A Wave Equation including Leptons and Quarks for the Standard Model of Quantum Physics in Clifford Algebra

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A Wave Equation including Leptons and Quarks for the Standard Model of Quantum Physics in Clifford Algebra"

Transcript

1 Jouna of Modn Physs, 4, 5, 49-7 Pushd Onn Dm 4 n SRs A Wav Equaton nudn Lptons and Quaks fo th Standad Mod of Quantum Physs n Cffod Aa Caud Davau, Jaqus Btand L Moun d a Land, Poué-s-Cotaux, Fan Ema: CaudDavau@nodntf, tandaqus-m@oanf Rvd Oto 4; vsd 7 Novm 4; aptd Dm 4 Copyht 4 y authos and Sntf Rsah Pushn In Ths wok s nsd und th Catv Commons Attuton Intnatona Lns (CC BY) Astat A wav quaton wth mass tm s studd fo a fmon pats and antpats of th fst naton: ton and ts nutno, poston and antnutno, quaks u and d wth th stats of oo and antquaks u and d Ths wav quaton s fom nvaant und th C oup nazn th atvst nvaan It s au nvaant und th U ( ) SU SU oup of th standad mod of quantum physs Th wav s a funton of spa and tm wth vau n th Cffod aa C,5 Thn many fatus of th standad mod, ha onuaton, oo, ft wavs, and Laanan fomasm, a otand n th fam of th fst quantzaton Kywods Invaan Goup, Da Equaton, Etomantsm, Wak Intatons, Ston Intatons, Cffod Aas Intoduton W us h a notatons of nw nshts n th standad mod of quantum physs n Cffod aa [] Th wav quaton fo a pats of th fst naton s a nazaton of th wav quaton otand n 67 fo th ton and ts nutno Ths wav quaton has otand a pop mass tm ompat wth th au nvaan n [] It s a nazaton of th homonous nonna Da quaton fo th ton aon []-[9] How to t ths pap: Davau, C and Btand, J (4) A Wav Equaton nudn Lptons and Quaks fo th Standad Mod of Quantum Physs n Cffod Aa Jouna of Modn Physs, 5,

2 C Davau, J Btand wth ˆ ˆ β m φ + qaφσ + m φσ, q, m ξ η φ ξ ση ξ η ( ) φ η ξ η σξ ˆ ( ) η ξ H ξ and η a sptvy th ht and ft Wy spnos of th ton Th β an s th Yvon- Takaayas an satsfyn ( φ) () () () β dt Ω+Ω ρ (4) Th nk wth th usua psntaton of th standad mod s mad y th ft and ht Wy spnos usd fo wavs of ah pat Ths ht and ft wavs a pats of th wav wth vau n C,5 W usd pvousy th sam aa C5, C,5 It s th sam aa, and ths xpans vy w why su-aas C, and C, hav n quay usd to ds atvst physs [] [] But th snatu of th saa podut annot f, ths saa podut n nkd to th avtaton n th na atvty It happns that vtos of C,5 a psudo-vtos of C 5, and mo nay that n -vtos of C,5 a ( 6 n) -vtos of C 5, Th nazaton of th wav quaton fo ton-nutno s smp f w us C,5 Ths s th fst ndaton that th snatu + s th tu on W xpan n Appndx A how th vs n C,5 s nkd to th vs n C,, a nssay ondton to t th wav quaton of a pats of th fst naton W hav notd, fo th ton aon fsty (s [8] 4), nxt fo ton + nutno [] th dou nk xstn twn th wav quaton and th Laanan dnsty: It s w known that th wav quaton may otand fom th Laanan dnsty y th vaatona auus Th nw nk s that th a pat of th nvaant wav quaton s smpy Th Laanan fomasm s thn nssay, n a onsqun of th wav quaton Nxt w hav xtndd th dou nk to to-wak ntatons n th pton as (ton + nutno) Now w a xtndn th dou nk to th au oup of th standad mod Th Laanan dnsty must thn th a pat of th nvaant wav quaton Moov w nazd th non-na homonous wav quaton of th ton, and w ot a wav quaton wth mass tm [], fom nvaant und th C GL(, ) oup and au nvaant und th U ( ) SU au oup of to-wak ntatons Ou am s to xpan how ths may xtndd to a wav quaton wth mass tm, oth fom nvaant und C and au nvaant und th U SU SU au oup of th standad mod, nudn oth to-wak and ston ntatons Fom th Lpton Cas to th Fu Wav Th standad mod adds to th ptons (ton and ts nutno n ) n th fst naton two quaks u and d wth th oou stats ah Wak ntatons atn ony on ft wavs of quaks (and ht wavs of antquaks) w wt th wav of a fmons of th fst naton as foows: φ φn φ φn, ˆ ˆ ˆ ˆ φn φ φσ n φσ φ φ φ φ φ φ φ φ,, d u d u d u d u ˆ ˆ ˆ ˆ φ ˆ ˆ ˆ ˆ u φ d φuσ φ σ d φu φ d φuσ φ σ d φd φu φd φu ˆ φ ˆ φ ˆ φ σ ˆ φ σ u d u d Th to-wak thoy [] nds th spnoa wavs n th ton-nutno as: th ht ξ and th ft η of th ton and th ft spno η of th ton nutno Th fom nvaan of th Da n () () 5

3 C Davau, J Btand thoy mposs to us φ fo th ton and φ n fo ts nutno satsfyn * ξ η η φ * ( ), n ξ ση φn ξ η η n ˆ φ η ξ η σξ φ η η ( ) ˆ n, n ( n ) η η n ξ Wavs φ and φ n a funtons of spa and tm wth vau nto th Cffod aa C of th physa spa Th standad mod uss ony a ft η n wav fo th nutno W aways us th matx psntaton (A) whh aows to s th Cffod aa C, as a su-aa of M 4 ( ) Und th daton R wth GL, w hav (fo mo dtas, s [6]): ato ndud y any M n () (4) x MxM, dt M θ, x x µ σ, x x µ σ (5) µ µ ξ Mξ, η Mˆ η, η Mˆ η, φ Mφ, φ Mφ (6) n n n n φ φ n M φ φn N ˆ φ ˆ ˆ ˆ ˆ n φ M φn φ Th fom () of th wav s ompat oth wth th fom nvaan of th Da thoy and wth th ha onuaton usd n th standad mod: th wav ψ of th poston satsfs (7) ψ γψ ˆ φ ˆ φσ (8) W an thn thnk th wav as ontann th ton wav φ, th nutno wav φ n and aso th poston wav φ and th antnutno wav φ : n φ φ n ξ η ξ,, n φ φn ˆ ˆ φσ ξ n n φσ ξ η And th antnutno has ony a ht wav Th mutvto ( x) spa-tm aa aus (s [] (65)) wth: w ot ( ) ( n n) ( n n) (9) s usuay an nvt mnt of th a dt φ φφ ξ η + ξ η () a ξη + ξ η ηη ηη () a ξη + ξη () n n ( ) aa aa dt + () Most of th pdn psntaton s asy xtndd to quaks Fo ah oo,, th towak thoy nds ony ft wavs: φd φu ˆ ηd ˆ ηu, φd, φu ˆ φ ˆ ηd ηu u φ d (4) Th wav s now a funton of spa and tm wth vau nto C,5 C5, whh s a su-aa (on C5, M8 :, (5) th a fd) of Th nk twn th vs n C,5 and th vs n C, s not tva and s dtad n Appndx A Th wav quaton fo a ots of th fst naton ads ( D ) L +M (6) 5

4 C Davau, J Btand Th mass tm ads wh w us th saa dnsts mρχ mρχ M (7) mρχ mρχ s and χ tms of Appndx B, wth 5 aa aa aa ρ ss ρ + +, (8) Th ovaant dvatv D uss th matx psntaton (A) and ads W us two potos satsfyn Γk (9) k D BP W P G µ, µ, µ µ µ µ µ µ µ () D LD L B LB µ W LWµ,,, () µ k µ k G LGµ, k,,, 8 () µ Th opatos at on quaks k on ptons: P ( ) ± ( L ), L ± () P P L (4) + 5 P P L (5) + 5 P P + (6) Th fouth opato ats dffnty on th pton and on th quak sto Usn potos: w an spaat th pton pat and w t (s [] (B4) wth a ) + I4 P ( I8 + L45 ), P ( I8 L45 ) I4 and th quak pat of th wav: + +, P P (7) (8) P ( ) L + L (9) P L () Ths ast aton oms fom th non-xstn of th ht pat of th Chomodynams W stat fom natos λ of th k SU au oup of homodynams wavs 5

5 C Davau, J Btand λ, λ, λ, λ4, λ5, λ6, λ7, λ8 To smpfy h notatons w us now,,, nstad Thn () vs W nam,,, λ, λ, λ, λ4, λ5, λ6, λ7, λ8 Γ k opatos ospondn to ( L L L L ) So w hav () () λ k atn on W t wth potos P + and P n (7): () Γ ( L L L L ) Γ P P P P Γ Γ4 ( ) L5 P, Γ5 ( ) L4 P Γ6 ( ) P L5, Γ7 ( ) P L4 ( P L L P ) Γ Evywh th ft up tm s, so a Γ k pot th wav on ts quak sto W an xtnd th ovaant dvatv of to-wak ntatons n th ton-nutno as: D + BP ( ) + W P ( ) (9) to t th ovaant dvatv of th standad mod (4) (5) (6) (7) (8) k D( ) ( ) + BP ( ) + W P ( ) + G Γk ( ) () k wh s anoth onstant and G a ht tms ad uons Sn I 4 ommut wth any mnt of C, and sn Pµ ( nd ) Pµ ( nd ) fo µ,,, and nd,,, ah opato Γk ommuts wth a opatos P k Now w us a nums a, a,,,,, k,,, 8, w t k 8 k,, Γ k, + + k () S ap S ap S S S S S 5

6 C Davau, J Btand and w t, usn xponntaton ( S) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) ( S ) xp xp xp xp xp xp xp xp xp xp () n any od Th st of ths opatos xp( S ) s a U ( ) SU SU L oup Ony dffn wth th standad mod: th stutu of ths oup s not postuatd ut auatd Wth th au tansfomaton ads µ µ xp S, D LDµ, D LD µ () xp ( ) D µ S Dµ (4) B B a (5) µ µ µ W P xp S W P xp S xp S [ ] µ µ µ (6) k k G µ Γ k xp( S) Gµ Γk µ xp( S) xp ( S) (7) Th SU oup natd y opatos Γ k ats ony on th quak sto of th wav: k k + P xp Γ P P P (8) Th physa tansaton s: Lptons do not at y ston ntatons Ths oms fom th stutu of th wav tsf It s fuy satsfd n xpmnts W t thn a U ( ) SU SU au oup fo a wav nudn a fmons of th fst naton Ths oup ats on th pton sto ony y ts U ( ) SU pat Consqunty th wav quaton s omposd of a pton wav quaton and a quak wav quaton: ( D ) L + m ρ χ χ χ ( D ) L + mρχ, χ χ Th wav quaton (9) s quvant to th wav quaton studd n [] [], wh (9) () D γ + m ρχ, γ γγγ () aφ + aφnσ+ aφn aφlσ+ aφ R χ ρ ˆ ˆ ˆ ˆ ˆ aφlσ aφr aφ aφnσ aφ + + n () + σ σ φr φ, φl φ () Ths wav quaton s quvant to th nvaant quaton: φ ϕ n ( D ) γ + mρ χ, (4) φn ϕ Ths wav quaton s fom nvaant und th Lontz daton R ndud y any nvt matx M satsfyn (5), (6), (7) [] It s au nvaant und th U ( ) SU oup [] natd y opatos P µ whh a potons on th pton sto of th opatos dfnd n () to (9) Thfo w nd to study ony th quak sto and ts wav quaton () W n y th dou nk twn wav quaton and Laanan dnsty that w hav makd fsty n th Da quaton [8], nxt n th pton as ton + nutno [] 54

7 C Davau, J Btand 4 Dou Lnk twn Wav Equaton and Laanan Dnsty Th xstn of a Laanan mhansm n opts and mhans s known sn Fmat and Mauptus Ths pnp of mnmum s vywh n quantum mhans fom ts nnn, t s th man ason of th hypothss of a wav nkd to th mov of any mata pat mad y L d Bo [4] By th auus of vaatons t s aways poss to t th wav quaton fom th Laanan dnsty But anoth nk xsts: th Laanan dnsty s th a saa pat of th nvaant wav quaton Ths was otand fsty fo th ton aon [8], nxt fo th pa ton-nutno [] wh th Laanan dnsty ads mρ (4) µ µ µ ( ησ µ η ξσ µ ξ ησ n µ ηn) ˆ R + + (4) µ µ µ ˆ Bµ ησ η + ξσ ξ + ησ n ηn (4) W µ µ µ µ ( Wµ Wµ ) ησ η R + n + ( ησ η ησ n ηn) (44) W sha stash th dou nk now fo th wav quaton (6) It s suffnt to add th popty fo () Ths quaton s quvant to th nvaant quaton: D L + m ρ χ (45) χ χ, χ (46) χ W t fom th ovaant dvatv (9) wth th opatos P n (4), (5), (6) and () and Γ k n () to (8) and wth n (8) A A D (47) A A B γ + W γ + W γ W G G G + G + G + G A B γ + W γ+ W γ W 6 G G G G G A B γ + ( W γ+ W γ W ) 6 (4) G + G + G + G + G + G Nxt w t ( Aγ + mρχ ) + ( Aγ + mρχ ) ( A γ + mρχ ) (4) ( Aγ + mρχ ) ( Aγ + mρχ ) Th auaton of th Laanan dnsty n th na as s sma to th pton as W t + (4) D L + mρ χ,, (48) (49) 55

8 C Davau, J Btand m ρ (4),,,,,, Th auaton of,,, pas th pa -n y th pa d-u and suppss th ξ tms, thn (4) (4) (44) om µ µ ( η σ µ η η σ µ η ) R d d + u u (44) B µ µ µ d d + u u ( η σ η η σ η ) (45) 6 W µ µ µ µ ( Wµ Wµ ) ηdσ η R + u + ( ηdσ ηd ηuσ η u ) (46) Sn th SU oup a nudd n auaton of and w t SU th auaton of has smats wth th µ µ 4 5 µ µ ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) R + + R + + G R Gµ µ µ µ + ( ηdσ ηd ηuσ ηu + ηdσ ηd + η uσ µ ηu η µ µ dσ ηd η uσ ηu ) 6 7 µ µ µ µ µ µ µ ( Gµ Gµ )( ηdσ ηd ηuσ ηu ) ( ηdσ ηd ηuσ ηu ηdσ ηd ηuσ ηu ) (47) Ths nw nk twn th wav quaton and th Laanan dnsty s muh ston than th od on, aus t oms fom a smp spaaton of th dffnt pats of a mutvto n Cffod aa Th od nk, on fom th Laanan dnsty to th wav quaton, supposs a ondton of anaton at nfnty whh s duous n th as of a popaatn wav On th physa pont of vw, th a no dffuts n th as of a statonay wav Dffuts n whn popaatn wavs a studd Ou wav quatons, sn thy a ompat wth an ontd tm and an ontd spa, appa as mo na, mo physa, than Laanans Ths a ony patua onsquns of th wav quatons On th mathmata pont of vw th od nk s aways avaa It s fom th Laanan dnsty (4) and usn Laan quatons that w hav otand th wav quaton (6) 5 Invaans 5 Fom Invaan of th Wav Equaton Und th Lontz daton R ndud y an nvt M matx satsfyn W thn t whh mps Thn w t x MxM, dt M θ, x x µ σ, x x µ σ (5) µ µ η Mˆ η, η Mˆ η, φ Mϕ, φ Mϕ (5) u u d d d d u u φ d φ u M φd φu N,,, ˆ φ ˆ ˆ ˆ ˆ u φ d M φu φ d N µ N, L µ N N N, N, N, D ND N N ( ) (5) (54) (55) D L ND N L D L (56) 56

9 C Davau, J Btand and w sha now study th fom nvaan of th mass tm A mps Ths vs ( φ ) ( φ) ( φ) s a dtmnants of a φ matx, ths s dt dt M dt M dt θ s (57) θ s s, ρ ρ (58) χ χ χ χ M Mˆ θ ρχ ρ χ ρ θ χ M Mˆ θ χ χ N χ θ (59) (5) (5) χ NN χ χ (5) Thn th fom nvaan of th wav quaton s quvant to th ondton on th mass tm nkd to th xstn of th Pank fato [] m ρ m ρ (5) m m (54) 5 Gau Invaan of th Wav Equaton Sn w hav pvousy povd th au nvaan of th pton pat of th wav quaton, t s ason nouh to pov th au nvaan of th quak pat of th wav quaton 5 Gau Goup Gnatd y P W hav h P L θ xp( θ P ) ( ) xp L µ µ µ To t th au nvaan of th wav quaton w must t (55) (56) B B B (57) θ θ χ χ xp L, χ χxp γ,,, Ths s satsfd aus θ θ σ σ d d, u u (58) φ φ φ φ (59) θ θ d d u u η η, η η, θ θ d d u u η η, η η (5) s s,,,,5 (5) θ 57

10 C Davau, J Btand A up tms n th matx χ ontan s φdσ and s φuσ tms W t θ θ σ d d d φ φ φ (5) And w fnay t θ θ θ σ σ s φ d σ φ d σ φ d σ φ d σ (5) θ χ χxp γ θ χ χ xp L θ D L + m D L + mρχ xp L ( ) ρχ Th wav quaton wth mass tm s au nvaant und th oup natd y P (54) (55) (56) 5 Gau Goup Gnatd y P W hav h Sn P W t L w t 5 Thn (5) s quvant to th systm o to th systm W thn t P L (57) 5 ( θp) xp( θl ) xp 5 (58) (59) Wµ Wµ µθ ( θp) xp( θl ) xp 5 (5) θγ,,, (5) ( θ) S ( θ) C os, sn (5) ˆ φ C ˆ φ S ˆ φ σ (5) d d u ˆ φ C ˆ φ S ˆ φ σ (54) u u d d d u d d u η Cη Sη, η Cη + Sη (55) η Cη Sη, η Cη + Sη (56) d d u d d u η Cη Sη, η Cη + Sη (57) u u d u u d η Cη Sη, η Cη + Sη (58) u u d u u d s C s S s + CS s s (59) 4 4 s C s S s + CS s s (54) s C s + S s + CS s (54)

11 C Davau, J Btand Ths mps Smay, pmutn oos, w t Ths mps and aso Ths mps Moov w t W thn t Nxt w hav and w t s C s + S s CS s (54) s s s s s s s s s s (54) s C s S s + CS s s (544) 5 5 s C s S s + CS s s (545) s C s + S s + CS s (546) 5 5 s C s + S s CS s (547) s s s s s s s s s s (548) s C s S s + CS s s (549) 6 s C s S s + CS s s (55) 6 6 s C s + S s + CS s (55) 6 s C s + S s CS s (55) 6 s s s s s s s s s s (55) s s, s s, s s (554) ρ ρ (555) A B A B χ, χ Bˆ Aˆ Bˆ Aˆ ( d d u u u ) ( ˆ ˆ ˆ ˆ ˆ u u d d d ) (556) A ˆ s ˆ φ ˆ φ ˆ φ ˆ φ ˆ φ σ (557) Bˆ sφ φ s φ s φ s φ σ (558) 7 Aˆ CAˆ SBσ ˆ (559) Bˆ CBˆ SAσ ˆ (56) C Sσ χ χ χ Sσ C Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, 5 θγ xp D L + m ρχ D θl L + m ρχ 5 ( D ) L mρχ ( θl5 ) + xp (56) (56) 59

12 C Davau, J Btand Th wav quaton wth mass tm s thn au nvaant und th oup natd y P 5 Gau Goup Gnatd y P W hav h Sn P W t L w t 5 Thn (567) s quvant to th systm o to th systm W thn t Ths mps Smay, pmutn oos, w t P L (56) 5 ( θp ) xp( θl ) xp 5 (564) (565) Wµ Wµ µθ ( θp ) xp( θl ) xp 5 (566) θγ,,, (567) ( θ) S ( θ) C os, sn (568) ˆ φ C ˆ φ + S ˆ φ (569) d d u ˆ φ C ˆ φ S ˆ φ (57) u u d η Cη + Sη, η Cη + Sη (57) d d u d d u η Cη + Sη, η Cη + Sη (57) d d u d d u η Cη Sη, η Cη Sη (57) u u d u u d η Cη Sη, η Cη Sη (574) u u d u u d s C s + S s CSs + CSs (575) 4 4 s C s + S s + CSs CSs (576) s C s + S s + CSs CSs (577) 4 4 s C s + S s CSs + CSs (578) s s s s s s s s s s (579) s C s + S s CSs + CSs (58) 5 5 s C s + S s + CSs CSs (58) s C s + S s + CSs CSs (58) 5 5 Ths mps s C s + S s CSs + CSs (58)

13 C Davau, J Btand and aso s s s s s s s s s s (584) s C s + S s CSs + CSs (585) 6 Ths mps Moov w t W thn t Nxt w t wth (556) s C s + S s + CSs CSs (586) 6 6 s C s + S s + CSs CSs (587) 6 s C s + S s CSs + CSs (588) 6 s s s s s s s s s s (589) s s, s s, s s (59) ρ ρ (59) Aˆ CAˆ SBσ ˆ (59) Bˆ CBˆ + SAσ ˆ (59) χ χ C Sσ χ θγ Sσ C Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, 5 xp ( D ) L + mρχ xp( θl5 ) D L + m ρχ D θl L + m ρχ 5 Th wav quaton wth mass tm s thn au nvaant und th oup natd y P (594) (595) 54 Gau Goup Gnatd y P W hav h P L (596) ( θp ) xp( θl ) xp (597) Sn P L w t (598) Wµ Wµ µθ ( θp ) xp( θl ) xp (599) Thn (597) s quvant to th systm o to th systm θγ,,, (5) ˆ θ φ ˆ φ (5) d d ˆ θ φ ˆ φ (5) u u 6

14 C Davau, J Btand W thn t Ths mps Nxt w t wth (556) η η, η η (5) θ θ d d d d η η, η η (54) θ θ d d d d η η, η η (55) θ θ u u u u η η, η η (56) θ θ u u u u s s, s s, s s (57) θ θ θ s s, s s, s s (58) θ θ θ s s, s s, s s (59) s s, s s, s s (5) s s, s s, s s (5) ρ ρ (5) ˆ θ ˆ θ A A, A A (5) ˆ θ ˆ θ B B, B B (54) θ θ χ χ χ θ Sn w t th sam aton fo and oos w fnay t ( L ) χ χ xp θ, xp D L + m ρχ D θl L + m ρχ ( D ) L mρχ ( θl ) + xp Th wav quaton wth mass tm s thn au nvaant und th oup natd y P 55 Gau Goup Gnatd y Γ W us now th au tansfomaton W an thn fot h must quvant to th systm ( θ) ( θ) (55) (56) C + S, C os, S sn (57) C + S (58) (59) Th au nvaan snfs that th systm G + m ρχγ G + m ρχγ G + m ρχγ G + m ρχγ,, (5) (5) 6

15 C Davau, J Btand Usn atons (57) and (58) th systm (5) s quvant to (5) f and ony f W nam f th au tansfomaton f: whh mps wth C os( θ ) and S sn ( θ ) G G θ (5) Γ (5) C + S xp ( θ f ) ( ) C + S Th quaty (57) s quvant to th systm Th quaty (58) s quvant to th systm Ths vs fo th nvaant saas W thn t (54) C + S (55) C + S (56) (57) η Cη + Sη, η Cη + Sη (58) d d d u u u η Cη + Sη, η Cη + Sη (59) d d d u u u η Cη + Sη, η Cη + Sη (5) d d d u u u η Cη + Sη, η Cη + Sη (5) d d d u u u s s s, s s, s s (5) s Cs Ss, s Cs Ss (5) s Cs Ss, s Cs Ss (54) s Cs + Ss, s Cs + Ss (55) s Cs + Ss, s Cs + Ss (56) s C s S s + CSs + CSs (57) s C s S s + CSs + CSs (58) s C s S s + CSs + CSs (59) s C s S s + CSs + CSs (54) ss s ss s (54) ss s ss s (54) s s s s s s (54) s s s s s s (544) s s s s s s s s s s (545)

16 C Davau, J Btand Nxt w t and w t wth (B7) and (B8) Ths vs th awatd sut ρ ρ (546) A B A B χ, χ Bˆ ˆ ˆ ˆ A B A A B A B χ, ˆ ˆ χ B ˆ ˆ A B A (547) (548) A CA SA, B CB SB (549) A CA SA, B CB SB (55) ρ ρ (55) χ Cχ S χ (55) χ Cχ S χ (55) Th han of sn of th phas twn (57) and (55) oms fom th antommutaton twn and 56 Gau Goups Gnatd y Γ k, k > W us wth k th au tansfomaton ( θ) ( θ) C + S, C os, S sn (554) C S (555) Th au nvaan snfs that th systm must quvant to th systm (556) G + m ρχγ G + m ρχγ G + mρχγ, G + mρχγ Usn atons (554) and (555) th systm (558) s quvant to (557) f and ony f aus w t, (557) (558) G G θ (559) ρ ρ (56) χ Cχ + Sχ (56) χ Cχ Sχ (56) Th as k s dtad n C and th as k 8 s dtad n C Cass k 4 and k 6 a 64

17 C Davau, J Btand sma to k and ass k 5 and k 7 a sma to k y pmutaton of ndxs of oo 6 Conudn Rmaks Fom xpmnta suts otand n th aatos physsts hav ut what s now known as th standad mod Ths mod s nay thouht to a pat of quantum fd thoy, tsf a pat of axomat quantum mhans On of ths axoms s that ah stat dsn a physa stuaton foows a Shödn wav quaton Sn ths wav quaton s not atvst and dos not aount fo th spn / whh s nssay to any fmon, th standad mod has vdnty not foowd th axom and has usd nstad a Da quaton to ds fmons Ou wok aso stats wth th Da quaton Ths wav quaton s th na appoxmaton of ou nonna homonous quaton of th ton Th wav quaton psntd h s a wav quaton fo a assa wav, a funton of spa and tm wth vau nto a Cffod aa It s not a quantzd wav wth vau nto a Htan spa of opatos Nvthss and onsqunty w t most of th aspts of th standad mod, fo nstan th fat that ptons a nsnstv to ston ntatons Th standad mod s muh ston than nay thouht Fo nstan w fsty dd not us th nk twn th wav of th pat and th wav of th antpat, ut thn w ndd a at Cffod aa and w oud not t th nssay nk twn vsons that w usd n ou wav quaton W aso ndd th xstn of th nvs to ud th wav of a systm of pats fom th wavs of ts omponnts And w ot two na dntts whh xstd ony f a pats of th na wav w ft wavs, ony th ton havn aso a ht wav Th most mpotant popty of th na wav s ts fom nvaan und a oup nudn th ovn oup of th sttd Lontz oup Ou oup dos not xpan why spa and tm a ontd, ut t spts ths ontatons Th physa tm s thn ompat wth thmodynams, and th physa spa s ompat wth th voaton of paty y wak ntatons Th wav aounts fo a pats and ant-pats of th fst naton W hav aso vn [] [8] [9] [] th ason of th xstn of th natons; t s smpy th dmnson of ou physa spa Sn th SU au oup of homodynams ats ndpndnty fom th ndx of natons, th physa quaks may omnatons of wavs of dffnt natons Quaks omposn potons and nutons a suh omnatons Ou wav quaton aows ony two masss at ah naton, on fo th pton pat of th wav, th oth on fo th two quaks Th mxn an v a dffnt mass fo th two quaks of ah naton Sn th wav quaton wth mass tm s au nvaant, th s no nssty to us th mhansm of spontanous symmty akn Th saa oson tany xsts, ut t dos not xpan th masss A wav quaton s ony a nnn It sha nssay to study aso th oson pat of th standad mod and th systms of fmons, fom ths wav quaton A onstuton of th wav of a systm of dnta pats s poss and ompat wth th Pau pnp [] [7] Rfns [] Davau, C and Btand, J (4) Nw Inshts n th Standad Mod of Quantum Physs n Cffod Aa J- Pu, Poué-s-Cotaux [] Davau, C and Btand, J (4) Jouna of Modn Physs, 5, - [] Davau, C (99) Equaton d Da non néa PhD Thss, Unvsté d Nants, Nants [4] Davau, C (997) Advans n Appd Cffod Aas, 7, [5] Davau, C (5) Annas d a Fondaton Lous d Bo,, [6] Davau, C () L spa-tmps dou JPu, Poué-s-otaux [7] Davau, C () Advans n Appd Cffod Aas,, [8] Davau, C () Dou Spa-Tm and Mo JPu, Poué-s-Cotaux [9] Davau, C () Nonna Da Equaton, Mant Monopos and Dou Spa-Tm CISP, Camd [] Dhuvs, R (99) Tnsus t spnus PUF, Pas Th vson s an ant-somophsm hann th od of any podut (s [] ) It s spf to ah Cffod aa Th Appndx A xpans th nk twn th vson n C, and th vson n C,5 65

18 C Davau, J Btand [] Hstns, D (986) A Unfd Lanua fo Mathmats and Physs and Cffod Aa and th Intptaton of Quantum Mhans In: Chshom, JSR and Common, AK, Eds, Cffod Aas and Th Appatons n Mathmats and Physs, Rd, Dodht, - [] Wn, S (967) Physa Rvw Ltts, 9, [] Davau, C (4) Gau Goup of th Standad Mod n C,5 ICCA, Tatu [4] d Bo, L (94) Annas d a Fondaton Lous d Bo, 7 66

19 C Davau, J Btand Appndx A Cauaton of th Rvs n C 5, H ndxs µ, ν, ρ, hav vau,,, and ndxs a,,, d, hav vau,,,, 4, 5 W us th foown matx psntaton of C,5 : wh γ µ I4 I Lµ ; L4 ; L5 ; ; γ µ I4 I I σ ; ;,, σ γ γ γ γ I σ a Pau mats Ths vs W t aso Smay w t L γµ γ µν ν γ LL γµ γ γ ν µν µν µ ν γµν γρ γµνρ Lµνρ Lµν Lρ γµν γρ γµνρ L γ L L γ I L LL L L I4 45 I4 I 4 I4 L5 LL5 I L L 4 γ γ µ 4, L µ µ µ 5 γµ γµ γ γ µν 4, L µν µν µν 5 γµν γµν (A) (A) (A) (A4) (A5) (A6) (A7) (A8) (A9) Saa and psudo-saa tms ad L L L γ γµνρ γµνρ µνρ µνρ 4, Lµνρ 5 γµνρ γ γ µ 45, L µν µ µν 45 γµ γµν γ, µνρ µνρ 45 L4 γ µνρ (A) (A) (A) I, I 4, I 8 a unt mats Th dntfaton poss aown to nud n ah a Cffod aa aows to ad a nstad of ai n fo any ompx num a ant-ommuts wth any odd mnt n spa-tm aa and ommuts wth any vn mnt 67

20 C Davau, J Btand Fo th auaton of th -vto tm w t Ths vs Fo th auaton of th -vto tm w t Ths vs Fo th auaton of th -vto tm w t Ths vs wth (A) and (A9) Fo th auaton of th 4-vto tm ( α ω) + I4 αi8 + ωl45 ( α ω) I4 ( α ω) I4 αi8 ωl45 ( α + ω) I4 a 4 5 N La N L4 + N L5 + N µ Lµ 4 5 N, N, N µ µ (A) (A4) β δ a γ (A5) a N La βi4 + δ+ a βi4 + δ+ a a 45 µ 4 µ 5 µν N La N L45 + N Lµ 4 + N Lµ 5 + N Lµν 45 µ 4 µ 5 µν N, N γµ, N γµ, A N γµν (A6) (A7) a + + A N L a + A a N La N µ L 45 N µν L 4 N µν L 5 N µνρ µ + µν + µν + Lµνρ µ 45 µν 4 µν 5 µνρ N γµ, N γµν, N γµν, N γµνρ (A8) d B C (A9) a d B + C + N L a d + B + C + (A) w t ad N Lad N µν L 45 N µνρ L 4 N µνρ µν + µνρ + Lµνρ 5 + N L D N γ, f N γ, N γ, ζ N (A) µν 45 µνρ 4 µνρ 5 µν µνρ µνρ Ths vs wth (A4) and (A) ad N L ad Fo th auaton of th psudo-vto tm w t D + f + + ζ D f + + ζ ad N Lad N µνρ Lµνρ 45 + N L4 + N L5 (A) 68

21 C Davau, J Btand s Ths vs wth (A7) and (A) W thn t h N γ, η N, θ N (A) N ad µνρ µνρ L ad h η θi4 h+ η θi4 ( α ω) I4 ( ζ ) ( β θ) I4 ( δ η) ( β θ) I + ( a h) + ( B + C) + ( d + ) + ( δ + η) ( α ω) I + ( + ) + ( A + D) + ( f ) + ( ζ + ) (A4) A D + + f a + h + B + C + d (A5) Ths mps In C, th vs of α + ω A D + + f + ζ (A6) β + θ + a + h + B + C + d + + δ η (A7) β θ + a h + B + C + d + + δ + η (A8) ( ) ( A D) ( f ) α ω ζ + (A9) A A + A + A + A + A 4 A A + A A A + A 4 w must han th sn of vtos A, B, C, D, and tvtos, d,, f and w thn t ( α + ω) + ( + ) + ( A + D) + ( f ) + ( ζ ) (A) s β + θ + a + h + B C + d + δ η (A) β θ + a h B + C d + + δ + η (A) ( ) ( A D) ( f ) α ω ζ + (A) Th vs, n C,5 now, of A A + A + A + A + A + A + A A A + A A A + A + A A Ony tms whh han sn, wth (A), (A8) and (A), a saas and ω, vtos,, d, and vtos A, B, C Ths hans of sn a not th sam n C,5 as n C, Dffns a otd y th fat that th vson n C,5 aso xhans th pa of and tms W thn t fom (A5) ( α ω) I4 ( ζ ) ( β θ) I4 ( δ η) ( β θ) I + ( ) ( + ) ( + ) + ( δ + η) ( α + ω) I + ( + ) + ( + ) + ( ) + ( ζ ) A D + + f a + h + B C + d + 4 a h B C d 4 A D f (A4) 69

22 C Davau, J Btand Ths nk twn th vson n C, and th vson n C,5 s nssay to t an nvaant wav quaton It s not na, fo nstan th vson n C s not nkd to th vson n C, Appndx B Saa Dnsts and χ Tms Th a suh ompx saa dnsts: W usd n [] wth φ φ ( + σ ) and φ φ ( σ ) R ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( u u u u ) ( d d d d ) ( d d d d ) ( d d d d ) ( d d d d ) ( ) d d d d ( d d d d ) ( u d u d ) ( u d u d ) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B) s ξ η + ξ η η η η η (B4) 4 s ξ η + ξ η η η η η (B5) 5 s ξ η + ξ η η η η η (B6) 6 s ξ η + ξ η η η η η (B7) 7 s ξ η + ξ η η η η η (B8) 8 ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B9) 9 ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B) ( u d u d ) ( u d u d ) s ξ η + ξ η η η η η (B) ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B4) 4 ( d u d u ) ( u d u d ) s ξ η + ξ η η η η η (B5) L 5 aφ + aφnσ+ aφn aφlσ+ aφ R χ ρ ˆ ˆ ˆ ˆ ˆ aφlσ aφr aφ aφnσ aφ + + n, and w nd now ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 4φ 6φ 7φ φ 4φ σ φ φ 7φ φ φ σ ρ χ φ φ 7φ φ φ σ 4φ 6φ 7φ φ 4φ σ ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 5φ 4φ 8φ φ 5φ σ φ φ 8φ φ 4φ σ ρ χ φ φ 8φ φ 4φ σ 5φ 4φ 8φ φ 5φ σ ( s d s d s u s u s u ) ( s u s u d d d ) ( s ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ u u s d s d s d s d d u u u ) 6φ 5φ 9φ φ φ σ φ φ 9φ φ 5φ σ ρ χ φ φ 9φ φ 5φ σ 6φ 5φ 9φ φ φ σ (B6) (B7) (B8) (B9) 7

23 C Davau, J Btand Appndx C Gau Invaan, Dtas C Gau Goup Gnatd y Γ W nam whh mps f th au tansfomaton f Th quaty (C) s quvant to Th quaty (C4) s quvant to W t : Γ (C) θ xp ( θ f ) ( ) θ θ θ (C) (C) (C4) (C5) θ φd φu φd φu ˆ ˆ θ φ ˆ ˆ u φ d φu φ d φ d φ θ u φd φu ˆ φ ˆ θ ˆ ˆ u φ d φu φ d θ θ d d, u u (C6) (C7) η η η η (C8) η η η η (C9) θ θ d d, u u η η η η (C) θ θ d d, u u Ths vs fom whh w t η η, η η (C) θ θ d d u u s s s s s s (C) θ θ,, s s s s s s (C) θ θ 4 4, 5 5, 6 6 s s s s s s (C4) θ θ 9 9, 8 8, 7 7 s s s s s s (C5) θ θ,, s s s s s s (C6) θ θ 4 4, 5 5, ss ss,,,,5 (C7) ρ ρ (C8) θ χ χ (C9) 7

24 C Davau, J Btand Ths atons a th awatd ons aus C Gau Goup Gnatd y Γ 8 W nam f 8 th au tansfomaton whh mps Ths vs W thn t θ χ χ (C) θ θ ( ) ( θ ) θ θ ( ) ( θ ) + (C) + (C) G G θ (C) f8 : Γ8( ) (C4) θ xp ( θ f8 ) ( ) θ θ (C5) θ xp θ xp θ xp xp θ θ φ d φd, φ u xp φu xp θ θ φ d φd, φ u xp φu θ θ φ d xp φd, φ u xp φu xp θ, xp θ, xp θ η η η η η η d d d d d d xp θ, xp θ, xp θ η η η η η η d d d d d d xp θ, xp θ, xp θ η η η η η η u u u u u u (C6) (C7) (C8) (C9) (C) (C) (C) (C) (C4) 7

25 C Davau, J Btand θ θ θ η u xp ηu, η u xp ηu, η u xp ηu (C5) Ths mps s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s xp θ s, s xp θ s s xp θ s, s4 xp θ s4, s5 xp θ s5 W thn t th awatd suts (C6) (C7) (C8) (C9) (C4) ss ss,,,,5, ρ ρ (C4) θ θ θ χ xp χ, χ xp χ, χ xp χ (C4) 7

26

Chapter 4 : Linear Wire Antenna

Chapter 4 : Linear Wire Antenna Chapt 4 : Lina Wi Antnna nfinitsima Dipo Sma Dipo Finit Lngth Dipo Haf-Wavngth Dipo Lina mnts na o on nfinit Pfct Conductos nfinitsima Dipo Lngth

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3b

ECE 222b Applied Electromagnetics Notes Set 3b C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T

Διαβάστε περισσότερα

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd

Διαβάστε περισσότερα

Reflection & Transmission

Reflection & Transmission Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

ϕ be a scalar field. The gradient is the vector field defined by

ϕ be a scalar field. The gradient is the vector field defined by Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and thn scala

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3. . F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo

Διαβάστε περισσότερα

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

ϕ be a scalar field. The gradient is the vector field defined by

ϕ be a scalar field. The gradient is the vector field defined by Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I an thn scala

Διαβάστε περισσότερα

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

Aerodynamics & Aeroelasticity: Eigenvalue analysis

Aerodynamics & Aeroelasticity: Eigenvalue analysis Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Pairs of Random Variables

Pairs of Random Variables Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,

Διαβάστε περισσότερα

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly Tehnal Appendx (Not fo publaton Gene and Band Advetsng Stateges n a Dynam Duopoly Ths Tehnal Appendx povdes supplementay nfomaton to the pape Gene and Band Advetsng Stateges n a Dynam Duopoly. It s dvded

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

LAPLACE TRANSFORM TABLE

LAPLACE TRANSFORM TABLE LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009 Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9 Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids

Διαβάστε περισσότερα

Byeong-Joo Lee

Byeong-Joo Lee yeg-j ee OTECH - ME alphad@psteh.a.k yeg-j ee www.psteh.a.k/~alphad ufae Tast ad Allyg Effet N.M. Hwag et al., 000. ue W W 0.4wt% N Vau Aealg yeg-j ee www.psteh.a.k/~alphad Abal a wth f N.M. Hwag yeg-j

Διαβάστε περισσότερα

Οι ϐασικές πράξεις που ορίζονται για τη δοµή δεδοµένων σωρός, είναι η πράξη της εισαγωγής και η πράξη της διαγραφής ενός στοιχείου.

Οι ϐασικές πράξεις που ορίζονται για τη δοµή δεδοµένων σωρός, είναι η πράξη της εισαγωγής και η πράξη της διαγραφής ενός στοιχείου. Εργαστήριο 8 Σωρός (Hap) Εισαγωγή Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται πλήρες (compt), όταν έχει όλους τους κόµβους του επιπέδου N συµπληρωµένους. Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται σχεδόν πλήρες

Διαβάστε περισσότερα

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE 10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Masters Bikini 45+ A up to 5'4"

Masters Bikini 45+ A up to 5'4 Msts Bk 45+ A p to 5'4" Fst Lst 22 R Hddd 3 22 23 Mss G 2 23 25 Vto K 1 25 Msts Bk 45+ B ov 5'4" Fst Lst 21 L Bzzd 3 21 24 Ss Rdos 2 24 26 Sty Mqz 1 26 Msts Bk 35+A p to 5'4 Fst Lst 7 Joy Dh 4 7 8 Ah Mt

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία

Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία Τομ. 8 0 Προβλήματα δυναμικού σε μη κυρτά χωρία Μπαγάνης Γεώργιος Ελληνικό Ανοικτό Πανεπιστήμιο

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS . ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas Lctu 31 Wi Antnnas n this lctu yu will lan: Gnatin f aiatin by al wi antnnas Sht ipl antnnas Half-wav ipl antnnas Th-half-wav ipl antnnas Small wi lp antnnas magntic ipl antnnas ECE 303 Fall 006 Fahan

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

CS348B Lecture 10 Pat Hanrahan, Spring 2002

CS348B Lecture 10 Pat Hanrahan, Spring 2002 Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

DISPLAY SUPPLY: FILTER STANDBY

DISPLAY SUPPLY: FILTER STANDBY ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-#

!###$ %&' ()() ($& *)!+$& #)*!%,*) # *) #&-*&*$-# *&(&.# *)/0.1 *!(-%$2 -*&*$-#%- *&&%#-!*&#* $ # 3#*,$&-*&*$-# !"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-# 4556 ''*."% 777777777777777777777777777777777777777777777777777 #8. (&9%,*.#:"%*)!"

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα