot two na dntts whh xstd ony f a pats of th na wav w ft wavs, ony th ton havn aso a ht wav Th most mpotant popty of th na wav s ts fom nvaan und a oup nudn th ovn oup of th sttd Lontz oup Ou oup dos not xpan why spa and tm a ontd, ut t spts ths ontatons Th physa tm s thn ompat wth thmodynams, and th physa spa s ompat wth th voaton of paty y wak ntatons Th wav aounts fo a pats and ant-pats of th fst naton W hav aso vn [] [8] [9] [] th ason of th xstn of th natons; t s smpy th dmnson of ou physa spa Sn th SU au oup of homodynams ats ndpndnty fom th ndx of natons, th physa quaks may omnatons of wavs of dffnt natons Quaks omposn potons and nutons a suh omnatons Ou wav quaton aows ony two masss at ah naton, on fo th pton pat of th wav, th oth on fo th two quaks Th mxn an v a dffnt mass fo th two quaks of ah naton Sn th wav quaton wth mass tm s au nvaant, th s no nssty to us th mhansm of spontanous symmty akn Th saa oson tany xsts, ut t dos not xpan th masss A wav quaton s ony a nnn It sha nssay to study aso th oson pat of th standad mod and th systms of fmons, fom ths wav quaton A onstuton of th wav of a systm of dnta pats s poss and ompat wth th Pau pnp [] [7] Rfns [] Davau, C and Btand, J (4) Nw Inshts n th Standad Mod of Quantum Physs n Cffod Aa J- Pu, Poué-s-Cotaux [] Davau, C and Btand, J (4) Jouna of Modn Physs, 5, - [] Davau, C (99) Equaton d Da non néa PhD Thss, Unvsté d Nants, Nants [4] Davau, C (997) Advans n Appd Cffod Aas, 7, [5] Davau, C (5) Annas d a Fondaton Lous d Bo,, [6] Davau, C () L spa-tmps dou JPu, Poué-s-otaux [7] Davau, C () Advans n Appd Cffod Aas,, [8] Davau, C () Dou Spa-Tm and Mo JPu, Poué-s-Cotaux [9] Davau, C () Nonna Da Equaton, Mant Monopos and Dou Spa-Tm CISP, Camd [] Dhuvs, R (99) Tnsus t spnus PUF, Pas Th vson s an ant-somophsm hann th od of any podut (s [] ) It s spf to ah Cffod aa Th Appndx A xpans th nk twn th vson n C, and th vson n C,5 65
18 C Davau, J Btand [] Hstns, D (986) A Unfd Lanua fo Mathmats and Physs and Cffod Aa and th Intptaton of Quantum Mhans In: Chshom, JSR and Common, AK, Eds, Cffod Aas and Th Appatons n Mathmats and Physs, Rd, Dodht, - [] Wn, S (967) Physa Rvw Ltts, 9, [] Davau, C (4) Gau Goup of th Standad Mod n C,5 ICCA, Tatu [4] d Bo, L (94) Annas d a Fondaton Lous d Bo, 7 66
19 C Davau, J Btand Appndx A Cauaton of th Rvs n C 5, H ndxs µ, ν, ρ, hav vau,,, and ndxs a,,, d, hav vau,,,, 4, 5 W us th foown matx psntaton of C,5 : wh γ µ I4 I Lµ ; L4 ; L5 ; ; γ µ I4 I I σ ; ;,, σ γ γ γ γ I σ a Pau mats Ths vs W t aso Smay w t L γµ γ µν ν γ LL γµ γ γ ν µν µν µ ν γµν γρ γµνρ Lµνρ Lµν Lρ γµν γρ γµνρ L γ L L γ I L LL L L I4 45 I4 I 4 I4 L5 LL5 I L L 4 γ γ µ 4, L µ µ µ 5 γµ γµ γ γ µν 4, L µν µν µν 5 γµν γµν (A) (A) (A) (A4) (A5) (A6) (A7) (A8) (A9) Saa and psudo-saa tms ad L L L γ γµνρ γµνρ µνρ µνρ 4, Lµνρ 5 γµνρ γ γ µ 45, L µν µ µν 45 γµ γµν γ, µνρ µνρ 45 L4 γ µνρ (A) (A) (A) I, I 4, I 8 a unt mats Th dntfaton poss aown to nud n ah a Cffod aa aows to ad a nstad of ai n fo any ompx num a ant-ommuts wth any odd mnt n spa-tm aa and ommuts wth any vn mnt 67
20 C Davau, J Btand Fo th auaton of th -vto tm w t Ths vs Fo th auaton of th -vto tm w t Ths vs Fo th auaton of th -vto tm w t Ths vs wth (A) and (A9) Fo th auaton of th 4-vto tm ( α ω) + I4 αi8 + ωl45 ( α ω) I4 ( α ω) I4 αi8 ωl45 ( α + ω) I4 a 4 5 N La N L4 + N L5 + N µ Lµ 4 5 N, N, N µ µ (A) (A4) β δ a γ (A5) a N La βi4 + δ+ a βi4 + δ+ a a 45 µ 4 µ 5 µν N La N L45 + N Lµ 4 + N Lµ 5 + N Lµν 45 µ 4 µ 5 µν N, N γµ, N γµ, A N γµν (A6) (A7) a + + A N L a + A a N La N µ L 45 N µν L 4 N µν L 5 N µνρ µ + µν + µν + Lµνρ µ 45 µν 4 µν 5 µνρ N γµ, N γµν, N γµν, N γµνρ (A8) d B C (A9) a d B + C + N L a d + B + C + (A) w t ad N Lad N µν L 45 N µνρ L 4 N µνρ µν + µνρ + Lµνρ 5 + N L D N γ, f N γ, N γ, ζ N (A) µν 45 µνρ 4 µνρ 5 µν µνρ µνρ Ths vs wth (A4) and (A) ad N L ad Fo th auaton of th psudo-vto tm w t D + f + + ζ D f + + ζ ad N Lad N µνρ Lµνρ 45 + N L4 + N L5 (A) 68
21 C Davau, J Btand s Ths vs wth (A7) and (A) W thn t h N γ, η N, θ N (A) N ad µνρ µνρ L ad h η θi4 h+ η θi4 ( α ω) I4 ( ζ ) ( β θ) I4 ( δ η) ( β θ) I + ( a h) + ( B + C) + ( d + ) + ( δ + η) ( α ω) I + ( + ) + ( A + D) + ( f ) + ( ζ + ) (A4) A D + + f a + h + B + C + d (A5) Ths mps In C, th vs of α + ω A D + + f + ζ (A6) β + θ + a + h + B + C + d + + δ η (A7) β θ + a h + B + C + d + + δ + η (A8) ( ) ( A D) ( f ) α ω ζ + (A9) A A + A + A + A + A 4 A A + A A A + A 4 w must han th sn of vtos A, B, C, D, and tvtos, d,, f and w thn t ( α + ω) + ( + ) + ( A + D) + ( f ) + ( ζ ) (A) s β + θ + a + h + B C + d + δ η (A) β θ + a h B + C d + + δ + η (A) ( ) ( A D) ( f ) α ω ζ + (A) Th vs, n C,5 now, of A A + A + A + A + A + A + A A A + A A A + A + A A Ony tms whh han sn, wth (A), (A8) and (A), a saas and ω, vtos,, d, and vtos A, B, C Ths hans of sn a not th sam n C,5 as n C, Dffns a otd y th fat that th vson n C,5 aso xhans th pa of and tms W thn t fom (A5) ( α ω) I4 ( ζ ) ( β θ) I4 ( δ η) ( β θ) I + ( ) ( + ) ( + ) + ( δ + η) ( α + ω) I + ( + ) + ( + ) + ( ) + ( ζ ) A D + + f a + h + B C + d + 4 a h B C d 4 A D f (A4) 69
22 C Davau, J Btand Ths nk twn th vson n C, and th vson n C,5 s nssay to t an nvaant wav quaton It s not na, fo nstan th vson n C s not nkd to th vson n C, Appndx B Saa Dnsts and χ Tms Th a suh ompx saa dnsts: W usd n [] wth φ φ ( + σ ) and φ φ ( σ ) R ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( d d d d ) ( d d d d ) ( d d d d ) ( d d d d ) ( ) d d d d ( d d d d ) ( u d u d ) ( u d u d ) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B4) 4 s ξ η + ξ η η η η η (B5) 5 s ξ η + ξ η η η η η (B6) 6 s ξ η + ξ η η η η η (B7) 7 s ξ η + ξ η η η η η (B8) 8 ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B9) 9 ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B4) 4 ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B5) L 5 aφ + aφnσ+ aφn aφlσ+ aφ R χ ρ ˆ ˆ ˆ ˆ ˆ aφlσ aφr aφ aφnσ aφ + + n, and w nd now ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 4φ 6φ 7φ φ 4φ σ φ φ 7φ φ φ σ ρ χ φ φ 7φ φ φ σ 4φ 6φ 7φ φ 4φ σ ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 5φ 4φ 8φ φ 5φ σ φ φ 8φ φ 4φ σ ρ χ φ φ 8φ φ 4φ σ 5φ 4φ 8φ φ 5φ σ ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 6φ 5φ 9φ φ φ σ φ φ 9φ φ 5φ σ ρ χ φ φ 9φ φ 5φ σ 6φ 5φ 9φ φ φ σ (B6) (B7) (B8) (B9) 7
23 C Davau, J Btand Appndx C Gau Invaan, Dtas C Gau Goup Gnatd y Γ W nam whh mps f th au tansfomaton f Th quaty (C) s quvant to Th quaty (C4) s quvant to W t : Γ (C) θ xp ( θ f ) ( ) θ θ θ (C) (C) (C4) (C5) θ φd φu φd φu ˆ ˆ θ φ ˆ ˆ u φ d φu φ d φ d φ θ u φd φu ˆ φ ˆ θ ˆ ˆ u φ d φu φ d θ θ d d, u u (C6) (C7) η η η η (C8) η η η η (C9) θ θ d d, u u η η η η (C) θ θ d d, u u Ths vs fom whh w t η η, η η (C) θ θ d d u u s s s s s s (C) θ θ,, s s s s s s (C) θ θ 4 4, 5 5, 6 6 s s s s s s (C4) θ θ 9 9, 8 8, 7 7 s s s s s s (C5) θ θ,, s s s s s s (C6) θ θ 4 4, 5 5, ss ss,,,,5 (C7) ρ ρ (C8) θ χ χ (C9) 7
24 C Davau, J Btand Ths atons a th awatd ons aus C Gau Goup Gnatd y Γ 8 W nam f 8 th au tansfomaton whh mps Ths vs W thn t θ χ χ (C) θ θ ( ) ( θ ) θ θ ( ) ( θ ) + (C) + (C) G G θ (C) f8 : Γ8( ) (C4) θ xp ( θ f8 ) ( ) θ θ (C5) θ xp θ xp θ xp xp θ θ φ d φd, φ u xp φu xp θ θ φ d φd, φ u xp φu θ θ φ d xp φd, φ u xp φu xp θ, xp θ, xp θ η η η η η η d d d d d d xp θ, xp θ, xp θ η η η η η η d d d d d d xp θ, xp θ, xp θ η η η η η η u u u u u u (C6) (C7) (C8) (C9) (C) (C) (C) (C) (C4) 7
25 C Davau, J Btand θ θ θ η u xp ηu, η u xp ηu, η u xp ηu (C5) Ths mps s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s4 xp θ s4, s5 xp θ s5 W thn t th awatd suts (C6) (C7) (C8) (C9) (C4) ss ss,,,,5, ρ ρ (C4) θ θ θ χ xp χ, χ xp χ, χ xp χ (C4) 7
26
Chapter 4 : Linear Wire Antenna
Chapt 4 : Lina Wi Antnna nfinitsima Dipo Sma Dipo Finit Lngth Dipo Haf-Wavngth Dipo Lina mnts na o on nfinit Pfct Conductos nfinitsima Dipo Lngth
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling
he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton
ECE 222b Applied Electromagnetics Notes Set 3b
C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T
ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field
L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd
Reflection & Transmission
Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
ϕ be a scalar field. The gradient is the vector field defined by
Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and thn scala
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.
. F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
ϕ be a scalar field. The gradient is the vector field defined by
Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I an thn scala
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Aerodynamics & Aeroelasticity: Eigenvalue analysis
Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly
Tehnal Appendx (Not fo publaton Gene and Band Advetsng Stateges n a Dynam Duopoly Ths Tehnal Appendx povdes supplementay nfomaton to the pape Gene and Band Advetsng Stateges n a Dynam Duopoly. It s dvded
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error
onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ
ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009
Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids
Byeong-Joo Lee
yeg-j ee OTECH - ME alphad@psteh.a.k yeg-j ee www.psteh.a.k/~alphad ufae Tast ad Allyg Effet N.M. Hwag et al., 000. ue W W 0.4wt% N Vau Aealg yeg-j ee www.psteh.a.k/~alphad Abal a wth f N.M. Hwag yeg-j
Οι ϐασικές πράξεις που ορίζονται για τη δοµή δεδοµένων σωρός, είναι η πράξη της εισαγωγής και η πράξη της διαγραφής ενός στοιχείου.
Εργαστήριο 8 Σωρός (Hap) Εισαγωγή Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται πλήρες (compt), όταν έχει όλους τους κόµβους του επιπέδου N συµπληρωµένους. Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται σχεδόν πλήρες
10/2013. Mod: 02D-EK/BT. Production code: CTT920BE
10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Masters Bikini 45+ A up to 5'4"
Msts Bk 45+ A p to 5'4" Fst Lst 22 R Hddd 3 22 23 Mss G 2 23 25 Vto K 1 25 Msts Bk 45+ B ov 5'4" Fst Lst 21 L Bzzd 3 21 24 Ss Rdos 2 24 26 Sty Mqz 1 26 Msts Bk 35+A p to 5'4 Fst Lst 7 Joy Dh 4 7 8 Ah Mt
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία
Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία Τομ. 8 0 Προβλήματα δυναμικού σε μη κυρτά χωρία Μπαγάνης Γεώργιος Ελληνικό Ανοικτό Πανεπιστήμιο
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS
. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Lecture 31. Wire Antennas. Generation of radiation by real wire antennas
Lctu 31 Wi Antnnas n this lctu yu will lan: Gnatin f aiatin by al wi antnnas Sht ipl antnnas Half-wav ipl antnnas Th-half-wav ipl antnnas Small wi lp antnnas magntic ipl antnnas ECE 303 Fall 006 Fahan
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
CS348B Lecture 10 Pat Hanrahan, Spring 2002
Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
DISPLAY SUPPLY: FILTER STANDBY
ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-#
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-# 4556 ''*."% 777777777777777777777777777777777777777777777777777 #8. (&9%,*.#:"%*)!"
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.