4. KAKO REALIZOVATI ELASTO-PLASTI^AN SISTEM U ARMIRANOM BETONU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. KAKO REALIZOVATI ELASTO-PLASTI^AN SISTEM U ARMIRANOM BETONU"

Transcript

1 4. KAKO REALIZOVATI ELASTO-PLASTI^AN SISTEM U ARMIRANOM BETONU UVOD U prethodnim razmatranjima analiziran je odgovor konstrukcije sa elastoplasti~nom vezom sile i pomeranja vrha. U ovom poglavlju, analiza silazi na nivo popre~nog preseka i razmatraju se zahtevi koji se postavljaju u pogledu potrebnih krivina preseka odnosno veza napon - dilatacija na nivou materijala. U nastavku, razmatra se kapacitet nelinearnih deformacija uobi~ajenih betonskih preseka i konstrukcija, kao i konstrukcijske mere za pove}anje kapaciteta - utezanje betonskih preseka uzengijama. Na kraju je dat prikaz jednog ispitivanja kao i savremenih postupaka modeliranja AB konstrukcija. 4. KRIVINA PRESEKA - POMERANJE KONSTRUKCIJE Ako su rezultati prethodnih analiza zadovoljavaju}i, postavlja se pitanje kako realizovati EP model pomeranje-sila u realnim konstrukcijama sa jednim stepenom slobode, konzola na slici 4..a. Da bi se postigla elasto-plasti~na veza sila-pomeranje F-d, neophodan uslov je da je bar na delu visine konstrukcije mogu}e realizovati elasto-plasti~nu vezu moment-krivina preseka M-κ, slika 4..b. dy d m =µ d d y F E EP R M e a. M y =M e /R b. µ k κ m =µ κ κ y W E EP Krivina κ e κ y µ d Pomeranje H Potrebna dukt.krivine - µk µ d = µ d =5, µ d =,5 c Du`ina plast. zgloba - /H Slika 4. Obezbe enje elasto-plasti~ne veze sila-pomeranje Primer 4... Odgovor elasti~ne konstrukcije na dejstvo sile F u vrhu konzole je moment M e =FH u uklje{tenju, pomeranje vrha d m i krivina preseka u uklje{tenju κ e slika 4..a-b. Za zahtevanu vrednost duktilnosti pomeranja µ d i uz pretpostavku da je faktor redukcije optere}enja R=µ d, potrebno je konstruisati konstrukciju za koju }e moment u uklje{tenju imati vrednost M y =M e /R. Krutost konstrukcije na pomeranje odrediti prema krutosti preseka na savijanje EI. Sa poznatom vredno{}u momenta u uklje{tenju - nosivosti preseka M y =M e /R odre ena je i krivina na granici elasti~nosti κ y =M y /EI, slika 4..b. Prema Morovoj analogiji, pomeranje d y vrha konzole na granici elasti~nosti iznosi d H H κ yh y = 5, κ y = 3 3 (4.) 4-

2 Ostatak pomeranja vrha do zahtevanog iznosa d m realizova}e se konstruisanjem plasti~nog zgloba u oblasti uklje{tenja. Sve elasto-plasti~ne deformacije konstrukcije bi}e koncentrisane na du`ini plasti~nog zgloba, sa nepoznatom maksimalnom vredno{}u krivine preseka κ m = µ k κ y, slika 4..b. Za ostali deo konstrukcije pretpostavlja se da ostaje u oblasti elasti~nog odgovora materijala. Za du`inu plasti~nog zgloba okvirno mo`e da se usvoji polovina dimenzije d preseka elementa u ravni savijanja. Pomeranje δ vrha konzole usled pove}anih krivina preseka preko granice elasti~nosti na du`ini plasti~nog zgloba iznosi p δ = ( κm κ y) Hp( H H ) = κ y( µ k ) Hp( H 5,) (4.) Da bi se obezbedilo zahtevano pomeranje vrha konzole d m, treba da je zadovoljen uslov δ = d m - d y = d y (µ d -) (4.3) Uvr{}enjem (4.) i (4.) u (4.3) dobija se veza potrebne duktilnosti krivine µ k na du`ini plasti~nog zgloba i zahtevane duktilnosti pomeranja vrha konzole µ d κ m µ d µ k = = + κ H y p 3 ( 5, ) H H (4.4) Na slici 4..c prikazana je zavisnost potrebne duktilnosti krivine µ k u funkciji du`ine plasti~nog zgloba i zahtevane duktilnosti pomeranja µ d. Veza va`i za bilo koji materijal, ~elik, beton, druga je stvar da li se potrebne duktilnosti krivina mogu, i pod kojim uslovima realizovati. Pri zahtevanoj duktilnosti pomeranja µ d = 5 i du`ini plasti~nog zgloba /H =,, potrebna duktilnost krivine iznosi µ k =5, {to uop{te nije malo, u slu~aju AB konstrukcija. Primer 4... Na slici 4. prikazan je okvir sa beskona~no krutom riglom - "smi~u}i okvir". Pri pomeranju vrha od d m, na slici 4..b prikazana je raspodela krivina, koja se mo`e interpretirati kao dve ekvivalentne konzole visine H. U ovom slu~aju, relacija (4.4) glasi d m Ekvivalentna konzola d m / d m / κ m 5, µ d µ k = = + κ H y p 3 ( 5, ) H H H H κ y κm a. b. Slika 4. EP smi~u}i okvir (4.5) Pri zahtevanoj duktilnosti pomeranja µ d =5, i du`ini plasti~nog zgloba /H =,, potrebna duktilnost krivine iznosi µ k =3,8 {to je u slu~aju AB konstrukcija lako ostvarljivo. Da bi se ostvarila potrebna duktilnost pomeranja konstrukcije, i konstrukcijski sistem igra zna~ajnu ulogu. 4-

3 4. NELINEARNI ODGOVOR AB KONSTRUKCIJA U armirano betonskim konstrukcijama, krivina preseka κ posti`e se dilatacijama skra}enja usled pritiska u betonu - ε c i izdu`enja ~elika ε s, slika 4.3.a κ = (ε c + ε s )/h (4.5) Da bi se u zoni plasti~nog zgloba uop{te realizovale nelinearne deformacije betona i armature, armatura mora da bude pouzdano usidrena u temelj, uz efikasno fundiranje koje }e da obezbedi da se pomeranje vrha konzole realizuje krivinama preseka, a ne rotacijom ili "skakutanjem" temelja. d F 3 φ a. b. 5 n=,5 µ= % 4 H ε s κ h ε c 5 5 n=,8 κ u /κ y =4-5 κ y n=, κ u n=, b=4 κ u n= max ε s = % max ε s = 4% Detalj Pouzdano sidrenje armature i fundiranje! Krivina (/m) µ=4% µ=% n=, max ε s = 4% µ=% 3 5 c. d. 5 5 MB5 MB3 N=656 kn µ=% max ε s =4% n=n u /bdβ b µ m MB3 MB5 MB Krivina (/m) Krivina (/m) Slika 4.3 Nelinearni odgovor AB stuba Primer Pri dimenzionisanju nosivosti preseka za uticaje uobi~ajenih optere}enja, dilatacije su propisima ograni~ene na ε c <,35 u betonu odnosno ε s <, u ~eliku, ~ime je ograni~ena i maksimalna vrednost krivine preseka za uobi~ajene slu~ajeva optere}enja. Me utim, ni taj iznos krivine preseka ~esto nije mogu}e dosti}i, jer iznos aksijalnog optere}enja preseka bitno uti~e na sposobnost post-elasti~nih deformacija preseka, primer stuba kvadratnog popre~nog preseka, MB3, slika 4.3.b. 4-3

4 Za kvadratni presek stuba prikazani su dijagrami M-n-κ (n=n/b β Β ) sa dilatacijama ~elika ograni~enim na, odnosno,4, "mimo propisa". Sa porastom aksijalnog optere}enja, opada grani~na vrednost krivine preseka pri lomu. Dopu{tanje ve}ih dilatacija ~elika pove}ava grani~nu vrednost krivine preseka, ali samo pri ni`im nivoima aksijalnog optere}enja, u slu~ajevima "loma po armaturi". Duktilnost krivine pri ~istom savijanju iznosi 4-5 (ε s <,) odnosno 8 - (ε s <,4), {to ne obe}ava, slika 4..c. Poku{aj da se pri nivou aksijalnog optere}enja n =, duktilnost krivine preseka pove}a pove}anjem procenta armiranja µ, slika 4.3.c ili marke betona, slika 4.3.d ne}e dati zadovoljavaju}e rezultate. Postavlja se pitanje mo`e li se onda uop{te ne{to posti}i u armiranom betonu, mogu li se u slu~aju zemljotresa obezbediti pove}ane dilatacije armature i betona, makar i uz smanjenu nosivost preseka? Na slici 4.4 uobi~ajeni "radni dijagrami" betona i ~elika prikazani su linijom, dok linije prikazuju "po`eljne" dijagrame, odgovor materijala u slu~aju zemljotresa. Na dijagramu σ ε ~elika, linija 3 je u slu~aju zemljotresa nepo`eljna, ~elik treba da poseduje osobinu oja~anja - linija, kako bi se obezbedila ve}a du`ina plasti~nog zgloba, postepenim propagiranjem dilatacija te~enja armature du` elementa. σ σ β b f t f y "Lom" 3 "Lom" β bu "Lom",,35,5? "Lom" a. b. ε (%), 6,? ε (%) "g+p" "g+p" Zemljotres Zemljotres Slika 4.4 Radni dijagrami a) betona i b) ~elika Napon (MPa) fc'=6 fc'=5 fc'=4 fc'=3, Dilatacija Dilatacija (%) Na slici 4.5 prikazani su rezultati jednoaksijalnih opita betona i ~elika. Dok se u slu~aju rebrastih ~elika mogu dopustiti pove}ane dilatacije ~ak i do %, slika 4.5.b, dotle su dilatacije pritiska betonskih cilindara sa ~vrsto}om f c ' u granicama definisanim propisma. Napon (MPa) fc'= a. b. Slika 4.5 Rezultati jednoaksijalnih opita: a) betona i b) ~elika /8/ 4-4

5 Pove}anje duktilnosti krivine dopu{tanjem pove}anih dilatacija ~elika nije dovoljno, potrebno je da se nekako pove}a i kapacitet deformacija betona. Opiti na slici 4.5.a su naravno izvedeni na nearmiranim betonskim prizmama. Na rezultatima ovih opita jednoaksijalne ~vrsto}e zasnivaju se uobi~ajeni algoritmi prora~una preseka na savijanje sa normalnom silom, u kom slu~aju se jednoaksijalno stanje napona prostire na delu ukupne povr{ine popre~nog preseka. U realnim konstrukcijama, "jednoaksijalna ~vrsto}a preseka elementa" je ve}a, jer se bo~nom {irenju betona pri pove}anim dilatacijama pritiska, sa pojavom podu`nih prslina u pravcu optere}enja suprotstavljaju uzengije preseka - preseci su "popre~no utegnuti", slika 4.6.b-c. Napon (MPa) Bo~nom {irenju betona opire se ustvari "omota~" od podu`ne armature i uzengija. Efikasnost utezanja zavisi od koli~ine i podu`nog razmaka uzengija, granice razvla~enja ~elika ali i od razmaka podu`nih {ipki koje su "bo~no pridr`ane - poduprte" uzengijama, slika 4.6.c. Ovaj omota~ defini{e utegnuto jezgro preseka dimenzija b prema slici 4.6.b. Primer Za opisivanje efekata utezanja betona na pove}anje jednoaksijalne nosivosti i deformabilnosti postoje razli~iti predlozi, , ,4 B Dilatacija B 3 Utegnuto jezgro preseka - jezgro (B3) - za{titni sloj (B) 39.7 B a b =34 F= f u σ v b. 34 Slika 4.6 Utezanje AB preseka uzengijama Utegnut ceo presek - (B3) Krivina (/m) Neutegnut presek - (B) Slika 4.7 Efekat utezanja betona 3 c. B 3 B d. l w jedan od njih ilustrovan je na slici 4.6.a //. Kriva B predstavlja paraboli~nu aproksimaciju rezultata opita sa slike 4.5.a za fc'=5 MPa, a linija B se odnosi na isti beton, ali utegnut uzengijama Rφ/ prema slici 4.6.b. Pove}anje nosivosti je zna~ajno, i {to je va`nije, kapacitet dilatacija - deformabilnosti je pove}an. Za dalje ra~unske analize, pretpostavljen je ne{to ni`i efekat utezanja - beton B 3, sa pove}anom ~vrsto}om od fc'=35 MPa koja se dosti`e pri dilataciji betona od,4, slika 4.6.a. Na slici 4.7 prikazani su rezultati prora~una moment - krivina preseka prema b w B 3 B B -B 3? 4-5

6 slici 4.6.b, za iznos normalne sile od N=,f c 'b =,x,5x4 =8kN. Kriva predstavlja odgovor neutegnutog preseka, model betona B sa slike 4.6.a. Linija predstavlja odgovor preseka uz pretpostavku da je ceo popre~ni presek utegnut, model betona B 3. Pri pove}anim dilatacijama pritiska nastupa odvajanje, "oljuskavanje" za{titnog sloja preseka, i svo enje nosivog preseka na presek utegnutog jezgra. Linija 3 prikazuje odgovor preseka kod koga je za jezgro usvojen model utegnutog betona B 3, a za za{titni sloj model neutegnutog betona B, slika 4.6.b. U oba slu~aja, utezanje preseka znatno pove}ava grani~ne dilatacije pri dostizanju loma preseka, samim tim i maksimalne krivine odnosno kapacitet deformacija. Isti princip va`i za bilo koju pritisnutu zonu slo`enih preseka, kao {to je zid T - preseka na slici 4.6.d, kod koga je potrebno pove}ati duktilnost krivine preseka utezanjem {rafiranih "skrivenih stubova". U zoni spoja rebra i flan{e zida uvek se postavljaju uzengije, ali eventualno ra~unski potrebno utezanje nije uvek potrebno. Svi prora~uni moment - krivina ura eni su programom RESPONSE, koji se na disketi distribuira uz ud`benik /9/. 4.3 PO^ETNA KRUTOST AB PRESEKA I KONSTRUKCIJA Pri dosada{njim analizama teorijskih elasto-plasti~nih modela odgovora konstrukcija na dejstvo zemljotresa, formiranju nelinearnih spektara odgovora na primer, pretpostavljeno je da je inicijalna, po~etna krutost k elasti~ne i EP konstrukcije identi~na. Postavlja se pitanje kako odrediti prora~unsku krutost preseka i konstrukcije sa kojom se potom formira dinami~ki model konstrukcije? Primer Na slici 4.8.a prikazan je popre~ni presek slo`enog AB zida. Uz pretpostavku da je centri~ni napon pritiska usled gravitacionog optere}enja σ =,5 MPa (N =A c σ = 58 kn, Ac - povr{ina bruto preseka betona), i da je zid armiran minimalnom koli~inom armatute prema YU seizmi~kim propisima //, izvr{iti analizu prora~unskih krutosti preseka konstrukcije. Ako se za Moment 3 3 Krivina a. MB3 E c =5GPa Detalj b., My=8 knm EI =5,5EI ef,75m y = 6 knm EI ef =6/,5 =, 7 knm, Krivina (/m) F Slika 4.8 Slo`eni zid, prora~unska krutost preseka krutost preseka na savijanje EI usvoji krutost EI bruto I- preseka slo`enog zida prema slici 4.8.a, veza moment - krivina prikazana je linijom na slici 4.8.c. Veza moment-krivina odre ena modeliranjem armiranog preseka prema postupku iz prethodnog primera, prikazana je na slici 4.8.b, pri ~emu je modelirano i oja~anje ~elika. Maksimalna krivina preseka zida iznosi skoro 3%. Detalj dijagrama, do vrednosti krivina od,% prikazan je na slici 4.8.c. Elasto-plasti~na aproksimacija dijagrama moment-krivina prikazana je linijom na slici 4.8.c, koja prolazi kroz karakteristi~nu ta~ku ra~unskog dijagrama za koju se naj~e{}e usvaja nivo od 75% momenta nosivosti M y =8 knm. Sa c. 4-6

7 odgovaraju}om krivinom od,5 /m, efektivna krutost preseka iznosi EI eff =, 7 knm, {to je 5,5 puta manje od krutosti EI bruto I - preseka zida. Primer U praksi ~est slu~aj usvajanja karakteristika samo rebra za prora~un krutosti preseka slo`enih zidova, zasniva se upravo na ~injenici da }e nakon dostizanja ~vrsto}e betona na zatezanje, beton zategnute flan{e i dela rebra zida biti isklju~en iz nosivosti i krutosti preseka, osim armature u ovom zonama. Me utim, onda bi trebalo biti dosledan, pa i za krutost jednostavnog zida koji nema flan{e tako e usvojiti prora~unsku vrednost efektivne krutosti EI ef, manju od krutosti bruto preseka EI, {to u praksi naj~e{}e nije slu~aj M y =4 knm EI =4,EI ef EI ef =8/,65 =,8 6 knm,75m y = 8kNm, Krivina (/m) Slika 4.9 Krutost pravougaonog preseka zida slo`enih sistema, poglavlje REALNO PONA[ANJE ARMIRANO BETONSKIH KONSTRUKCIJA PRI CIKLI^NIM DEFORMACIJAMA Na slici 4.9 prikazani su dijagrami moment-krivina pravougaonog zida, rebra zida na slici 4.8.a, sa istim normalnim naponom od gravitacionog optere}enja i istim minimalnim procentom armiranja. Efektivna krutost preseka iznosi EI ef =,8 6 knm, linija, {to je ~ak 4, puta manje od krutosti bruto pravougaonog preseka EI, linija na slici 4.9. Usvajanje sni`ene krutosti zida I - preseka i pune krutosti zida pravougaonog preseka za posledicu ima poreme}aj relativnih krutosti elemenata konstrukcije, {to ima uticaja na prora~unske uticaje Elasto-plasti~ni model jeste jednostavan za obja{njenje problema, dovoljno ta~no opisuje pona{anje betonskih preseka pri monotonim optere}enjima u istom smeru, ukoliko je lom po ~eliku, koji i daje karakter krive. Me utim, pri cikli~nim deformacijama usled zemljotresa, fenomeni su slo`eniji i modeliraju se drugim, slo`enijim vezama moment - krivina ili sila - pomeranje. Zbog poznatog Bau{ingerovog efekta, ni sam ~elik ne pokazuje idealan elastoplasti~an odgovor na cikli~ne deformacije, dolazi do zaobljenja σ krive odgovora, sa povr{inom histerezisne krive manjom od 6 elasto-plasti~nog odgovora, slika 4.. Pri formulisanju racionalnih modela pona{anja AB 5 konstrukcija pri zemljotresu, nezamenljivu ulogu imaju 7 ε laboratorijski eksperimenti kao i osmatranja pona{anja realnih konstrukcija pri zemljotresu. Kao primer, na slici 4. prikazana 3 je dispozicija opita na modelima AB trospratnih zidova izvedenih na ETH - Cirih /8/. 4 Slika 4. Cikli~ne deformacije ~elika 4-7

8 "Mase" 3x kn "N-sila" Kablovi "AB zid" R=:3 Slika 4. Dispozicija opita /8/ Vibraciona platforma Aktuator Model zida trospratne zgrade u razmeri :3, sa tri mase od po kn, testiran je zadavanjem ubrzanja vibracionoj platformi pomo}u prese - aktuatora, prema sintetizovanom akcelerogramu. Efekat gravitacionog optere}enja simuliran je vertikalnim prethodnim naprezanjem. Na slici 4. prikazani su rezultati opita cikli~nog monotonog optere}enja dva zida, razli~ito armirana. Zid na slici 4..b pokazuje dobar - po`eljan odgovor za AB konstrukcije. Elasto- plasti~ni dijagram monotonog opita je anvelopa cikli~nih deformacija, ali histerezis znatno odstupa od elasto-plasti~nog modela (EP), su`en je i pokazuje tendenciju pada krutosti u toku ciklusa. Povr{ina histerezisa je manja nego u slu~aju teorijskog elasto-plasti~nog modela, samim tim i koli~ina potro{ene energije. Sila aktuatora (kn) Monotoni opit Pad krutosti Pad nosivosti Moment u uklje{tenju (knm) Horizontalno pomeranje vrha (mm) a. Horizontalno pomeranje vrha (mm) b. Slika 4. Histerezisne krive /8/ Zid na slici 4..a pokazuje nepo`eljnu, ali sasvim mogu}u situaciju u praksi. Osim pada krutosti preseka, prisutan je i pad nosivosti sa pove}anjem broja ciklusa, i definitivni lom pri relativno malom broju ciklusa. Sila aktuatora (kn) Monotoni opit Beton EP Moment u uklje{tenju (knm) 6 d y 5 7 k r F y 4 F y k 9 Slika 4.3 Model F-d sa uticajem akumulacije o{te}enja na krutost 8 3 d y k n d 4.5 MODELIRANJE AB KONSTRUKCIJA Sve do pojave rezultata opita na modelu realne AB konstrukcije iz prethodnog poglavlja, teorija zasnovana na elastoplasti~nom modelu odgovora konstrukcije je "lepo napredovala". Budu}i da se konstrukcije od betona stvarno izvode, i to uglavnom prema Propisima, zna~i da re{enje ipak postoji. Pre napu{tanja razmatranja efekata zemljotresa na primeru najjednostavnije konstrukcije, konzole sa jednom masom, potrebno je bar nagovestiti kako }e to "beton" 4-8

9 sa slike 4..b da se uklopi u op{ti algoritam iz poglavlja 3.5. Ako elasto-plasti~ni model F(sila, moment)- d(pomeranje, krivina preseka) ne opisuje korektno odgovor realnih AB konstrukcija, onda treba "smeniti" model. Na slici 4.3 kvalitativno je prikazan ra~unski model odgovora kakvi se danas koriste u nelinearnoj analizi AB konstrukcija izlo`enih dejstvu zemljotresa. Inicijalna krutost k kao i nosivost F y (pri ~emu plato ne mora da bude horizontalan) odre eni monotonim opitom formiraju kostur krive. Zavisno od trenutnog iznosa deformacije d, ali i od istorije deformacija, krutost sistema se menja u toku cikli~nih deformacija pri zemljotresu. Pravila po kojima se odre uju krutosti k n, k r itd. pojedinih grana, histerezisna pravila, utvr uju se usagla{avanjem sa eksperimentalno utvr enim rezultatima, prema slici 4. na primer. Osim {to je formulacija matemati~ki komplikovanija, princip analize je isti kao i u slu~aju EP modela. Ako su u konstrukciji definisane zone plasti~nih zglobova, odgovor tih Konzola k k k 3 h Slika 4.4 Vi{eslojni model nelinearnih opruga F 7x3= R Strana Strana W/ W/ a.) +Pomeranje Neelasti~no Elasti~no zona mo`e da se opi{e prethodnim modelom, dok se za ostale delove konstrukcije mo`e usvojiti da se pona{aju elasti~no - koncept "koncentrisanog nelinearnog odgovora" u ~vorovima {tapova modela konstrukcije. Danas je popularan koncept "makroskopskog modeliranja", gde se deo zida visine h, na primer, modelira vi{eslojnim sistemom nelinearnih opruga, od kojih svaka, k -k n mo`e da ima svoje histerezisno pravilo, tako da ukupni efekat bude usagla{en sa rezultatima eksperimenata, slika f ctm =.9 F F f (MPa) f c =3 R R Za razliku od prethodnih, "makroskopskih modela", koji su trenutno jedino racionalno re{enje za modeliranje f cm =38 konstrukcija objekata u celini, metod kona~nih elemenata se uglavnom koristi za nelinearnu seizmi~ku analizu C3/37 delova ili detalja AB konstrucija - "mikroskopsko modeliranje". ε (/). 3 4 c.) Na slici 4.5 prikazan je model sedmospratnog armiranobetonskog slo`enog 3 zida, kod koga su prva dva sprata, beton i sva armatura Strana modelirani nelinearno, a za ostatak konstrukcije je usvojen idealno elasti~an model //. Ukupna masa konstrukcije koncentrisana je u visini petoga sprata, nivou "rezultante" seizmi~kog optere}e- Strana b.) nja. Napon u betonu usled E cm =3935 e= 4x=8 Slika 4.5 "Mikroskopsko modeliranje": a) model zida, b)presek i raspored armature, c) jednoaksijalni model betona 3x=

10 5 d (mm) 5 q d = q d = BAB Numeri~ka gre{ka a.) ZID Z3- DIANA BAB87 Sila (kn) Pomeranje (mm) Slika 4.6 Odgovor sila-pomeranje pri monotonom cikli~nom opitu a.) d=-75.3 F= ZID Z3- El Centro-,4g Sila (kn) Pomeranje (mm) Slika 4.7 Odgovor sila-pomeranje pri zapisu El Centro du`ine 8 sekundi gravitacionog opetere}enja u ovom slu~aju iznosi,mpa, dok ujedna~eni procenat armiranja vertikalnom armaturom iznosi,%. Nelinearna stati~ka i dinami~ka analiza ura ene su programom DIANA-TNO /5/. Pomeranjem oslonca u nivou masa, prema shemi ciklusa na slici 4.6, prvo je definisan stati~ki odgovor konstrukcije, sila-pomeranje u nivou masa, pri monotonom cikli~nom optere}enju, slika 4.6. Prora~un je zavr{en pri maksimalnom pomeranju od 5mm i duktilnosti pomeranja q d =4,, znatno iznad prognoziranog pomeranja od 5mm, prema elasto-plasti~nom modelu prethodno analiziranom, slika 4.8. Pre dinami~ke analize utvr en je period oscilovanja sistema sa jednom masom. Sa bruto kruto{}u celog I-preseka zida, period iznosi T=,6s, dok se sa efektivnom kruto{}u period produ`ava na T=,s. Seizmi~ka analiza ura ena je za sekvencu od prvih osam sekundi zapisa El Centro, normalizovanom na maksimalno ubrzanje tla a g =,4g. U slu~aju ZID Z3- El Centro-,4g DIANA Elasti~no T=,6s Elasto-plasti~no Vreme (s) Pomeranje (mm) Slika 4.8 Pomeranje u toku zemljotresa elasti~ne konstrukcije, u toku ove karakteristi~ne sekvence trajanja pojavljuju se ekstremi svih veli~ina - pomeranja i ubrzanja. Odgovor sistema prikazan je na slici 4.7, dok je tok pomeranja za tri razli~ita koncepta modeliranja prikazan na slici 4.8. Na kraju ovog informativnog pregleda, poenta: eksperimenti, osmatranje objekata posle zemljotresa, sofisticirani ra~unski modeli uz silan trud entuzijasta, treba projektantima u praksi da defini{u vezu dozvoljenog faktora redukcije optere}enja i obezbe ene duktilnosti pomeranja - nelinearni spektar ubrzanja za AB konstrukcije prema "jednostavnom" algoritmu na slici

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

2. PONA[ANJE PRI ZEMLJOTRESU LINEARNO ELASTI^NIH SISTEMA SA JEDNIM STEPENOM SLOBODE

2. PONA[ANJE PRI ZEMLJOTRESU LINEARNO ELASTI^NIH SISTEMA SA JEDNIM STEPENOM SLOBODE 2. PONA[ANJE PRI ZELJOTRESU LINEARNO ELASTI^NIH SISTEA SA JEDNI STEPENO SLOBODE UVOD Poznavanje pona{anja konstrukcije, uz pretpostavku njenog elasti~nog odgovora na kretanje tla pri zemljotresu je osnovni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1 PRIMER 1 Simetrična okvirna konstrukcija temelja teške opreme sastoji se od armiranobetonske platforme - roštilja greda, zglobno oslonjene na četri ugaona konzolna stuba. Za uticaje gravitacionih opterećenja,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

PROJEKTOVANJE SEIZMIČKI OTPORNIH ARMIRANOBETONSKIH KONSTRUKCIJA KROZ PRIMERE

PROJEKTOVANJE SEIZMIČKI OTPORNIH ARMIRANOBETONSKIH KONSTRUKCIJA KROZ PRIMERE Vanja Alendar PROJEKTOVANJE SEIZMIČKI OTPORNIH ARMIRANOBETONSKIH KONSTRUKCIJA KROZ PRIMERE Deo A - Osnovi teorije i uvod u propise Vežbe u okviru kursa Projektovanje i građenje betonskih konstrukcija na

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN)

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN) Odsek za konstrukcije 27.01.2009. TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN) 1. Za AB element konstantnog poprečnog preseka, armiran prema skici desno, opterećen aksijalnom silom G=10 kn usled

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

EN 1992: PRORA^UN BETONSKIH KONSTRUKCIJA EUROCODE 2

EN 1992: PRORA^UN BETONSKIH KONSTRUKCIJA EUROCODE 2 EN 1992: PRORA^UN BETONSKIH KONSTRUKCIJA EUROCODE 2 Prof. dr Neboj{a \uranovi}, dipl. in`. gra. Univerzitet Crne Gore, Gra evinski fakultet, nebojsadj@hotmail.com EN 1992-1-1: 2004 OP[TA PRAVILA i PRAVILA

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 1 -

Betonske konstrukcije 1 - vežbe 1 - Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA GRA EVINSKI FAKULTET UBEOGRADU PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA 1 12.06.2013. p=10 kn/m 2 p=8kn/m 2 p=10 kn/m 2 25 W=±60 kn 16 POS 1 80 60 25 25 POS 1 60 POS 3 60 POS 4 POS 2 POS 3 POS 4 POS

Διαβάστε περισσότερα

Savijanje statički neodređeni nosači

Savijanje statički neodređeni nosači Savijanje statički neodređeni nosači Statička neodređenost nosača Uslovi neprekidnosti elastične linije Prva jednačina savijanja Normalni napon u nekoj tački poprečnog preseka s M moment sprega s z M I

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

Osnove projektovanja seizmič ki otpornih zgrada (II deo)

Osnove projektovanja seizmič ki otpornih zgrada (II deo) Projektovanje i građ enje betonskih konstrukcija 2 Slajdovi uz predavanja Osnove projektovanja seizmič ki otpornih zgrada (II deo) 1 Elasto-plastič no ponašanje 2 Dinamika elasto-plastič nog sistema Elastič

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Betonske konstrukcije 1

Betonske konstrukcije 1 Betonske konstrukcije 1 Prof.dr Snežana Marinković Doc.dr Ivan Ignjatović GF Beograd Betonske konstrukcije 1 1 Sadržaj Uvod Osnove proračuna Osobine materijala ULS-Savijanje ULS-Smicanje ULS-Stabilnost

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα